Subjects -> INSTRUMENTS (Total: 63 journals)
Showing 1 - 16 of 16 Journals sorted alphabetically
Applied Mechanics Reviews     Full-text available via subscription   (Followers: 27)
Bulletin of Social Informatics Theory and Application     Open Access   (Followers: 1)
Computational Visual Media     Open Access   (Followers: 4)
Devices and Methods of Measurements     Open Access  
Documenta & Instrumenta - Documenta et Instrumenta     Open Access  
EPJ Techniques and Instrumentation     Open Access  
European Journal of Remote Sensing     Open Access   (Followers: 9)
Experimental Astronomy     Hybrid Journal   (Followers: 39)
Flow Measurement and Instrumentation     Hybrid Journal   (Followers: 18)
Geoscientific Instrumentation, Methods and Data Systems     Open Access   (Followers: 4)
Geoscientific Instrumentation, Methods and Data Systems Discussions     Open Access   (Followers: 1)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 2)
IEEE Sensors Journal     Hybrid Journal   (Followers: 103)
IEEE Sensors Letters     Hybrid Journal   (Followers: 3)
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)     Open Access   (Followers: 3)
Imaging & Microscopy     Hybrid Journal   (Followers: 9)
InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan     Open Access  
Instrumentation Science & Technology     Hybrid Journal   (Followers: 6)
Instruments and Experimental Techniques     Hybrid Journal   (Followers: 1)
International Journal of Applied Mechanics     Hybrid Journal   (Followers: 7)
International Journal of Instrumentation Science     Open Access   (Followers: 40)
International Journal of Measurement Technologies and Instrumentation Engineering     Full-text available via subscription   (Followers: 2)
International Journal of Metrology and Quality Engineering     Full-text available via subscription   (Followers: 4)
International Journal of Remote Sensing     Hybrid Journal   (Followers: 282)
International Journal of Remote Sensing Applications     Open Access   (Followers: 45)
International Journal of Sensor Networks     Hybrid Journal   (Followers: 4)
International Journal of Testing     Hybrid Journal   (Followers: 1)
Journal of Applied Remote Sensing     Hybrid Journal   (Followers: 83)
Journal of Astronomical Instrumentation     Open Access   (Followers: 3)
Journal of Instrumentation     Hybrid Journal   (Followers: 32)
Journal of Instrumentation Technology & Innovations     Full-text available via subscription   (Followers: 2)
Journal of Medical Devices     Full-text available via subscription   (Followers: 5)
Journal of Medical Signals and Sensors     Open Access   (Followers: 3)
Journal of Optical Technology     Full-text available via subscription   (Followers: 5)
Journal of Sensors and Sensor Systems     Open Access   (Followers: 11)
Journal of Vacuum Science & Technology B     Hybrid Journal   (Followers: 3)
Jurnal Informatika Upgris     Open Access  
Measurement : Sensors     Open Access   (Followers: 3)
Measurement and Control     Open Access   (Followers: 36)
Measurement Instruments for the Social Sciences     Open Access  
Measurement Science and Technology     Hybrid Journal   (Followers: 7)
Measurement Techniques     Hybrid Journal   (Followers: 3)
Medical Devices & Sensors     Hybrid Journal  
Medical Instrumentation     Open Access  
Metrology and Instruments / Метрологія та прилади     Open Access  
Metrology and Measurement Systems     Open Access   (Followers: 6)
Microscopy     Hybrid Journal   (Followers: 8)
Modern Instrumentation     Open Access   (Followers: 50)
Optoelectronics, Instrumentation and Data Processing     Hybrid Journal   (Followers: 4)
PFG : Journal of Photogrammetry, Remote Sensing and Geoinformation Science     Hybrid Journal  
Photogrammetric Engineering & Remote Sensing     Full-text available via subscription   (Followers: 29)
Remote Sensing     Open Access   (Followers: 55)
Remote Sensing Applications : Society and Environment     Full-text available via subscription   (Followers: 8)
Remote Sensing of Environment     Hybrid Journal   (Followers: 93)
Remote Sensing Science     Open Access   (Followers: 24)
Review of Scientific Instruments     Hybrid Journal   (Followers: 23)
Science of Remote Sensing     Open Access  
Sensors and Materials     Open Access   (Followers: 2)
Solid State Nuclear Magnetic Resonance     Hybrid Journal   (Followers: 3)
Standards     Open Access  
Transactions of the Institute of Measurement and Control     Hybrid Journal   (Followers: 13)
Труды СПИИРАН     Open Access  
Similar Journals
Journal Cover
Journal of Medical Devices
Journal Prestige (SJR): 0.223
Citation Impact (citeScore): 1
Number of Followers: 5  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 1932-6181 - ISSN (Online) 1932-619X
Published by ASME International Homepage  [25 journals]
  • Methodology for Hemodynamic Assessment of a Three-Dimensional Printed
           Patient-Specific Vascular Test Device
    • Authors: D'Souza GA; Taylor MD, Banerjee RK.
      Abstract: Assessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • The Sparthan Three-Dimensional Printed Exo-Glove: A Preliminary Evaluation
           of Performance Via Case Study
    • Authors: Georgiou TA; Asnaghi D, Liang A, et al.
      Abstract: This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Self-Contained Three-Dimensional Bioprinter for Applications in
           Cardiovascular Research
    • Authors: Kharel P; Somasekhar L, Vecheck A, et al.
      Abstract: Bioprinting is a technique of creating 3D cell-laden structures by accurately dispensing biomaterial to form complex synthetic tissue. The printed constructs aim to mimic the native tissue by preserving the cell functionality and viability within the printed structure. The 3D bioprinting system presented in this paper aims to facilitate the process of 3D bioprinting through its ability to control the environmental parameters within an enclosed printing chamber. This design of the bioprinter targets to eliminate the need for a laminar flow hood, by regulating the necessary environmental conditions important for cell survival, especially during long duration prints. A syringe-based extrusion (SBE) deposition method comprising multiple nozzles is integrated into the system. This allows for a wider selection of biomaterials that can be used for the formation of the extracellular matrix (ECM). Tissue constructs composed of alginate-gelatin hydrogels were mixed with fibrinogen and human endothelial cells which were then characterized and compared using two methodologies: casted and bioprinted. Furthermore, vasculature was incorporated in the bioprinted constructs using sacrificial printing. Structural and functional characterization of the constructs were performed by assessing rheological, mechanical properties, and analyzing live-dead assay measurements.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Fingertip-Sized Pressure Sensor for Luer Taper of Three-Way Stopcock in
           Liquid Channel
    • Authors: Takenaka K; Togashi S, Kazama A, et al.
      Abstract: We developed an easily attachable fingertip-sized pressure sensor (FSPS) for a three-way stopcock in a liquid channel of a heart–lung machine. The FSPS has a double-pipe structure with a semispherical soft film cap on the pointed end and a diaphragm semiconductor strain sensor on the other end. An enclosed space of variable volume covered with the soft film cap prevents the semiconductor strain sensor from coming into direct contact with blood, and the double-pipe structure decreases the strain on the strain sensor when inserting the FSPS into the female-fitting part of the luer taper. It is difficult to fabricate a very fine double-pipe structure by cutting or injection molding. Instead, we fabricated it by using a three-dimensional (3D) printer. Moreover, it is difficult to fabricate a semispherical soft film cap with a 3D printer, so we fabricated it with a resin casting method using silicone resin. Experiments on the FSPS using a variable pressure liquid channel showed that it is not affected by inserting it into the female-fitting part of the luer taper and that it can accurately measure pressure in a liquid channel within a pressure range from 0 to 100 kPa.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Are Medical Grade Bioabsorbable Polymers a Viable Material for Fused
           Filament Fabrication'
    • Authors: Schachtner J; Frohbergh M, Hickok N, et al.
      Abstract: Lumbar fusion surgery has grown in popularity as a solution to lower back pain. Surgical site infection (SSI) is a serious complication of spinal surgery, affecting as high as 8.5% of the patient population. If the SSI cannot be eradicated with intravenous antibiotics, the next step is second surgery, which increases the cost imposed on the patient and extends recovery time. An implantable ultrasound-triggered polyether ether ketone device for the dispersal of antibiotics has been developed as a potential solution. In this study, the device was constructed of bioabsorbable medical grade polymer, enabling gradual degradation, and manufactured via fused filament fabrication (FFF). A novel bioabsorbable filament was manufactured and validated with gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The filament was consistent in molecular weight and thermal properties (p = 0.348 and p = 0.487, respectively). The filament was utilized for FFF of the device. Dimensional accuracy of the device was assessed with μCT analysis. Dimensional differences between the printed device and intended design were minimal. Degradation of raw material, filament, and the device was performed in accordance to ASTM F1635-16 for a month to determine how melting the material impacted the degradation properties. The degradation rate was found to be similar among the samples weeks one through three however, the raw material degraded at a slower rate by the final week (p = 0.039). This study demonstrated the feasibility of utilizing medical grade bioabsorbable polymers in FFF.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Novel Design of a Three-Dimensional Printed Umbilical Cord Clamp: A Proof
           of Concept Study
    • Authors: Mammadov B; Vural G, Aytac E, et al.
      Abstract: Parents frequently report complaints regarding the excessive size of the clamp that create concerns of hooking to the clothes and inducing premature separation of the dried cord. We aimed to design three-dimensional (3D) print and test a novel umbilical clamp which would be smaller, more ergonomic, and would look more appealing to the parents. After the design and 3D printing process, the clamps were tested for fluid leak on fresh umbilical cord specimens. The umbilical vein was cannulated with a 4F feeding tube which was attached to the saline infusion bag inserted in a pressure infusion cuff. The compressed cord width was measured, and the cuff was inflated to 100 mmHg and 200 mmHg. Umbilical cord specimens of 152 patients were included in the main study. The mean umbilical cord diameter (UCD) was 11.1 ± 3.5 mm (range: 4.5–23.3 mm). The compressed cord width mean value after clamping with the novel design clamp was 17.3 ± 2.3 mm compared to the 23.5 ± 3.5 mm with the conventional clamp and this difference was statistically significant (p < 0.001). All of the novel clamps safely and efficiently clamped the umbilical cords without any fluid leak. The novel design umbilical cord clamp is a safe and efficient tool being able to clamp a wide range of umbilical cords. However, a prospective randomized trial on human subjects, safety-efficacy tests by independent healthcare providers, and patient satisfaction surveys are mandatory for the further approval of our claims.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • The Evaluation of a Novel Three-Dimensional Printed Expandable Pedicle
           Screw Sleeve Insert
    • Authors: Burkhart TA; Sadashivaiah M, Reeves J, et al.
      Abstract: When used in combination with decompression, spinal fusion is a successful procedure for treating patients with spinal stenosis and degenerative spondylolisthesis. While a number of auxiliary devices have been proposed to enhance the fixation of the screw within the pedicle and vertebral body, there is conflicting information regarding the efficacy of their use. Therefore, the aim of this study was to determine the ability of a novel expandable pedicle screw to improve the fixation of the pedicle screw within the pedicle and vertebral body. A three-dimensional (3D) printed, screw sleeve was designed that expanded within the pedicle and vertebral body when a standard pedicle screw was inserted into it. The left and right pedicle of ten (N = 10) cadaveric lumbar spine specimens (L3–L5) were randomly assigned to be instrumented with either a pedicle screw and the sleeve or a pedicle screw only. Following instrumentation, the screws were exposed to tensile load at 5 mm/min until failure. The failure force, failure deformation, and area under the force–deformation curve were determined and compared between screw conditions. There were no significant differences between the screws and sleeve, and the screw only conditions for the failure force (p = 0.24), failure displacement (p = 0.10), and area under the curve (p = 0.38). While the novel screw sleeve presented here performed as well as a screw without a sleeve, it was better than other screw augmentation devices reported previously. In addition, it is likely that this device would prove useful as an enhancement to revision.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Custom Patient-Specific Three-Dimensional Printed Mitral Valve Models for
           Pre-Operative Patient Education Enhance Patient Satisfaction and
           Understanding
    • Authors: Hung KS; Paulsen MJ, Wang H, et al.
      Abstract: In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Process–Structure–Property Relationships in Selective Laser Melting of
           Porosity Graded Gyroids
    • Authors: Mahmoud D; Elbestawi MA, Yu B.
      Abstract: Selective laser melting (SLM) can be used to tailor both the geometry and mechanical properties of lattice structures to match bone properties. In this work, a process–structure–property (PSP) relationship for Ti6AL4V porosity graded gyroids (PGGs) structures was developed. A design of experiment approach was used to test the significance and contribution of different process parameters on microstructure, morphology, and mechanical properties. Process maps to predict the morphology errors at specific laser power and scan speed were developed. Moreover, the mechanical properties of radially PGGs with a relative density of 25% are evaluated using different SLM process parameters. The results showed that PGGs with different radial gradation designs have mechanical properties that are compatible with bone implants: apparent compressive modulus of 1.4–5.3 GPa and compressive strength 40–154 MPa.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • An Investigation Into the Challenges of Using Metal Additive Manufacturing
           for the Production of Patient-Specific Aneurysm Clips
    • Authors: Walker BJ; Cox BL, Cikla U, et al.
      Abstract: Cerebral aneurysm clips are biomedical implants applied by neurosurgeons to re-approximate arterial vessel walls and prevent catastrophic aneurysmal hemorrhages in patients. Current methods of aneurysm clip production are labor intensive and time-consuming, leading to high costs per implant and limited variability in clip morphology. Metal additive manufacturing is investigated as an alternative to traditional manufacturing methods that may enable production of patient-specific aneurysm clips to account for variations in individual vascular anatomy and possibly reduce surgical complication risks. Relevant challenges to metal additive manufacturing are investigated for biomedical implants, including material choice, design limitations, postprocessing, printed material properties, and combined production methods. Initial experiments with additive manufacturing of 316 L stainless steel aneurysm clips are carried out on a selective laser melting (SLM) system. The dimensions of the printed clips were found to be within 0.5% of the dimensions of the designed clips. Hardness and density of the printed clips (213 ± 7 HV1 and 7.9 g/cc, respectively) were very close to reported values for 316 L stainless steel, as expected. No ferrite and minimal porosity is observed in a cross section of a printed clip, with some anisotropy in the grain orientation. A clamping force of approximately 1 N is measured with a clip separation of 1.5 mm. Metal additive manufacturing shows promise for use in the creation of custom aneurysm clips, but some of the challenges discussed will need to be addressed before clinical use is possible.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • An Extensible Orthopedic Wire Navigation Simulation Platform
    • Authors: Long S; Thomas GW, Anderson DD.
      Abstract: The demand for simulation-based skills training in orthopedics is steadily growing. Wire navigation, or the ability to use 2D images to place an implant through a specified path in bone, is an area of training that has been difficult to simulate given its reliance on radiation-based fluoroscopy. Our group previously presented on the development of a wire navigation simulator for a hip fracture module. In this paper, we present a new methodology for extending the simulator to other surgical applications of wire navigation. As an example, this paper focuses on the development of an iliosacral wire navigation simulator. We define three criteria that must be met to adapt the underlying technology to new areas of wire navigation; surgical working volume, system precision, and tactile feedback. The hypothesis being that techniques, which fall within the surgical working volume of the simulator, demand a precision less than or equal to what the simulator can provide, and that require the tactile feedback offered through simulated bone can be adopted into the wire navigation module and accepted as a valid simulator for the surgeons using it. Using these design parameters, the simulator was successfully configured to simulate the task of drilling a wire for an iliosacral screw. Residents at the University of Iowa successfully used this new module with minimal technical errors during use.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • A Parallel Multiple Layer Cryolithography Device for the Manufacture of
           Biological Material for Tissue Engineering
    • Authors: Ukpai G; Sahyoun J, Stuart R, et al.
      Abstract: While three-dimensional (3D) printing of biological matter is of increasing interest, current linear 3D printing processes lack the efficiency at scale required to mass manufacture products made of biological matter. This paper introduces a device for a newly developed parallel additive manufacturing technology for production of 3D objects, which addresses the need for faster, industrial scale additive manufacturing methods. The technology uses multilayer cryolithography (MLCL) to make biological products faster and in larger quantities by simultaneously printing two-dimensional (2D) layers in parallel and assembling the layers into a 3D structure at an assembly site, instead of sequentially and linearly assembling a 3D object from individual elements as in conventional 3D printing. The technique uses freezing to bind the 2D layers together into a 3D object. This paper describes the basic principles of MLCL and demonstrates the technology with a new device used to manufacture a very simple product that could be used for tissue engineering, as an example. An evaluation of the interlayer bonding shows that a continuous and coherent structure can be made from the assembly of distinct layers using MLCL.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Design and Analysis of a Novel Lightweight, Energy Economic Powered Knee
           Orthotic Device
    • Authors: Sahoo S; Jain A, Pratihar D.
      Abstract: The task of a powered knee orthotic device (PKOD) is to assist the knee joint so that its natural behavior can be restored. The key features of a PKOD that may help to regain such characteristics are low power consumption, fast response, compactness, and lightweight. This study proposes a novel design of PKOD, where we have focused on the betterment of the mentioned features with the help of a new mechanism, namely a four-bar controlled compliance actuator (FCCA). In FCCA, instead of using the widely used screw transmission mechanism, a four-bar mechanism is used to modify the joint's angular deviation and stiffness. The main advantages of using FCCA over other existing mechanisms are to reduce the power consumption by amplification of input motor torque and to achieve a faster response at the same time, and these are achieved by utilizing a simple four-bar mechanism. In the proposed design, FCCA controls both the stiffness of the artificial knee joint using a compliance mechanism as well as knee flexion with the help of a pulley arrangement. A three-dimensional (3D)-printed prototype of the proposed design has been developed, after optimizing the inherent design parameters. Simulation and experimental analysis are carried out in order to justify the performance of the proposed PKOD. The results have shown strong agreement with that obtained using analytical study and optimization. Moreover, the torque amplification is achieved, as desired.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
  • Miniature Pump for Treatment of Refractory Ascites Based on Local Magnetic
           Actuation
    • Authors: Garbin N; Doyle P, Smith B, et al.
      Abstract: This paper presents the design, fabrication, and experimental validation of a novel low-cost implantable pump for the treatment of refractory ascites (RA) based on local magnetic actuation (LMA). A reciprocating positive displacement pump displaces liquid unidirectionally through magnetic coupling with a magnetic controller placed on the outside of the patient's body. The proposed solution is intuitive to use given an alignment algorithm that exploits externally placed magnetic field sensors (MFS). The implantable device has a catheter-like shape, is electronic free (no on-board battery), has low fabrication cost (<8 USD), and is able to generate a flow-rate of 3.65 L/h while effectively pumping fluids with various viscosity (1–5.5 cP). RA is commonly treated via costly paracentesis or invasive surgical placement of a transjugular portosystemic shunt (TIPS). The proposed solution can be implanted with minimally invasive techniques and can be used on a daily basis to drain a set amount of liquid, without requiring recurrent hospital visits.
      PubDate: Mon, 15 Jul 2019 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.210.184.142
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-