Abstract: We analyze the radiative stability of the next-to-tribimaximal mixings (NTBM) with the variation of the SUSY breaking scale () in MSSM, for both normal ordering (NO) and inverted ordering (IO) at the fixed input value of the seesaw scale GeV and two different values of . All the neutrino oscillation parameters receive varying radiative corrections irrespective of the values at the electroweak scale, which are all within the range of the latest global fit data at a low value of . NO is found to be more stable than IO for all four different NTBM mixing patterns. PubDate: Fri, 24 Nov 2023 12:05:01 +000
Abstract: The uncertainty principle stands as a fundamental tenet within the realm of quantum theory. In this study, we embark on a reexamination of an emerging variant of the uncertainty relation within both pure and mixed quantum systems, leveraging a geometric elucidation. Subsequently, an enhancement to this relation is achieved by the incorporation of a surface angle denoted as , thereby transforming it from an inequality into an equation. Notably, this surface angle encapsulates the dynamics inherent in quantum state transitions. Complementing our analysis, a series of calculations are conducted, yielding results that offer an intuitive elucidation of the uncertainty relation across distinct quantum states. Consequently, this method bears significance as a pivotal visual insight within the domain of quantum information and measurement. PubDate: Sat, 18 Nov 2023 07:20:01 +000
Abstract: Neutrino masses are yet unknown. We discuss the present state of effective electron antineutrino mass from decay experiments; effective Majorana neutrino mass from neutrinoless double-beta decay experiments; neutrino mass squared differences from neutrino oscillation: solar, atmospheric, reactor, and accelerator-based experiments; sum of neutrino masses from cosmological observations. Current experimental challenges in the determination of neutrino masses are briefly discussed. The main focus is devoted to contemporary experiments. PubDate: Fri, 27 Oct 2023 12:05:00 +000
Abstract: In this paper, using the Hamilton-Jacobi method, we discuss the tunnelling of fermions when the dual influence of quantum gravity and the deformation of a parameterized black hole are taken into account. With the influence of the generalized uncertainty principle, there exists an offset around the standard Hawking temperature. We investigate a parametric deformed black hole and find that the corrected temperature is lower than the standard one, so there exists a remnant of the black hole, and the correction is not only determined by the mass and the energy of the emitted fermion but also determined by the mass of the black hole and the deformation parameter. Under the dual influence of quantum gravity and deformation, the correction effect of quantum gravity is the main influencing factor, while the correction effect of the deformation parameter is secondary. For both the massive and massless cases, the quantum gravity correction factor is only determined by the energy of the emitted fermion, while the deformation correction factor is only determined by the mass of the black hole. PubDate: Wed, 20 Sep 2023 12:35:00 +000
Abstract: In this paper, we study the effects of the widths of unstable particles on the one-loop electroweak corrections for the process at the TeV scale within the framework of the complex mass scheme. We also investigate, for this same process, the unitarity of the theory at high energies. PubDate: Fri, 11 Aug 2023 07:35:00 +000
Abstract: This paper, among other things, talks about possible research on the holographic Schwinger effect with a rotating probe D3-brane. We discover that for the zero temperature case in the Schwinger effect, the faster the angular velocity and the farther the distance of the test particle pair at D3-brane, the potential barrier of total potential energy also grows higher and wider. This paper shows that at a finite temperature, when without rotation is close to the horizon, the Schwinger effect fails because the particles remain in an annihilate state, which is an absolute vacuum state. However, the angular velocity in will avoid the existence of an absolute vacuum near the horizon. For both zero and finite temperature states, the achieved results completely agree with the results of the Dirac-Born-Infeld (DBI) action. So the theories in this paper are consistent. All of these show that these theories will play important roles in future pair production research. PubDate: Mon, 07 Aug 2023 06:50:00 +000
Abstract: We studied the effect of momentum space anisotropy on heavy quarkonium states using an extended magnetized effective fugacity quasiparticle model (EQPM). Both the real and imaginary part of the potential has been modified through the dielectric function by including the anisotropic parameter . The real part of the medium-modified potential becomes more attractive in the presence of the anisotropy and constant magnetic field. The binding energy of the 1S, 2S, and 1P quarkonium states including anisotropy effects for both the oblate and the isotropic case were studied. We find that the binding energy of states becomes stronger in the presence of anisotropy. However, the magnetic field is found to reduce the binding energy. The thermal width of the charmonium and bottomonium states has been studied at constant magnetic field for isotropic and prolate cases. The effect of magnetic field on the mass spectra of the 1P state for the oblate case was also examined. The dissociation temperature for the 1S, 2S, and 1P states of charmonium and bottomonium has been determined to be higher for the oblate case with respect to the isotropic case. PubDate: Thu, 15 Jun 2023 07:05:00 +000
Abstract: In this work, we investigate the resonant contributions of and in the three-body within the perturbative QCD approach. The form factor is adopted to describe the nonperturbative dynamics of the S-wave system. The branching ratios of all concerned decays are calculated and predicted to be in the order of to . The ratio of branching fractions between and is predicted to be 0.0552, which implies the discrepancy for the LHCb measurements. We expect that the predictions in this work can be tested by the future experiments, especially, to resolve ratio discrepancy. PubDate: Wed, 07 Jun 2023 14:20:00 +000
Abstract: We have considered formation of a multicomponent nonideal hot and dense gas of hadronic resonances in the ultrarelativistic heavy ion collisions. In the statistical thermal model approach, the equation of state (EoS) of the noninteracting ideal hadron resonance gas (IHRG) does not incorporate either the attractive part or the short-range repulsive part of the baryonic interaction. On the other hand, in the nonideal hadron resonance gas (NIHRG) model, we can incorporate these interactions using the van der Waals (VDW) type approach. Studies have been made to see its effect on the critical parameters of the quark-hadron phase transition. However, it can also lead to modifications in the calculated relative particle yields. In this paper, we have attempted to understand the effect of such van der Waals-type interactions on the relative particle yields and also studied their dependences on the system’s thermal parameters, such as the temperature and baryon chemical potential . We have also taken into account the decay contributions of the heavier resonances. These results on particle ratios are compared with the corresponding results obtained from the point-like, i.e., noninteracting IHRG model. It is found that the particle ratios get modified by incorporating the van der Waals-type interactions, especially in a baryon-rich system which is expected to be formed at lower RHIC energies, SPS energies, and in the forthcoming CBM experiments due to high degree of nuclear stopping in these experiments. PubDate: Sat, 20 May 2023 01:50:00 +000
Abstract: Considering the formalism of symplectic quantum mechanics, we investigate a two-dimensional nonrelativistic strong interacting system, describing a bound heavy quark-antiquark state. The potential has a linear component that is analyzed in the context of generalized fractional derivatives. For this purpose, the Schrödinger equation in phase space is solved with the linear potential. The ground state solution is obtained and analyzed through the Wigner function for the meson . One basic and fundamental result is that the fractional quantum phase-space analysis gives rise to the confinement of quarks in the meson, consistent with experimental results. PubDate: Wed, 10 May 2023 13:50:00 +000
Abstract: We study pair production of particles in the presence of an external electric field in a large non-supersymmetric Yang-Mills theory using the holographic duality. The dual geometry we consider is asymptotically AdS and is effectively parametrized by two parameters, and , both of which can be related to the effective mass of quark/antiquark for non-supersymmetric theories. We numerically calculate the interquark potential profile and the effective potential to study pair production and analytically find out the threshold electric field beyond which one gets catastrophic pair creation by studying rectangular Wilson loops using the holographic method. We also find out the critical electric field from DBI analysis of a probe brane. Our initial investigations reveal that the critical electric field necessary for spontaneous pair production increases or decreases w.r.t. its non-supersymmetric value depending on the parameter . Ultimately, we find out the pair production rate of particles in the presence of an external electric field by evaluating circular Wilson loops using perturbative methods. From the later investigation, we note the resemblance with our earlier prediction. However, we also see that for and below another certain value of the parameter , the pair production rate of particle/antiparticle pairs blows up as the external electric field is taken to zero. We thus infer that the vacuum of the non-SUSY gauge theory is unstable for a range of non-supersymmetric parameter and that the geometry/non-SUSY field theory under consideration has quite different characteristics than earlier reported. PubDate: Sat, 29 Apr 2023 09:50:00 +000
Abstract: The neutrino closure method is often used to obtain kinematics of semileptonic decays with one unreconstructed particle in hadron collider experiments. The kinematics of decays can be deducted by a twofold ambiguity with a quadratic equation. To resolve the twofold ambiguity, a novel method based on machine learning (ML) is proposed. We study the effect of different sets of features and regressors on the improvement of reconstructed invariant mass squared of system (). The result shows that the best performance is obtained by using the flight vector as the features and the multilayer perceptron (MLP) model as the regressor. Compared with the random choice, the MLP model improves the resolution of reconstructed by ~40%. Furthermore, the possibility of using this method on various semileptonic decays is shown. PubDate: Mon, 27 Mar 2023 14:50:01 +000
Abstract: Leptonic mixing patterns are usually extracted on the basis of groups or algebraic structures. In this paper, we introduce an alternative geometric method to study the correlations between the leptonic mixing parameters. At the 3 level of the recent global fit data of neutrino oscillations, the distribution of the scattered points of the angles between the vectors, which are constructed by the element of the leptonic mixing matrix, is analysed. We find that the scattered points are concentrated on several special regions. Using the data in these regions, correlations of the leptonic mixing angles and the Dirac CP violating phase are obtained. The implications of the correlations are shown through the predicted flavor ratio of high-energy astrophysical neutrinos (HANs) at Earth. PubDate: Tue, 21 Mar 2023 02:50:01 +000
Abstract: In this work, we study thermodynamics of generalized Ayon-Beato and Garcia (ABG) black hole metric which contains three parameters named as mass , magnetic charge , and dimensionless coupling constant of nonlinear electrodynamics interacting field . We showed that central regions of this black hole behaves as dS (AdS) vacuum space by setting and in the case reaches to a flat Minkowski space. In the large distances, this black hole behaves as a Reissner-Nordstrom BH. However, an important role of the charge appeared in the production of a formal variable cosmological parameter which will support pressure coordinate in the thermodynamic perspective of this black hole in our setup. We should point that this formal variable cosmological parameter is different with cosmological constant which comes from AdS/CFT correspondence, and it is effective at large distances as AdS space pressure. In our setup, the assumed pressure originated from the internal material of the black hole say and here. By calculating the Hawking temperature of this black hole, we obtain equation of state. Then, we plotted isothermal P-V curves and heat capacity at constant pressure. They show that the system participates in the small to large phase transition of the black hole or the Hawking-Page phase transition which is similar to the van der Waals phase transition in the ordinary thermodynamics systems. In fact in the Hawking-Page phase transition disequilibrium, evaporating generalized ABG black hole reaches to a vacuum AdS space finally. PubDate: Tue, 24 Jan 2023 01:35:01 +000