Subjects -> INSTRUMENTS (Total: 63 journals)
Showing 1 - 16 of 16 Journals sorted alphabetically
Applied Mechanics Reviews     Full-text available via subscription   (Followers: 27)
Bulletin of Social Informatics Theory and Application     Open Access   (Followers: 1)
Computational Visual Media     Open Access   (Followers: 4)
Devices and Methods of Measurements     Open Access  
Documenta & Instrumenta - Documenta et Instrumenta     Open Access  
EPJ Techniques and Instrumentation     Open Access  
European Journal of Remote Sensing     Open Access   (Followers: 9)
Experimental Astronomy     Hybrid Journal   (Followers: 39)
Flow Measurement and Instrumentation     Hybrid Journal   (Followers: 18)
Geoscientific Instrumentation, Methods and Data Systems     Open Access   (Followers: 4)
Geoscientific Instrumentation, Methods and Data Systems Discussions     Open Access   (Followers: 1)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 2)
IEEE Sensors Journal     Hybrid Journal   (Followers: 103)
IEEE Sensors Letters     Hybrid Journal   (Followers: 3)
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)     Open Access   (Followers: 3)
Imaging & Microscopy     Hybrid Journal   (Followers: 9)
InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan     Open Access  
Instrumentation Science & Technology     Hybrid Journal   (Followers: 6)
Instruments and Experimental Techniques     Hybrid Journal   (Followers: 1)
International Journal of Applied Mechanics     Hybrid Journal   (Followers: 7)
International Journal of Instrumentation Science     Open Access   (Followers: 40)
International Journal of Measurement Technologies and Instrumentation Engineering     Full-text available via subscription   (Followers: 2)
International Journal of Metrology and Quality Engineering     Full-text available via subscription   (Followers: 4)
International Journal of Remote Sensing     Hybrid Journal   (Followers: 282)
International Journal of Remote Sensing Applications     Open Access   (Followers: 45)
International Journal of Sensor Networks     Hybrid Journal   (Followers: 4)
International Journal of Testing     Hybrid Journal   (Followers: 1)
Journal of Applied Remote Sensing     Hybrid Journal   (Followers: 83)
Journal of Astronomical Instrumentation     Open Access   (Followers: 3)
Journal of Instrumentation     Hybrid Journal   (Followers: 32)
Journal of Instrumentation Technology & Innovations     Full-text available via subscription   (Followers: 2)
Journal of Medical Devices     Full-text available via subscription   (Followers: 5)
Journal of Medical Signals and Sensors     Open Access   (Followers: 3)
Journal of Optical Technology     Full-text available via subscription   (Followers: 5)
Journal of Sensors and Sensor Systems     Open Access   (Followers: 11)
Journal of Vacuum Science & Technology B     Hybrid Journal   (Followers: 3)
Jurnal Informatika Upgris     Open Access  
Measurement : Sensors     Open Access   (Followers: 3)
Measurement and Control     Open Access   (Followers: 36)
Measurement Instruments for the Social Sciences     Open Access  
Measurement Science and Technology     Hybrid Journal   (Followers: 7)
Measurement Techniques     Hybrid Journal   (Followers: 3)
Medical Devices & Sensors     Hybrid Journal  
Medical Instrumentation     Open Access  
Metrology and Instruments / Метрологія та прилади     Open Access  
Metrology and Measurement Systems     Open Access   (Followers: 6)
Microscopy     Hybrid Journal   (Followers: 8)
Modern Instrumentation     Open Access   (Followers: 50)
Optoelectronics, Instrumentation and Data Processing     Hybrid Journal   (Followers: 4)
PFG : Journal of Photogrammetry, Remote Sensing and Geoinformation Science     Hybrid Journal  
Photogrammetric Engineering & Remote Sensing     Full-text available via subscription   (Followers: 29)
Remote Sensing     Open Access   (Followers: 55)
Remote Sensing Applications : Society and Environment     Full-text available via subscription   (Followers: 8)
Remote Sensing of Environment     Hybrid Journal   (Followers: 93)
Remote Sensing Science     Open Access   (Followers: 24)
Review of Scientific Instruments     Hybrid Journal   (Followers: 23)
Science of Remote Sensing     Open Access  
Sensors and Materials     Open Access   (Followers: 2)
Solid State Nuclear Magnetic Resonance     Hybrid Journal   (Followers: 3)
Standards     Open Access  
Transactions of the Institute of Measurement and Control     Hybrid Journal   (Followers: 13)
Труды СПИИРАН     Open Access  
Similar Journals
Journal Cover
Journal Prestige (SJR): 0.906
Citation Impact (citeScore): 2
Number of Followers: 8  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 2050-5698 - ISSN (Online) 2050-5701
Published by Oxford University Press Homepage  [416 journals]
  • In This Issue
    • Pages: 1 - 4
      PubDate: Wed, 24 Mar 2021 00:00:00 GMT
      DOI: 10.1093/jmicro/dfab010
      Issue No: Vol. 70, No. 2 (2021)
  • Correlation of organelle dynamics between light microscopic live imaging
           and electron microscopic 3D architecture using FIB-SEM
    • Authors: Ohta K; Hirashima S, Miyazono Y, et al.
      Pages: 161 - 170
      Abstract: Correlative light and electron microscopy (CLEM) methods combined with live imaging can be applied to understand the dynamics of organelles. Although recent advances in cell biology and light microscopy have helped in visualizing the details of organelle activities, observing their ultrastructure or organization of surrounding microenvironments is a challenging task. Therefore, CLEM, which allows us to observe the same area as an optical microscope with an electron microscope, has become a key technique in cell biology. Unfortunately, most CLEM methods have technical drawbacks, and many researchers face difficulties in applying CLEM methods. Here, we propose a live three-dimensional CLEM method, combined with a three-dimensional reconstruction technique using focused ion beam scanning electron microscopy tomography, as a solution to such technical barriers. We review our method, the associated technical limitations and the options considered to perform live CLEM.
      PubDate: Fri, 20 Nov 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa071
      Issue No: Vol. 70, No. 2 (2020)
  • Local structure analysis of amorphous materials by angstrom-beam electron
    • Authors: Hirata A.
      Pages: 171 - 177
      Abstract: The structure analysis of amorphous materials still leaves much room for improvement. Owing to the lack of translational or rotational symmetry of amorphous materials, it is important to develop a different approach from that used for crystals for the structure analysis of amorphous materials. Here, the angstrom-beam electron diffraction method was used to obtain the local structure information of amorphous materials at a sub-nanometre scale. In addition, we discussed the relationship between the global and local diffraction intensities of amorphous structures, and verified the effectiveness of the proposed method through basic diffraction simulations. Finally, some applications of the proposed method to structural and functional amorphous materials are summarized.
      PubDate: Tue, 15 Dec 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa075
      Issue No: Vol. 70, No. 2 (2020)
  • Evaluation of accuracy in the determination of crystal structure factors
           using large-angle convergent-beam electron diffraction patterns
    • Authors: Morikawa D; Tsuda K.
      Pages: 178 - 185
      Abstract: The accuracy of electron density distribution analysis using large-angle convergent-beam electron diffraction (LACBED) patterns is evaluated for different convergence angles. An orbital ordered state of FeCr2O4 is used as an example of the analysis. Ideal orbital-ordered and non-ordered states are simulated by using orbital scattering factors. LACBED patterns calculated for the orbital-ordered state were used as hypothetical experimental data sets. Electron density distribution of the Fe 3d orbitals has been successfully reconstructed with a higher accuracy from LACBED patterns with convergence angles larger than 15.2 mrad, which is 4 times as large as that for conventional convergent-beam electron diffraction patterns. Excitation of particular Bloch waves with the aid of LACBED patterns has a key role in the accurate analysis of electron density distributions.
      PubDate: Sat, 18 Jul 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa041
      Issue No: Vol. 70, No. 2 (2020)
  • Visualization of microstructural change affected by mechanical stimulation
           in tendon healing with a novel tensionless model
    • Authors: Oshima J; Sasaki K, Yamamoto N, et al.
      Pages: 186 - 191
      Abstract: Since the majority of a tendon’s dry weight is collagen fibers, tendon healing consists mainly of collagen repair and observing three-dimensional networks of collagen fibers with scanning electron microscopy (SEM) is optimal for investigating this process. In this report, a cell-maceration/SEM method was used to investigate extrasynovial tendon (unwrapped tendon in synovial tissue such as the tendon sheath) healing of an injured Achilles tendon in a rat model. In addition, since mechanical stimulation is important for tendon healing, a novel, tensionless, rat lower leg tendon injury model was established and verified by visualizing the structural change of collagen fibers under tensionless conditions by SEM. This new model was created by transplanting the leg of a rat with a tendon laceration to the back, removing mechanical stimulation. We then compared the process of tendon healing with and without tension using SEM. Under tension, collagen at the tendon stump shows axial alignment and repair that subsequently demarcates the paratenon (connective tissue on the surface of an extrasynovial tendon) border. In contrast, under tensionless conditions, the collagen remains randomly arranged. Our findings demonstrate that mechanical stimulation contributes to axial arrangement and reinforces the importance of tendon tension in wound healing.
      PubDate: Mon, 03 Aug 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa043
      Issue No: Vol. 70, No. 2 (2020)
  • Three-dimensional culture of a pancreatic cancer cell line, SUIT-58, with
           air exposure can reflect the intrinsic features of the original tumor
           through electron microscopy
    • Authors: Takahashi N; Aoyama F, Sawaguchi A.
      Pages: 192 - 200
      Abstract: Mini-abstract: Application of a three-dimensional culture system with air exposure facilitates the formation of large cell spheres possessing cribriform glands and producing mucin in the collagen gel. Transmission electron microscopy revealed the formation of microvilli and junctional complexes at the apical side of the cell.This study aimed to reproduce the characteristics of original adenocarcinoma tumors in vitro. The pancreatic cell line, SUIT-58, derived from a moderately differentiated adenocarcinoma of metastatic pancreatic cancer was used. The cells have a sheet structure in conventional cell culture without forming glands or exhibiting mucin production in the lumen. First, the necessity of scaffolds to create an adenocarcinoma-like microenvironment for SUIT-58 pancreatic cancer cells was assessed. Compared with conventional culture plates, the use of type I collagen as a scaffold played an important role in the formation of densely congested microvilli, as observed through scanning electron microscopy. As gland formation is one of the features of adenocarcinoma, we also assessed gland formation. Use of a recently developed three-dimensional culture system with air exposure resulted in the formation of large cell spheres possessing cribriform glands, which released mucin into the lumen. Transmission electron microscopy also revealed the formation of microvilli in the lumen of the glands and junctional complex at the intercellular part, which were similar to those observed in xenografts. These findings indicate that an in vitro three-dimensional culture system with air exposure reflects the intrinsic features of the original tumor, suggesting that this culture system could be useful for preliminary research of certain cancers.
      PubDate: Tue, 11 Aug 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa046
      Issue No: Vol. 70, No. 2 (2020)
  • Histochemical assessment on the cellular interplay of vascular endothelial
           cells and septoclasts during endochondral ossification in mice
    • Authors: Tsuchiya E; Hasegawa T, Hongo H, et al.
      Pages: 201 - 214
      Abstract: This study was aimed to verify the cellular interplay between vascular endothelial cells and surrounding cells in the chondro-osseous junction of murine tibiae. Many CD31-positive endothelial cells accompanied with Dolichos Biflorus Agglutinin lectin-positive septoclasts invaded into the hypertrophic zone of the tibial epiphyseal cartilage. MMP9 immunoreactive cytoplasmic processes of vascular endothelial cells extended into the transverse partitions of cartilage columns. In contrast, septoclasts included several large lysosomes which indicate the incorporation of extracellular matrices despite no immunopositivity for F4/80—a hallmark of macrophage/monocyte lineage. In addition, septoclasts were observed in c-fos-/- mice but not in Rankl-/- mice. Unlike c-fos-/- mice, Rankl-/- mice showed markedly expanded hypertrophic zone and the irregular shape of the chondro-osseous junction. Immunoreactivity of platelet-derived growth factor-bb, which involved in angiogenic roles in the bone, was detected in not only osteoclasts but also septoclasts at the chondro-osseous junction. Therefore, septoclasts appear to assist the synchronous vascular invasion of endothelial cells at the chondro-osseous junction. Vascular endothelial cells adjacent to the chondro-osseous junction possess endomucin but not EphB4, whereas those slightly distant from the chondro-osseous junction were intensely positive for both endomucin and EphB4, while being accompanied with ephrinB2-positive osteoblasts. Taken together, it is likely that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2.Mini-abstractOur original article demonstrated that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. (A figure that best represents your paper is Fig. 5c)
      PubDate: Thu, 20 Aug 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa047
      Issue No: Vol. 70, No. 2 (2020)
  • Sandwich freezing device for rapid freezing of viruses, bacteria, yeast,
           cultured cells and animal and human tissues in electron microscopy
    • Authors: Yamaguchi M; Taguchi M, Uematsu K, et al.
      Pages: 215 - 223
      Abstract: We have been using sandwich freezing of living yeast and bacteria followed by freeze-substitution for observing close-to-native ultrastructure of cells. Recently, sandwich freezing of glutaraldehyde-fixed cultured cells and human tissues have been found to give excellent preservation of ultrastructure of cells and tissues. These studies, however, have been conducted using a handmade sandwich freezing device and have been limited in a few laboratories. To spread the use of this method to other laboratories, we fabricated and commercialized a new sandwich freezing device. The new device is inexpensive, portable and sterilizable. It can be used to rapid-freeze viruses, bacteria, yeast, cultured cells and animal and human tissues to a depth of 0.2 mm if tissues are prefixed with glutaraldehyde. The commercial availability of this device will expand application of rapid freezing to wide range of biological materials.
      PubDate: Wed, 18 Nov 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa049
      Issue No: Vol. 70, No. 2 (2020)
  • Three-dimensional structure analysis of melanocytes and keratinocytes in
           senile lentigo
    • Authors: Mizutani Y; Yamashita M, Hashimoto R, et al.
      Pages: 224 - 231
      Abstract: Senile lentigo or age spots are hyperpigmented macules of skin that commonly develop following long-term exposure to ultraviolet radiation. This condition is caused by accumulation of large numbers of melanosomes (melanin granules) produced by melanocytes within neighboring keratinocytes. However, there is still no consensus regarding the melanosome transfer mechanism in senile lentigo. To date, most pathohistological studies of skin have been two-dimensional and do not provide detailed data on the complex interactions of the melanocyte–keratinocyte network involved in melanosome transfer.We performed a three-dimensional reconstruction of the epidermal microstructure in senile lentigo using three different microscopic modalities to visualize the topological melanocyte–keratinocyte relationship and melanosome distribution. Confocal laser microscopy images showed that melanocyte dendritic processes are more frequently branched and elongated in senile lentigo skin than in normal skin. Serial transmission electron micrographs showed that dendritic processes extend into intercellular spaces between keratinocytes. Focused ion beam-scanning electron micrographs showed that dendritic processes in senile lentigo encircle adjacent keratinocytes and accumulate large numbers of melanosomes. Moreover, melanosomes transferred to keratinocytes are present not only in the supranuclear area but throughout the perinuclear area except on the basal side.The use of these different microscopic methods helped to elucidate the three-dimensional morphology and topology of melanocytes and keratinocytes in senile lentigo. We show that the localization of melanosomes in dendritic processes to the region encircling recipient keratinocytes contributes to efficient melanosome transfer in senile lentigo.
      PubDate: Wed, 30 Sep 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa054
      Issue No: Vol. 70, No. 2 (2020)
  • Advances in cryo-EM and ED with a cold-field emission beam and energy
           filtration —Refinements of the CRYO ARM 300 system in RIKEN SPring-8
    • Authors: Maki-Yonekura S; Hamaguchi T, Naitow H, et al.
      Pages: 232 - 240
      Abstract: We have designed and evaluated a cryo-electron microscopy (cryo-EM) system for higher-resolution single particle analysis and high-precision electron 3D crystallography. The system comprises a JEOL CRYO ARM 300 electron microscope—the first machine of this model—and a direct detection device camera, a scintillator-coupled camera, GPU clusters connected with a camera control computer and software for automated-data collection and efficient and accurate operation. The microscope provides parallel illumination of a highly coherent 300-kV electron beam to a sample from a cold-field emission gun and filters out energy-loss electrons through the sample with an in-column energy filter. The gun and filter are highly effective in improving imaging and diffraction, respectively, and have provided high quality data since July 2018. We here report on the characteristics of the cryo-EM system, updates, our progress and future plan for running such cryo-EM machines in RIKEN SPring-8 Center.
      PubDate: Thu, 10 Sep 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa052
      Issue No: Vol. 70, No. 2 (2020)
  • Improving the depth resolution of STEM-ADF sectioning by 3D deconvolution
    • Authors: Ishizuka A; Ishizuka K, Ishikawa R, et al.
      Pages: 241 - 249
      Abstract: Although the possibility of locating single atom in three dimensions using the scanning transmission electron microscope (STEM) has been discussed with the advent of aberration correction technology, it is still a big challenge. In this report we have developed deconvolution routines based on maximum entropy method (MEM) and Richardson–Lucy algorithm (RLA), which are applicable to the STEM-annular dark-field (ADF) though-focus images to improve the depth resolution. The new three-dimensional (3D) deconvolution routines require a limited defocus-range of STEM-ADF images that covers a whole sample and some vacuum regions. Since the STEM-ADF probe is infinitely elongated along the optical axis, a 3D convolution is performed with a two-dimensional (2D) convolution over xy-plane using the 2D fast Fourier transform in reciprocal space, and a one-dimensional convolution along the z-direction in real space.Using our new deconvolution routines, we have processed simulated focal series of STEM-ADF images for single Ce dopants embedded in wurtzite-type AlN. Applying the MEM, the Ce peaks are clearly localized along the depth, and the peak width is reduced down to almost one half. We also applied the new deconvolution routines to experimental focal series of STEM-ADF images of a monolayer graphene. The RLA gives smooth and high-P/B ratio scattering distribution, and the graphene layer can be easily detected. Using our deconvolution algorithms, we can determine the depth locations of the heavy dopants and the graphene layer within the precision of 0.1 and 0.2 nm, respectively. Thus, the deconvolution must be extremely useful for the optical sectioning with 3D STEM-ADF images.
      PubDate: Tue, 13 Oct 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa056
      Issue No: Vol. 70, No. 2 (2020)
  • Novel −75°C SEM cooling stage: application for martensitic
           transformation in steel
    • Authors: Tsuzazki K; Koyama M, Sasaki R, et al.
      Pages: 250 - 254
      Abstract: Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.
      PubDate: Wed, 09 Sep 2020 00:00:00 GMT
      DOI: 10.1093/jmicro/dfaa051
      Issue No: Vol. 70, No. 2 (2020)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-