A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 3 | Last   [Sort alphabetically]   [Restore default list]

  Subjects -> PHARMACY AND PHARMACOLOGY (Total: 575 journals)
Showing 1 - 200 of 253 Journals sorted by number of followers
Nature Reviews Drug Discovery     Full-text available via subscription   (Followers: 331)
International Journal of Drug Policy     Hybrid Journal   (Followers: 254)
Journal of Clinical Oncology     Hybrid Journal   (Followers: 242)
Journal of Medicinal Chemistry     Hybrid Journal   (Followers: 158)
Journal of Pharmaceutical Sciences     Hybrid Journal   (Followers: 155)
Drugs     Full-text available via subscription   (Followers: 146)
Advanced Drug Delivery Reviews     Hybrid Journal   (Followers: 98)
Pharmaceutical Research     Hybrid Journal   (Followers: 94)
European Journal of Pharmaceutical Sciences     Hybrid Journal   (Followers: 86)
Drug Safety     Full-text available via subscription   (Followers: 83)
Annals of Pharmacotherapy     Hybrid Journal   (Followers: 56)
Biomaterials     Hybrid Journal   (Followers: 54)
Clinical Pharmacology & Therapeutics     Hybrid Journal   (Followers: 44)
Regulatory Toxicology and Pharmacology     Hybrid Journal   (Followers: 42)
Journal of Controlled Release     Hybrid Journal   (Followers: 38)
Annual Review of Pharmacology and Toxicology     Full-text available via subscription   (Followers: 38)
International Journal of Pharmaceutics     Hybrid Journal   (Followers: 37)
Clinical Therapeutics     Hybrid Journal   (Followers: 34)
European Journal of Pharmaceutics and Biopharmaceutics     Hybrid Journal   (Followers: 34)
Pharmacoepidemiology and Drug Safety     Hybrid Journal   (Followers: 33)
British Journal of Clinical Pharmacology     Hybrid Journal   (Followers: 32)
Journal of Pharmacy and Pharmacology     Full-text available via subscription   (Followers: 31)
Drug Development and Industrial Pharmacy     Hybrid Journal   (Followers: 29)
PharmacoEconomics     Full-text available via subscription   (Followers: 27)
Clinical Pharmacokinetics     Full-text available via subscription   (Followers: 27)
AAPS Journal     Hybrid Journal   (Followers: 26)
Critical Reviews in Toxicology     Hybrid Journal   (Followers: 25)
Journal of Clinical Psychopharmacology     Hybrid Journal   (Followers: 24)
International Journal of Pharmacy Practice     Full-text available via subscription   (Followers: 24)
Toxicology and Applied Pharmacology     Hybrid Journal   (Followers: 24)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Journal of Pharmacokinetics and Pharmacodynamics     Hybrid Journal   (Followers: 22)
Journal of Pain & Palliative Care Pharmacotherapy     Hybrid Journal   (Followers: 21)
Trends in Pharmacological Sciences     Full-text available via subscription   (Followers: 20)
Journal of Applied Toxicology     Hybrid Journal   (Followers: 19)
Journal of Clinical Pharmacology     Hybrid Journal   (Followers: 19)
Pharmaceutical Development and Technology     Hybrid Journal   (Followers: 19)
American Journal of Cardiovascular Drugs     Hybrid Journal   (Followers: 19)
Clinical Trials     Hybrid Journal   (Followers: 18)
Toxicology     Hybrid Journal   (Followers: 18)
Journal of Pharmaceutical and Biomedical Analysis     Hybrid Journal   (Followers: 18)
Clinical Toxicology     Hybrid Journal   (Followers: 18)
International Journal of Toxicology     Hybrid Journal   (Followers: 17)
Critical Reviews in Clinical Laboratory Sciences     Hybrid Journal   (Followers: 16)
Journal of Clinical Pharmacy and Therapeutics     Hybrid Journal   (Followers: 16)
Journal of Natural Products     Hybrid Journal   (Followers: 16)
Pharmaceutical Statistics     Hybrid Journal   (Followers: 15)
Toxicology Letters     Hybrid Journal   (Followers: 15)
Journal of Pharmacy Practice     Hybrid Journal   (Followers: 15)
Psychopharmacology     Hybrid Journal   (Followers: 15)
Basic & Clinical Pharmacology & Toxicology     Hybrid Journal   (Followers: 14)
Cardiovascular Drugs and Therapy     Hybrid Journal   (Followers: 14)
European Journal of Clinical Pharmacology     Hybrid Journal   (Followers: 14)
Current Medicinal Chemistry     Hybrid Journal   (Followers: 13)
American Journal of Therapeutics     Hybrid Journal   (Followers: 13)
Drug and Chemical Toxicology     Hybrid Journal   (Followers: 13)
Journal of the American Pharmacists Association     Full-text available via subscription   (Followers: 13)
Clinical Research and Regulatory Affairs     Hybrid Journal   (Followers: 12)
Seminars in Hematology     Hybrid Journal   (Followers: 12)
Drug Discovery Today: Technologies     Full-text available via subscription   (Followers: 12)
Current Pharmaceutical Design     Hybrid Journal   (Followers: 12)
Journal of Oncology Pharmacy Practice     Hybrid Journal   (Followers: 12)
Journal of Psychopharmacology     Hybrid Journal   (Followers: 11)
Biopharmaceutics and Drug Disposition     Hybrid Journal   (Followers: 11)
Toxicology in Vitro     Hybrid Journal   (Followers: 11)
Drug Development Research     Hybrid Journal   (Followers: 11)
Drug Metabolism and Disposition     Hybrid Journal   (Followers: 11)
Seminars in Oncology Nursing     Full-text available via subscription   (Followers: 10)
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Journal of Separation Science     Hybrid Journal   (Followers: 10)
CNS Drugs     Full-text available via subscription   (Followers: 10)
Current Pharmaceutical Biotechnology     Hybrid Journal   (Followers: 10)
Journal of Medical Marketing     Hybrid Journal   (Followers: 10)
Drugs & Aging     Full-text available via subscription   (Followers: 10)
European Neuropsychopharmacology     Hybrid Journal   (Followers: 9)
Food Additives & Contaminants Part A     Hybrid Journal   (Followers: 9)
Journal of Pharmacology and Experimental Therapeutics     Hybrid Journal   (Followers: 9)
Environmental Toxicology and Pharmacology     Hybrid Journal   (Followers: 9)
Medicinal Chemistry     Hybrid Journal   (Followers: 9)
Biometrical Journal     Hybrid Journal   (Followers: 9)
Drugs & Therapy Perspectives     Full-text available via subscription   (Followers: 9)
Prescriber     Hybrid Journal   (Followers: 9)
ChemMedChem     Hybrid Journal   (Followers: 9)
Current Opinion in Pharmacology     Hybrid Journal   (Followers: 9)
European Journal of Pharmacology     Hybrid Journal   (Followers: 8)
Inhalation Toxicology     Hybrid Journal   (Followers: 8)
Antiviral Research     Hybrid Journal   (Followers: 8)
Drug Metabolism Reviews     Hybrid Journal   (Followers: 8)
Progress in Neuro-Psychopharmacology and Biological Psychiatry     Hybrid Journal   (Followers: 8)
Human & Experimental Toxicology     Hybrid Journal   (Followers: 8)
Drug Delivery     Open Access   (Followers: 8)
BioDrugs     Full-text available via subscription   (Followers: 8)
Frontiers in Drug Design & Discovery     Hybrid Journal   (Followers: 8)
Expert Review of Pharmacoeconomics & Outcomes Research     Full-text available via subscription   (Followers: 8)
Experimental and Clinical Psychopharmacology     Full-text available via subscription   (Followers: 7)
Toxicology Mechanisms and Methods     Hybrid Journal   (Followers: 7)
Journal of Pharmacological and Toxicological Methods     Hybrid Journal   (Followers: 7)
Clinical and Experimental Pharmacology and Physiology     Hybrid Journal   (Followers: 7)
Scandinavian Journal of Clinical and Laboratory Investigation     Hybrid Journal   (Followers: 7)
Epilepsy Research     Hybrid Journal   (Followers: 7)
Clinical Drug Investigation     Full-text available via subscription   (Followers: 7)
Journal of Veterinary Pharmacology and Therapeutics     Hybrid Journal   (Followers: 6)
Toxicology and Industrial Health     Hybrid Journal   (Followers: 6)
Skin Pharmacology and Physiology     Full-text available via subscription   (Followers: 6)
Journal of Cardiovascular Pharmacology     Hybrid Journal   (Followers: 6)
AAPS PharmSciTech     Hybrid Journal   (Followers: 6)
Current Drug Discovery Technologies     Hybrid Journal   (Followers: 6)
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry     Hybrid Journal   (Followers: 6)
Current Therapeutic Research     Open Access   (Followers: 6)
Expert Review of Cardiovascular Therapy     Full-text available via subscription   (Followers: 6)
Current Drug Delivery     Hybrid Journal   (Followers: 6)
Expert Review of Anti-infective Therapy     Full-text available via subscription   (Followers: 5)
Neuropharmacology     Hybrid Journal   (Followers: 5)
Current Drug Metabolism     Hybrid Journal   (Followers: 5)
Fitoterapia     Hybrid Journal   (Followers: 5)
Expert Review of Molecular Diagnostics     Full-text available via subscription   (Followers: 5)
Anti-Infective Agents     Hybrid Journal   (Followers: 5)
Toxicon     Hybrid Journal   (Followers: 5)
Medicinal Research Reviews     Hybrid Journal   (Followers: 5)
Investigational New Drugs     Hybrid Journal   (Followers: 5)
Current Cancer Therapy Reviews     Hybrid Journal   (Followers: 5)
Reviews of Physiology, Biochemistry and Pharmacology     Hybrid Journal   (Followers: 4)
Planta Medica     Hybrid Journal   (Followers: 4)
Current Vascular Pharmacology     Hybrid Journal   (Followers: 4)
Pharmaceutical Medicine     Full-text available via subscription   (Followers: 4)
Journal of Child and Adolescent Psychopharmacology     Hybrid Journal   (Followers: 4)
CNS Drug Reviews     Open Access   (Followers: 4)
Inpharma Weekly     Full-text available via subscription   (Followers: 4)
Journal of Labelled Compounds and Radiopharmaceuticals     Hybrid Journal   (Followers: 4)
Immunopharmacology and Immunotoxicology     Hybrid Journal   (Followers: 4)
International Journal of Pharmaceutical and Healthcare Marketing     Hybrid Journal   (Followers: 4)
Inflammation Research     Hybrid Journal   (Followers: 4)
Cancer Chemotherapy and Pharmacology     Hybrid Journal   (Followers: 4)
International Journal of Neuropsychopharmacology     Open Access   (Followers: 3)
Pharmacology & Therapeutics     Hybrid Journal   (Followers: 3)
Physiology International     Full-text available via subscription   (Followers: 3)
Cardiovascular Therapeutics     Open Access   (Followers: 3)
ASSAY and Drug Development Technologies     Hybrid Journal   (Followers: 3)
Pharmacopsychiatry     Hybrid Journal   (Followers: 3)
Chemotherapy     Full-text available via subscription   (Followers: 3)
Therapeutic Drug Monitoring     Hybrid Journal   (Followers: 3)
Current Drug Therapy     Hybrid Journal   (Followers: 3)
Research in Social and Administrative Pharmacy     Hybrid Journal   (Followers: 3)
PharmacoEconomics & Outcomes News     Full-text available via subscription   (Followers: 3)
Journal of Aerosol Medicine and Pulmonary Drug Delivery     Hybrid Journal   (Followers: 3)
Journal of Ethnopharmacology     Hybrid Journal   (Followers: 3)
Drug Resistance Updates     Hybrid Journal   (Followers: 3)
Journal of Pain Management & Medicine     Open Access   (Followers: 3)
Journal of Infection and Chemotherapy     Hybrid Journal   (Followers: 3)
Journal of Cardiovascular Pharmacology and Therapeutics     Hybrid Journal   (Followers: 3)
Current Pharmacogenomics and Personalized Medicine     Hybrid Journal   (Followers: 3)
Acta Pharmacologica Sinica     Hybrid Journal   (Followers: 3)
Microbial Drug Resistance     Hybrid Journal   (Followers: 3)
Frontiers in Medicinal Chemistry     Hybrid Journal   (Followers: 3)
Human Psychopharmacology Clinical and Experimental     Hybrid Journal   (Followers: 3)
BMC Pharmacology     Open Access   (Followers: 2)
The Brown University Psychopharmacology Update     Hybrid Journal   (Followers: 2)
International Clinical Psychopharmacology     Hybrid Journal   (Followers: 2)
Canadian Journal of Physiology and Pharmacology     Hybrid Journal   (Followers: 2)
Journal of Drug Targeting     Hybrid Journal   (Followers: 2)
Inflammopharmacology     Hybrid Journal   (Followers: 2)
Journal of Inflammation     Open Access   (Followers: 2)
Fundamental & Clinical Pharmacology     Hybrid Journal   (Followers: 2)
Behavioural Pharmacology     Hybrid Journal   (Followers: 2)
Vascular Pharmacology     Hybrid Journal   (Followers: 2)
Pulmonary Pharmacology & Therapeutics     Hybrid Journal   (Followers: 2)
Biomedicine & Pharmacotherapy     Full-text available via subscription   (Followers: 2)
Clinical Neuropharmacology     Hybrid Journal   (Followers: 2)
Drugs in R & D     Full-text available via subscription   (Followers: 2)
International Immunopharmacology     Hybrid Journal   (Followers: 2)
Pharmacology Biochemistry and Behavior     Hybrid Journal   (Followers: 2)
Letters in Drug Design & Discovery     Hybrid Journal   (Followers: 2)
Archiv der Pharmazie     Hybrid Journal   (Followers: 2)
Pharmacological Reviews     Hybrid Journal   (Followers: 2)
Molecular Pharmacology     Hybrid Journal   (Followers: 2)
Journal of Microencapsulation: Microcapsules, Liposomes, Nanoparticles, Microcells, Microspheres     Hybrid Journal   (Followers: 2)
Toxicological & Environmental Chemistry     Hybrid Journal   (Followers: 2)
Particulate Science and Technology: An International Journal     Hybrid Journal   (Followers: 1)
Pharmacological Research     Hybrid Journal   (Followers: 1)
Current Enzyme Inhibition     Hybrid Journal   (Followers: 1)
Journal of Neuroimmune Pharmacology     Hybrid Journal   (Followers: 1)
Current Pharmaceutical Analysis     Hybrid Journal   (Followers: 1)
Current Neuropharmacology     Hybrid Journal   (Followers: 1)
Pharmacogenetics and Genomics     Hybrid Journal   (Followers: 1)
Journal of Texture Studies     Hybrid Journal   (Followers: 1)
Pharmaceutical Biology     Open Access  
Journal of Liposome Research     Hybrid Journal  
Toxin Reviews     Hybrid Journal  
Kaohsiung Journal of Medical Sciences     Open Access  
Redox Report     Open Access  
Pharmacology     Full-text available via subscription  
Pharmaceutical Chemistry Journal     Hybrid Journal  
NeuroMolecular Medicine     Hybrid Journal  
Journal of Ocular Pharmacology and Therapeutics     Hybrid Journal  
Harm Reduction Journal     Open Access  
Current Nanoscience     Hybrid Journal  
Infectious Disorders - Drug Targets     Hybrid Journal  
Current Bioactive Compounds     Hybrid Journal  
Cancer Biotherapy & Radiopharmaceuticals     Hybrid Journal  
Autonomic & Autacoid Pharmacology     Hybrid Journal  

        1 2 3 | Last   [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
Inflammation Research
Journal Prestige (SJR): 1.062
Citation Impact (citeScore): 3
Number of Followers: 4  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1420-908X - ISSN (Online) 1023-3830
Published by Springer-Verlag Homepage  [2467 journals]
  • The role of lung macrophages in acute respiratory distress syndrome

    • Free pre-print version: Loading...

      Abstract: Abstract Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
      PubDate: 2022-12-01
       
  • USP7 accelerates FMR1-mediated ferroptosis by facilitating TBK1
           ubiquitination and DNMT1 deubiquitination after renal
           ischemia–reperfusion injury

    • Free pre-print version: Loading...

      Abstract: Background Renal ischemia/reperfusion (I/R) leads to acute kidney injury and is associated with cell ferroptosis, an oxidative programmed cell death. This study aims to explore whether USP7 regulates ferroptosis in rat kidneys suffered I/R and the underlying mechanisms. Methods Human renal tubular epithelial cells HK-2 were treated with hypoxia/reoxygenation (H/R) to establish a cell model. The expression of ubiquitin specific peptidase 7 (USP7) in H/R-treated cells was determined. USP7 siRNA was transfected into H/R-treated cells, followed by the detection of cell proliferation, iron ion concentration, oxidative stress levels and glutathione peroxidase 4 (GPX4) and solute carrier family 7-member 11 (SLC7A11) protein levels. Western blotting and immunoprecipitation analyses were performed to detect the effects of USP7 on the ubiquitination of TANK-binding kinase 1 (TBK1) and DNA methyltransferase 1 (DNMT1). Then, H/R-treated cells were transfected with USP7 siRNA alone or together with TBK1 siRNA. Co-immunoprecipitation was used to detect binding relationship between TBK1 and FMRP translational regulator 1 (FMR1). The level of DNMT1 and methylation ratio of the FMR1 promoter region were determined with chromatin immunoprecipitation and methylation specific PCR assays, respectively. Furthermore, USP7 siRNA and FMR1 siRNA were transfected alone or together into H/R-treated cells, followed by the detection of cell functions. An I/R rat model was constructed to analyze the effects of USP7 on renal function in rats. Results USP7 was significantly upregulated in H/R-treated cells. USP7 interference markedly increased HK-2 cell proliferation and the protein levels of GPX4 and SLC7A11, restrained the iron ion concentration, and ameliorated oxidative stress. USP7 promoted TRIM27-mediated TBK1 ubiquitination and degradation. USP7 inhibition resulted in increased ubiquitination and decreased stability of DNMT1. USP7 was able to recruit DNMT1 to the FMR1 promoter region, which increased promoter methylation rates and suppressed FMR1 expression. TBK1 or FMR1 overexpression could reverse the effects of USP7 on cell functions. Inhibition of USP7 alleviated renal ischemia–reperfusion injury in rats. Conclusions USP7 inhibition attenuated I/R-induced renal injury by inhibiting ferroptosis through decreasing ubiquitination of TBK1 and promoting DNMT1-mediated methylation of FMR1.
      PubDate: 2022-12-01
       
  • Role of miR-155 in inflammatory autoimmune diseases: a comprehensive
           review

    • Free pre-print version: Loading...

      Abstract: Purpose MiR-155 is a member of the microRNAs (miRNAs) family and regulates gene expression post-transcriptionally by binding to the 3'UTR of target mRNA. MiR-155 has a critical role in both innate and adaptive immunity. MiR-155 is aberrantly expressed in inflammatory autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, Sjögren's syndrome, systemic sclerosis, and inflammatory bowel disease. Functional studies suggest that miR-155 is involved in development of these diseases. In vitro and in vivo experiments have shown that inhibition of miR-155 can alter disease progression or ameliorate disease symptoms. Materials and methods A systematic review of relevant literatures published between January 1, 2005, and March 1, 2022 about miR-155 and its role in immune cells, autoimmune diseases was searched on PubMed, EMBASE, Google Scholar. Conclusion In this review, we comprehensively discussed the effects of miR-155, including role of miR-155 in different downstream signaling, which then differently regulate immune cells expression and functions. Furthermore, miR-155-mediated dysfunction of immune cells contributed to development of inflammatory autoimmune diseases. Therefore, miR-155 is expected to be a therapeutic target for inflammatory autoimmune diseases.
      PubDate: 2022-12-01
       
  • C/EBPβ enhances immunosuppression activity of myeloid-derived suppressor
           cells by a P300-mediated acetylation modification

    • Free pre-print version: Loading...

      Abstract: Objective Myeloid-derived suppressor cells (MDSCs) are a major immunosuppressive population in the tumor microenvironment,inhibiting anti-tumor immune response and exerting pro-tumorigenic effect. CCAAT/enhancer-binding protein beta (C/EBPβ), a key transcription factor indispensable for myelopoiesis, plays a fundamental role in regulating expansion and activation of MDSCs. Lysine acetylation can regulate functions of transcription factors. However, the role of C/EBPβ acetylation modification in MDSCs has not been reported. Materials and methods MDSCs derived from the spleens of tumor-bearing mice (TB-SP-MDSCs) were isolated by immunomagnetic beads. Bone marrow derived MDSCs were induced by IL-6 and GM-CSF. Western-blot was used to detect the expression of P300 and co-immunoprecipitation (CO-IP) was used to detect the C/EBPβ acetylation in MDSCs. Inhibitor C646 was used to specificly inhibit P300 activity. Results In this study, we found that C/EBPβ was acetylated by acetyltransferase P300 in MDSCs. A P300-mediated C/EBPβ acetylation enhanced C/EBPβ transactivation activity on arginase 1 (Arg-1) gene promoter. Inhibition of P300 activity downregulated the inhibitory effects of MDSCs in vitro and attenuated pro-tumorigenic effects of MDSCs in vivo. Additionally, IL-6 from tumor microenvironment could upregulate the expression of P300 and enhance C/EBPβ acetylation in MDSCs. Conclusion In general, a P300-mediated C/EBPβ acetylation enhanced C/EBPβ transactivation activity on Arg-1 promoter, thus promoting immunosuppressive function of MDSCs. In view of the critical role of P300 in regulating MDSCs, P300 might be a potential target of anti-tumor immunotherapy.
      PubDate: 2022-12-01
       
  • Histamine acts via H4-receptor stimulation to cause augmented inflammation
           when lipopolysaccharide is co-administered with a nitrogen-containing
           bisphosphonate

    • Free pre-print version: Loading...

      Abstract: Objective and methods Nitrogen-containing bisphosphonates (NBPs, anti-bone-resorptive agents) have inflammatory side-effects. Alendronate (Ale, an NBP) intradermally injected into mouse ear-pinnae together with LPS (bacterial cell-wall component) induces augmented ear-swelling that depends on IL-1 and neutrophils. Using this model, we examined histamine’s involvement in Ale + LPS-induced inflammation. Results Ale increased histamine in ear-pinnae by inducing histidine decarboxylase (HDC). This induction was augmented by LPS. In HDC-deficient mice, such augmented ear-swelling was not induced. At peak-swelling, 74.5% of HDC-expressing cells were neutrophils and only 0.2% were mast cells (MCs). The augmented swelling was markedly reduced by a histamine H4-receptor (H4R) antagonist, but not by an H1R antagonist. In MC-deficient mice, unexpectedly, Ale + LPS induced prolonged ear-swelling that was augmented and more persistent than in normal mice. MCs highly expressed H4Rs and produced MCP-1(inflammatory cytokine that recruits macrophages) and IL-10 (anti-inflammatory cytokine) in response to an H4R agonist. Conclusion Histamine produced by HDC-induction mainly in infiltrated neutrophils stimulates H4Rs, leading to augmented Ale + LPS-induced ear-swelling via MCP-1 production by MCs. Since MCP-1 is produced by other cells, too, the contribution of MCs and their H4Rs to augmented ear-swelling is partial. In the later phase of the swelling, MCs may be anti-inflammatory via IL-10 production.
      PubDate: 2022-12-01
       
  • Neutrophils as emerging protagonists and targets in chronic inflammatory
           diseases

    • Free pre-print version: Loading...

      Abstract: Introduction Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. Methods We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. Results and Conclusions This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
      PubDate: 2022-12-01
       
  • The inflammasomes: crosstalk between innate immunity and hematology

    • Free pre-print version: Loading...

      Abstract: Background The inflammasome is a cytosolic multi-protein complex responsible for the proteolytic maturation of pro-inflammatory cytokines IL-1ß and IL-18 and of gasdermin-D, which mediates membrane pore formation and the cytokines release, or eventually a lytic cell death known as pyroptosis. Inflammation has long been accepted as a key component of hematologic conditions, either oncological or benign diseases. Objectives This study aims to review the current knowledge about the contribution of inflammasome in hematologic diseases. We attempted to depict the participation of specific inflammasome receptors, and the possible cell-specific consequence of complex activation, as well as the use of anti-inflammasome therapies. Methods We performed a keyword-based search in public databases (Pubmed.gov, ClinicalTrials.gov.). Conclusion Different blood cells variably express inflammasome components. Considering the immunosuppression associated with both the disease and the treatment of some hematologic diseases, and a microenvironment that allows neoplastic cell proliferation, inflammasomes could be a link between innate immunity and disease progression, as well as an interesting therapeutic target.
      PubDate: 2022-12-01
       
  • CD14 signaling mediates lung immunopathology and mice mortality induced by
           Achromobacter xylosoxidans

    • Free pre-print version: Loading...

      Abstract: Objective and design Our research aimed to investigate the role of CD14 in pulmonary infection by Achromobacter xylosoxidans in an experimental murine model. Methods C57Bl/6 or CD14-deficient mice were infected intratracheally with non-lethal inoculum of A. xylosoxidans. At times 1, 3 and 7 days after infection, lungs, bronchoalveolar lavage and blood were collected. CD14 gene expression was determined by RT-PCR. The bacterial load in the lungs was assessed by counting colony forming units (CFU). Cytokines, chemokines, lipocalin-2 and sCD14 were quantified by the ELISA method. Inflammatory infiltrate was observed on histological sections stained with HE, and leukocyte subtypes were assessed by flow cytometry. In another set of experiments, C57Bl/6 or CD14-deficient mice were inoculated with lethal inoculum and the survival rate determined. Results CD14-deficient mice are protected from A. xylosoxidans-induced death, which is unrelated to bacterial load. The lungs of CD14-deficient mice presented a smaller area of tissue damage, less neutrophil and macrophage infiltration, less pulmonary edema, and a lower concentration of IL-6, TNF-α, CXCL1, CCL2 and CCL3 when compared with lungs of C57Bl/6 mice. We also observed that A. xylosoxidans infection increases the number of leukocytes expressing mCD14 and the levels of sCD14 in BALF and serum of C57Bl/6-infected mice. Conclusions In summary, our data show that in A. xylosoxidans infection, the activation of CD14 induces intense pulmonary inflammatory response resulting in mice death.
      PubDate: 2022-12-01
       
  • Immunosenescence of T cells: a key player in rheumatoid arthritis

    • Free pre-print version: Loading...

      Abstract: Introduction The incidence of rheumatoid arthritis (RA) and its complications are expected to increase with age. Remarkably, RA patients were identified features of accelerated aging, particularly in immunosenescence. As is known, T cells in RA patients readily differentiate into pro-inflammatory phenotypes that maintain chronic and persistent inflammatory changes in joints and many other organ systems. Recent evidence suggests that T cells are most sensitive to aging, and aged CD4+ T cells contribute to inflammaging, which plays a crucial role in accelerating the disease process. In recent years, the molecular mechanisms of T cell immunosenescence were beginning to be understood. Immune aging in RA T cells is associated with thymus insufficiency, metabolic abnormalities, shortened telomere length, and chronic energy stress. Therefore, we summarized the role and mechanism of T cell immunosenescence in RA. Methods A computer-based online search was performed using the PubMed database for published articles concerning T cells aging and rheumatoid arthritis. Results In this review, we assess the roles of CD4+ T cells in the center of inflammaging especially in RA and emphasize arthritogenic effector functions of senescent T cell; also we discuss the possible molecular mechanisms of senescent T cells and therapeutic targets to intervene T cells immunosenescence for improvement of RA.
      PubDate: 2022-12-01
       
  • GITRL impairs the immunosuppressive function of MDSCs via PTEN-mediated
           signaling pathway in experimental Sjögren syndrome

    • Free pre-print version: Loading...

      Abstract: Background Recent studies have revealed a role of the ligand for glucocorticoid-induced TNFR family-related protein (GITRL) in mediating functional dysregulations of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of primary Sjögren syndrome (pSS), but the underlying molecular mechanism is largely unclear. In this study, we aimed to elucidate GITRL-mediated signaling pathways in MDSCs during the development of experimental SS (ESS). Methods MDSCs were stimulated with recombinant GITRL, the activation of PTEN, AKT and STAT3 in MDSCs was analyzed by Western blot. MDSCs with different treatment were adoptively transferred to ESS mice. ELISA was used to detect the level of autoantibodies. Proportions of Th1 and Th17 cells were examined by flow cytometry. Histological evaluation of glandular destruction was analyzed by hematoxylin and eosin (HE) staining. The interaction of GITR, TRAF3 and PP2A was detected by CoIP. Results Upon the engagement of GITR on MDSCs, PTEN was activated and led to the inhibition of downstream AKT/STAT3 signaling pathway, therefore, resulting in the impaired immunosuppressive function of MDSCs. In ESS mice, blocking the activity of PTEN could efficiently restore the immunomodulatory effect of MDSCs and alleviate the progression of ESS. Furthermore, TRAF3 was found to bind to GITR, and then recruited PP2A to dephosphorylate PTEN, thus enhancing the activity of PTEN. Conclusion This study elucidated the molecular mechanism underlying the effect of GITRL in regulating the function of MDSCs, which may provide a new therapeutic target for the treatment of pSS.
      PubDate: 2022-12-01
       
  • LncGBP9 knockdown alleviates myocardial inflammation and apoptosis in mice
           with acute viral myocarditis via suppressing NF-κB signaling pathway

    • Free pre-print version: Loading...

      Abstract: Background Myocardial inflammation and apoptosis are key processes in coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). Accumulating evidence reveals the essential roles of long noncoding RNAs (lncRNAs) in the pathogenesis of AVMC. Here, we aimed to evaluate the biological functions of a novel lncRNA guanylate-binding protein 9 (lncGBP9) in AVMC progression and further explore its underlying mechanisms. Methods Initially, mouse models of AVMC were constructed by CVB3 infection. The expression and localization of lncGBP9 in heart tissues were analyzed using RT-qPCR and FISH. Adeno-associated virus serotype 9 (AAV9)-mediated lncGBP9 knockdown was then employed to clarify its roles in survival, cardiac function, and myocardial inflammation and apoptosis. Moreover, the mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) were detected by RT-qPCR and ELISA, and the regulation of lncGBP9 knockdown on the NF-κB signaling pathway was investigated by Western blotting. Using an in vitro model of HL-1 cardiomyocytes exposed to CVB3 infection, the effects of lncGBP9 knockdown on cell viability, inflammation, and apoptosis were further evaluated in vitro. Results Increased lncGBP9 expression was detected in the heart tissues of AVMC mice and CVB3-infected HL-1 cells, and was mainly located in the cytoplasm. Knockdown of lncGBP9 remarkably alleviated the severity of AVMC in CVB3-infected mice, as verified by improved cardiac function, and reduced myocardial inflammation and apoptosis. Additionally, lncGBP9 knockdown suppressed the NF-κB signaling pathway and consequently reduced productions of pro-inflammatory cytokines in vivo. In vitro functional assays further confirmed that lncGBP9 knockdown promoted cell viability, inhibited cell apoptosis, and reduced pro-inflammatory cytokines release in CVB3-infected HL-1 cells through suppressing NF-κB activation. Conclusions Collectively, lncGBP9 knockdown exerts anti-inflammatory and anti-apoptotic effects in CVB3-induced AVMC, which may be mediated in part via NF-κB signaling pathway. These findings highlight lncGBP9 as an attractive target for therapeutic interventions.
      PubDate: 2022-12-01
       
  • Immune response associated with ischemia and reperfusion injury during
           organ transplantation

    • Free pre-print version: Loading...

      Abstract: Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
      PubDate: 2022-12-01
       
  • RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and
           dysfunction by accelerating mitochondrial pathological fission

    • Free pre-print version: Loading...

      Abstract: Objective Cardiac dysfunction and remodeling are serious complications of sepsis and are the main causes of death in sepsis. RCAN1 is a feedback regulator of cardiac hypertrophy. Here, we aim to investigate the role of RCAN1 in septic cardiomyopathy. Methods Mice were randomly divided into control-WT, control-RCAN1−/−, LPS-induced WT and LPS-induced RCAN1−/− groups, some with Midiv-1 or KN93 treatment. The protein levels of RCAN1, p-ERK1/2, NFAT3, Drp1, p-Drp1, p-CaMKII in mouse hearts or cultured cardiomyocytes were determined by Western blotting. Myocardial function was assessed by echocardiography. Cardiac hypertrophy and fibrosis were detected by H&E and Masson's trichrome staining. Mitochondrial morphology was examined by transmission electron microscope. Serum level of LDH was detected by ELISA. Results Our data show that RCAN1 was downregulated in septic mouse heart and LPS-induced cardiomyocytes. RCAN1−/− mice showed a severe impairment of cardiac function, and increased myocardial hypertrophy and fibrosis. The protein levels of NFAT3 and p-ERK1/2 were significantly increased in the heart tissues of RCAN1−/− mice. Further, RCAN1 deficiency aggravated sepsis-induced cardiac mitochondrial injury as indicated by increased ROS production, pathological fission and the loss of mitochondrial membrane potential. Inhibition of fission with Mdivi-1 reversed LPS-induced cardiac hypertrophy, fibrosis and dysfunction in RCAN1−/− mice. Moreover, RCAN1 depletion promoted mitochondrial translocation of CaMKII, which enhanced fission and septic hypertrophy, while inhibition of CaMKII with KN93 reduced excessive fission, improved LPS-mediated cardiac remodeling and dysfunction in RCAN1−/− mice. Conclusions Our finding demonstrated that RCAN1 deficiency aggravated mitochondrial injury and septic cardiomyopathy through activating CaMKII. RCAN1 serves as a novel therapeutic target for treatment of sepsis-related cardiac remodeling and dysfunction.
      PubDate: 2022-12-01
       
  • The macrophage senescence hypothesis: the role of poor heat shock response
           in pulmonary inflammation and endothelial dysfunction following chronic
           exposure to air pollution

    • Free pre-print version: Loading...

      Abstract: Introduction Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. Objective and design In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. Results and Discussion When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages’ SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
      PubDate: 2022-12-01
       
  • Bioactive compounds as potential angiotensin-converting enzyme II
           inhibitors against COVID-19: a scoping review

    • Free pre-print version: Loading...

      Abstract: Objective and design The current study aimed to summarize the evidence of compounds contained in plant species with the ability to block the angiotensin-converting enzyme 2 (ACE-II), through a scoping review. Methods PubMed and Scopus electronic databases were used for the systematic search and a manual search was performed Results Studies included were characterized as in silico. Among the 200 studies retrieved, 139 studies listed after the exclusion of duplicates and 74 were included for the full read. Among them, 32 studies were considered eligible for the qualitative synthesis. The most evaluated class of secondary metabolites was flavonoids with quercetin and curcumin as most actives substances and terpenes (isothymol, limonin, curcumenol, anabsinthin, and artemisinin). Other classes that were also evaluated were alkaloid, saponin, quinone, substances found in essential oils, and primary metabolites as the aminoacid l-tyrosine and the lipidic compound 2-monolinolenin. Conclusion This review suggests the most active substance from each class of metabolites, which presented the strongest affinity to the ACE-II receptor, what contributes as a basis for choosing compounds and directing the further experimental and clinical investigation on the applications these compounds in biotechnological and health processes as in COVID-19 pandemic.
      PubDate: 2022-12-01
       
  • Selective inhibition of PKR by C16 accelerates diabetic wound healing by
           inhibiting NALP3 expression in mice

    • Free pre-print version: Loading...

      Abstract: Objective and design To understand the expression of dsRNA-dependent protein kinase R (PKR) in impaired diabetic wounds, hyperglycemia was induced in C57/BL6 mice with streptozotocin. Murine macrophage cell line, Raw 264.7, stimulated with high glucose and LPS was used to mimic diabetic wound environment in in-vitro. Materials Macrophages stimulated with HG + LPS, in presence and absence of PKR inhibitor (C16) and wound tissue samples from topically treated mice with C16, were analyzed for the expression of PKR, NALP3, active caspase-1, mature IL-1β and phosphorylation of PKR and eIF2α. Wounds tissues were also analyzed for inflammatory cell infiltration by immunohistochemistry, angiogenesis by CD31 staining, collagen expression by western blotting, expression of CD206+ macrophages by flow cytometry and wound strength by texture analyzer. Results PKR and NALP3 were found to be upregulated in macrophages stimulated with HG + LPS as well as in impaired diabetic wounds. PKR inhibition using C16 ameliorated expression of NALP3, caspase-1, IL-1β and phosphorylation of PKR and eIF2α, in macrophages and also in diabetic wounds. Treatment with C16 promoted the wound healing in diabetic mice by increasing collagen synthesis, reducing infiltration of F4/80+ macrophages and MPO+ neutrophil cells, increased angiogenesis, and increased number of M2 macrophages. Conclusion PKR inhibition using C16 accelerates the wound healing process in diabetic mice by decreasing NALP3-mediated IL-1β maturation.
      PubDate: 2022-11-23
       
  • A common variant close to the “tripwire” linker region of NLRP1
           contributes to severe COVID-19

    • Free pre-print version: Loading...

      Abstract: Objective and design The heterogeneity of response to SARS-CoV-2 infection is directly linked to the individual genetic background. Genetic variants of inflammasome-related genes have been pointed as risk factors for several inflammatory sterile and infectious disease. In the group of inflammasome receptors, NLRP1 stands out as a good novel candidate as severity factor for COVID-19 disease. Methods To address this question, we performed an association study of NLRP1, DPP9, CARD8, IL1B, and IL18 single nucleotide variants (SNVs) in a cohort of 945 COVID-19 patients. Results The NLRP1 p.Leu155His in the linker region, target of viral protease, was significantly associated to COVID-19 severity, which could contribute to the excessive cytokine release reported in severe cases. Conclusion Inflammasome genetic background contributes to individual response to SARS-CoV-2.
      PubDate: 2022-11-23
       
  • Multi-target regulation of pro-inflammatory cytokine production by
           transcription factor Blimp-1

    • Free pre-print version: Loading...

      Abstract: Objective Cytokine storm syndrome is a fatal condition related to infectious and autoimmune diseases. Here, we aim to investigate the regulatory mechanisms of Blimp-1 on multiple cytokine production. Methods The Blimp1 shRNA was transfected into RAW264.7 macrophages, followed by Toll-like receptor (TLR) ligand stimulation. The mRNA and protein levels of cytokines were detected by real-time PCR and flow cytometric bead array. The nuclear translocation of AP-1 and NF-κB p65 was measured by immunofluorescence staining. The transcriptional activity was detected by luciferase reporter assay with 5 × NF-κB reporter or with IL6 promoter reporter. Results Blimp-1 significantly inhibited the expression and secretion of IL-1β, IL-6, and IL-18 in macrophages during stimulation with a variety of TLR ligands. The immunofluorescence staining results showed that Blimp-1 strictly controlled the nuclear translocation of NF-κB p65 in LPS-challenged macrophages. Furthermore, Blimp-1 directly inhibited the transcriptional activity of NF-κB and the transcription of IL6 gene. Conclusion Blimp-1 represses the production of multiple pro-inflammatory cytokines by directly binding the genomic region and restricting the nuclear translocation and transcriptional activity of NF-κB. This finding may provide potential therapeutic strategies for the cytokine storm-related diseases.
      PubDate: 2022-11-20
       
  • FK506 impairs neutrophil migration that results in increased polymicrobial
           sepsis susceptibility

    • Free pre-print version: Loading...

      Abstract: Objective This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. Methods Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1−/−) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. Results FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1−/− mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. Conclusion Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.
      PubDate: 2022-11-19
       
  • Stress analysis of self-tightness metal sealing against ultrahigh pressure
           medium

    • Free pre-print version: Loading...

      Abstract: Abstract Stress is one of the most important factors in metal-to-metal sealing. In this paper, two methods (theoretical and empirical) were adopted to calculate the normal stress of the brass sealing surfaces against different ultrahigh pressure liquid. The theoretical formula was derived in terms of force balance, and the empirical formula was obtained by polynomial curve fitting, which the fitted data were from simulated results; besides, the results calculated using the empirical formula agree well with the results by theoretical formula. Meanwhile, the equivalent stresses of the brass seal, normal stress and contact stress on the brass seal surfaces were simulated by finite element method, and the simulated results indicated these stresses are increased with the increase of liquid pressure, and the maximum stresses always appear on the tip of the brass seal.
      PubDate: 2022-11-17
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.169.3
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-