Authors:Huo J; Huang Y, Zheng Z, et al. Abstract: AbstractBackgroundMultiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM cells and is one target with the most potential for developing MM-targeting immunotherapy. Other than the FDA-approved BCMA-targeting CAR T-cell therapy, such as Abecma and CARVYKTI, T cell-engaging multi-specific antibody is another promising therapeutic modality for BCMA-targeting MM treatment. We develop a T-cell redirecting BCMA-targeting bispecific antibody (bsAb) and evaluate its anti-MM activity.MethodsWe first generated several clones of mouse anti-human BCMA monoclonal antibodies using DNA immunization. One of the anti-BCMA antibodies was then used to design and produce a T cell-redirecting BCMA × CD3 bsAb in CHO cells. Finally, we examined the effect of the bsAb on MM cell growth both in vitro and in vivo.ResultsThe BCMA × CD3 bsAb was designed in a FabscFv format and produced in CHO cells with good yield and purity. Moreover, the bsAb can trigger robust T cell proliferation and activation and induce efficient T cell-mediated MM cell killing in vitro. Using a MM xenograft mouse model, we demonstrate that the bsAb can effectively suppress MM cell growth in vivo.ConclusionsOur results suggest that the BCMA × CD3 bsAb in the FabscFv format can efficiently inhibit MM cell growth and have promising potential to be developed into a therapeutic antibody drug for the treatment of MM. PubDate: Thu, 09 Jun 2022 00:00:00 GMT
Authors:Engelhart E; Lopez R, Emerson R, et al. Abstract: AbstractAntibody therapies represent a valuable tool to reduce COVID-19 deaths and hospitalizations. Multiple antibody candidates have been granted emergency use authorization by the Food and Drug Administration and many more are in clinical trials. Most antibody therapies for COVID-19 are engineered to bind to the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein and disrupt its interaction with angiotensin-converting enzyme 2 (ACE2). Notably, several SARS-CoV-2 strains have accrued mutations throughout the RBD that improve ACE2 binding affinity, enhance viral transmission and escape some existing antibody therapies. Here, we measure the binding affinity of 33 therapeutic antibodies against a large panel of SARS-CoV-2 variants and related strains of clinical significance using AlphaSeq, a high-throughput yeast mating-based assay to determine epitopic residues, determine which mutations result in loss of binding and predict how future RBD variants may impact antibody efficacy. PubDate: Thu, 12 May 2022 00:00:00 GMT
Authors:Dahodwala H; Amenyah S, Nicoletti S, et al. Abstract: AbstractWe previously demonstrated that increased monoclonal antibody productivity in dihydrofolate reductase (DHFR)-amplified CHO cells correlates with phosphorylated transcription factor-cytomegalovirus (CMV) promoter interactions. In this article, we extend the characterization to include CMV promoter methylation and its influence on NFκB and CREB1 transcription factor binding to the CMV promoter in two families of DHFR-amplified CHO cell lines. CMV promoter methylation was determined using bisulfite sequencing. To overcome Sanger-sequencing limitations due to high CG bias and multiple transgenes copies, pyrosequencing was used to determine the frequency of methylated cytosines in regions proximal to and containing the NFκB and CREB1 transcription-factor consensus binding sites. Chromatin immunoprecipitation was performed to interrogate transcription factor–DNA interactions. Antibodies to CREB1 and NFκB were used to immunoprecipitate formaldehyde-crosslinked protein-DNA fractions, followed by reverse transcription quantitative real-time polymerase chain reaction to quantitate the number of copies of CMV-promoter DNA bound to the various transcription factors. The relative unmethylated fraction at the CREB1 and NFκB consensus binding sites determined by pyrosequencing was correlated with transcription factor binding as determined by chromatin immunoprecipitation. Azacytidine treatment reduced methylation in all treated samples, though not at all methylation sites, while increasing transcription. Distinct promoter methylation patterns arise upon clonal selection in different families of cell lines. In both cell line families, increased methylation was observed upon amplification. In one family, the NFκB binding-site methylation was accompanied by increased CREB1 interaction with the promoter. In the other cell line family, lower methylation frequency at the NFκB consensus binding site was accompanied by more NFκB recruitment to the promoter region. PubDate: Fri, 06 May 2022 00:00:00 GMT
Authors:Qin Y; Ma R, Li Y, et al. Abstract: AbstractBackgroundAggregation, fragmentation, and low yield are issues frequently found during the cell culture process of bispecific antibodies (bsAbs), whose inherent complexity likely plays a role in causing these issues.MethodsIn this study, we made a head-to-head comparison between fed-batch cell culture and intensified perfusion cell culture with a symmetric bsAb case.ResultsIn comparison with the fed-batch culture, a 6.6-fold improvement in integrated viable cell density and a 10.9-fold improvement in volumetric productivity were achieved with the intensified perfusion mode. In addition, a significant decrease in aggregation and fragmentation was observed with the intensified perfusion cell culture. Furthermore, product homogeneity was improved, which was reflected by the increased percentage of capillary isoelectric focusing main group. The quality improvement with intensified perfusion cell culture can be attributed to the shortened product retention in the bioreactor.ConclusionsThese findings suggest that intensified perfusion cell culture could be a better choice than traditional fed-batch especially for complex molecules like bsAbs. As this is a single case report, future studies on other cases are needed to further confirm the general applicability of this strategy. PubDate: Tue, 03 May 2022 00:00:00 GMT
Authors:Wong K; Shi J, Li P, et al. Abstract: AbstractChimeric antigen receptor T (CAR-T) cells are cytotoxic T cells engineered to specifically kill cancer cells expressing specific target receptor(s). Prior CAR-T efficacy tests include CAR expression analysis by qPCR or ELISA, in vitro measurement of interferon-γ (IFNγ) or interleukin-2 (IL-2), and xenograft models. However, the in vitro measurements did not reflect CAR-T cytotoxicity, whereas xenograft models are low throughput and costly. Here, we presented a robust in vitro droplet microfluidic assay for CAR-T cytotoxicity assessment. This method not only enabled assessment of CAR-T cytotoxic activity under different fluid viscosity conditions, but also facilitated measurement of CAR-T expansion and dissection of mechanism of action via phenotype analysis in vitro. Furthermore, our data suggested that label-free cytotoxicity analysis is feasible by acquiring data before and after treatment. Hence, this study presented a novel in vitro method for assessment of cellular cytotoxicity that could potentially be applied to any cytotoxicity experiment with varying solvent composition. PubDate: Thu, 24 Mar 2022 00:00:00 GMT
Authors:Lupitha S; Darvin P, Chandrasekharan A, et al. Abstract: AbstractQuantitative determination of neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) is paramount in immunodiagnostics, vaccine efficacy testing, and immune response profiling among the vaccinated population. Cost-effective, rapid, easy-to-perform assays are essential to support the vaccine development process and immunosurveillance studies. We describe a bead-based screening assay for S1-neutralization using recombinant fluorescent proteins of hACE2 and SARS-CoV2-S1, immobilized on solid beads employing nanobodies/metal-affinity tags. Nanobody-mediated capture of SARS-CoV-2-Spike (S1) on agarose beads served as the trap for soluble recombinant ACE2-GFPSpark, inhibited by neutralizing antibody. The first approach demonstrates single-color fluorescent imaging of ACE2-GFPSpark binding to His-tagged S1-Receptor Binding Domain (RBD-His) immobilized beads. The second approach is dual-color imaging of soluble ACE2-GFPSpark to S1-Orange Fluorescent Protein (S1-OFPSpark) beads. Both methods showed a good correlation with the gold standard pseudovirion assay and can be adapted to any fluorescent platforms for screening. PubDate: Thu, 17 Mar 2022 00:00:00 GMT