A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  First | 1 2 3        [Sort by number of followers]   [Restore default list]

  Subjects -> PHARMACY AND PHARMACOLOGY (Total: 575 journals)
Showing 401 - 253 of 253 Journals sorted alphabetically
Microbial Drug Resistance     Hybrid Journal   (Followers: 3)
Molecular Informatics     Hybrid Journal   (Followers: 5)
Molecular Pharmacology     Hybrid Journal   (Followers: 2)
Molekul     Open Access   (Followers: 1)
Natural Product Communications     Open Access  
Nature Reviews Drug Discovery     Full-text available via subscription   (Followers: 316)
Naunyn-Schmiedeberg's Archives of Pharmacology     Hybrid Journal  
NeuroMolecular Medicine     Hybrid Journal  
Neuropharmacology     Hybrid Journal   (Followers: 6)
Neuropsychopharmacology     Hybrid Journal   (Followers: 18)
Neuropsychopharmacology Reports     Open Access  
Nigerian Journal of Natural Products and Medicine     Full-text available via subscription  
OA Drug Design & Delivery     Open Access  
OA Medical Hypothesis     Open Access  
Obesity Facts     Open Access   (Followers: 8)
Open Pharmacoeconomics & Health Economics Journal     Open Access  
Open Pharmacology Journal     Open Access  
OpenNano     Open Access   (Followers: 1)
Orbital - The Electronic Journal of Chemistry     Open Access   (Followers: 1)
Oriental Pharmacy and Experimental Medicine     Partially Free   (Followers: 2)
Pain and Therapy     Open Access   (Followers: 3)
Particulate Science and Technology: An International Journal     Hybrid Journal   (Followers: 1)
PDA Journal of Pharmaceutical Science and Technology     Full-text available via subscription   (Followers: 36)
Pediatric Drugs     Full-text available via subscription   (Followers: 4)
Pediatric Pharmacology     Open Access   (Followers: 1)
Pharmaceutica Analytica Acta     Open Access  
Pharmaceutical Biology     Open Access  
Pharmaceutical Care-La Farmacoterapia     Open Access  
Pharmaceutical Chemistry Journal     Hybrid Journal  
Pharmaceutical Development and Technology     Hybrid Journal   (Followers: 21)
Pharmaceutical Executive     Full-text available via subscription   (Followers: 6)
Pharmaceutical Fronts     Open Access   (Followers: 5)
Pharmaceutical Historian     Open Access  
Pharmaceutical Journal     Free   (Followers: 8)
Pharmaceutical Journal of Sri Lanka     Open Access  
Pharmaceutical Medicine     Full-text available via subscription   (Followers: 4)
Pharmaceutical Nanotechnology     Hybrid Journal  
Pharmaceutical Patent Analyst     Full-text available via subscription   (Followers: 3)
Pharmaceutical Research     Hybrid Journal   (Followers: 97)
Pharmaceutical Statistics     Hybrid Journal   (Followers: 16)
Pharmaceutical Technology     Full-text available via subscription   (Followers: 6)
Pharmaceuticals     Open Access   (Followers: 4)
Pharmacia     Open Access  
PharmacoEconomics     Full-text available via subscription   (Followers: 26)
PharmacoEconomics & Outcomes News     Full-text available via subscription   (Followers: 4)
PharmacoEconomics German Research Articles     Full-text available via subscription  
PharmacoEconomics Spanish Research Articles     Hybrid Journal   (Followers: 1)
Pharmacoepidemiology and Drug Safety     Hybrid Journal   (Followers: 34)
Pharmacogenetics and Genomics     Hybrid Journal   (Followers: 1)
Pharmacogenomics     Hybrid Journal   (Followers: 7)
Pharmacogenomics and Personalized Medicine     Open Access   (Followers: 2)
Pharmacogenomics Journal     Hybrid Journal   (Followers: 5)
Pharmacognosy Communications     Partially Free  
Pharmacognosy Magazine     Open Access   (Followers: 2)
Pharmacognosy Research     Open Access   (Followers: 2)
Pharmacological Reports     Hybrid Journal  
Pharmacological Research     Hybrid Journal   (Followers: 1)
Pharmacological Research - Modern Chinese Medicine     Open Access  
Pharmacological Reviews     Hybrid Journal   (Followers: 2)
Pharmacology     Full-text available via subscription  
Pharmacology & Therapeutics     Hybrid Journal   (Followers: 3)
Pharmacology & Pharmacy     Open Access   (Followers: 1)
Pharmacology Biochemistry and Behavior     Hybrid Journal   (Followers: 2)
Pharmacology Research & Perspectives     Open Access  
Pharmacon : Jurnal Farmasi Indonesia     Open Access  
Pharmacopsychiatry     Hybrid Journal   (Followers: 3)
Pharmacotherapy The Journal of Human Pharmacology and Drug Therapy     Hybrid Journal   (Followers: 38)
Pharmactuel     Open Access   (Followers: 1)
Pharmacy     Open Access   (Followers: 4)
Pharmacy & Pharmacology     Open Access  
Pharmacy Education     Full-text available via subscription   (Followers: 11)
Pharmacy Practice (Internet)     Open Access   (Followers: 8)
Pharmakon : Arzneimittel in Wissenschaft und Praxis     Full-text available via subscription   (Followers: 1)
PharmaNutrition     Hybrid Journal   (Followers: 3)
PharmaTutor     Open Access  
Pharmazeutische Industrie     Full-text available via subscription   (Followers: 11)
Pharmazeutische Zeitung     Full-text available via subscription   (Followers: 15)
Pharmazie in Unserer Zeit (Pharmuz)     Hybrid Journal   (Followers: 18)
Physiology International     Full-text available via subscription   (Followers: 3)
Plant Products Research Journal     Full-text available via subscription  
Planta Medica     Hybrid Journal   (Followers: 4)
Planta Medica International Open     Open Access  
Prescriber     Hybrid Journal   (Followers: 9)
Progress in Neuro-Psychopharmacology and Biological Psychiatry     Hybrid Journal   (Followers: 8)
Psychiatry and Clinical Psychopharmacology     Open Access   (Followers: 1)
Psychopharmacology     Hybrid Journal   (Followers: 16)
Pulmonary Pharmacology & Therapeutics     Hybrid Journal   (Followers: 2)
PZ Prisma : Materialien zur Fort- und Weiterbildung     Full-text available via subscription  
Redox Report     Open Access  
Regulatory Mechanisms in Biosystems     Open Access   (Followers: 1)
Regulatory Toxicology and Pharmacology     Hybrid Journal   (Followers: 41)
Research & Reviews : A Journal of Drug Design & Discovery     Full-text available via subscription  
Research & Reviews : A Journal of Pharmaceutical Science     Full-text available via subscription  
Research & Reviews : A Journal of Pharmacognosy     Full-text available via subscription  
Research & Reviews : A Journal of Pharmacology     Full-text available via subscription   (Followers: 1)
Research in Pharmaceutical Sciences     Open Access   (Followers: 3)
Research in Social and Administrative Pharmacy     Hybrid Journal   (Followers: 3)
Research Journal of Pharmacognosy     Open Access  
Research Results in Pharmacology     Open Access  
Reviews of Physiology, Biochemistry and Pharmacology     Hybrid Journal   (Followers: 4)
Reviews on Clinical Pharmacology and Drug Therapy     Full-text available via subscription  
Revista Colombiana de Ciencias Químico-Farmacéuticas     Open Access  
Revista Cubana de Plantas Medicinales     Open Access   (Followers: 1)
Revista de Ciências Farmacêuticas Básica e Aplicada     Open Access  
Revista Mexicana de Ciencias Farmaceuticas     Open Access  
Revue de Médecine et de Pharmacie     Full-text available via subscription  
Safety and Risk of Pharmacotherapy     Open Access   (Followers: 1)
Saudi Pharmaceutical Journal     Open Access  
Scandinavian Journal of Clinical and Laboratory Investigation     Hybrid Journal   (Followers: 8)
Scientia Pharmaceutica     Open Access  
Seminars in Hematology     Hybrid Journal   (Followers: 12)
Seminars in Oncology Nursing     Full-text available via subscription   (Followers: 10)
Separation Science plus (SSC plus)     Hybrid Journal  
Side Effects of Drugs Annual     Full-text available via subscription   (Followers: 2)
Skin Pharmacology and Physiology     Full-text available via subscription   (Followers: 6)
Substance Abuse : Research and Treatment     Open Access   (Followers: 5)
Suchttherapie     Hybrid Journal   (Followers: 1)
Sustainable Chemistry and Pharmacy     Full-text available via subscription   (Followers: 1)
Synfacts     Hybrid Journal   (Followers: 5)
SynOpen     Open Access  
The Botulinum J.     Hybrid Journal  
The Brown University Psychopharmacology Update     Hybrid Journal   (Followers: 2)
The Medical Letter     Full-text available via subscription   (Followers: 18)
The Pink Sheet     Full-text available via subscription   (Followers: 12)
The Pink Sheet Daily     Full-text available via subscription   (Followers: 5)
Therapeutic Advances in Drug Safety     Open Access   (Followers: 3)
Therapeutic Advances in Psychopharmacology     Open Access   (Followers: 4)
Therapeutic Advances in Vaccines     Hybrid Journal   (Followers: 1)
Therapeutic Drug Monitoring     Hybrid Journal   (Followers: 5)
Therapeutic Innovation & Regulatory Science     Hybrid Journal   (Followers: 7)
Thérapie     Full-text available via subscription   (Followers: 1)
TheScientist     Free   (Followers: 6)
Toxicological & Environmental Chemistry     Hybrid Journal   (Followers: 2)
Toxicological Research     Hybrid Journal  
Toxicological Sciences     Hybrid Journal   (Followers: 11)
Toxicology     Hybrid Journal   (Followers: 19)
Toxicology and Applied Pharmacology     Hybrid Journal   (Followers: 25)
Toxicology and Industrial Health     Hybrid Journal   (Followers: 6)
Toxicology in Vitro     Hybrid Journal   (Followers: 12)
Toxicology International     Full-text available via subscription   (Followers: 5)
Toxicology Letters     Hybrid Journal   (Followers: 16)
Toxicology Mechanisms and Methods     Hybrid Journal   (Followers: 9)
Toxicology Research     Partially Free   (Followers: 8)
Toxicon     Hybrid Journal   (Followers: 5)
Toxicon : X     Open Access  
Toxin Reviews     Hybrid Journal  
Translational Psychiatry     Open Access   (Followers: 14)
Trends in Peptide and Protein Sciences     Open Access  
Trends in Pharmacological Sciences     Full-text available via subscription   (Followers: 21)
Tropical Journal of Pharmaceutical Research     Open Access  
Ukrainian Biopharmaceutical Journal     Open Access  
Vascular Pharmacology     Hybrid Journal   (Followers: 2)
World Mycotoxin Journal     Hybrid Journal   (Followers: 3)
Yakugaku Zasshi     Open Access   (Followers: 1)
Zeitschrift für Phytotherapie     Hybrid Journal   (Followers: 1)
Актуальні питання фармацевтичної та медичної науки та практики     Open Access  
Фармацевтичний часопис     Open Access  

  First | 1 2 3        [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Pharmacological Reports
Journal Prestige (SJR): 0.773
Citation Impact (citeScore): 3
Number of Followers: 0  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1734-1140 - ISSN (Online) 2299-5684
Published by Springer-Verlag Homepage  [2469 journals]
  • Recent progress in biologically active indole hybrids: a mini review

    • Free pre-print version: Loading...

      Abstract: Abstract The indole moiety is one of the most widespread heterocycles found in both natural products and biological systems. Indoles have important biological activities including anticancer, antioxidant, anti-inflammatory, antifungal, anticholinesterase, and antibacterial properties. Scientists are therefore interested in the synthesis of biologically active indole-based hybrids such as indole–coumarin, indole–chalcone, indole–isatin, indole–pyrimidine and so on, with the aim of improving activity, selectivity, and mitigating side effects. This review will discuss the newly synthesized indole-based hybrids along with their biological activity which will be useful in drug discovery and development.
      PubDate: 2022-05-20
       
  • Intrathecal pramipexole and selegiline for sensory and motor block in rats

    • Free pre-print version: Loading...

      Abstract: Background The purpose of the study was to investigate spinal sensory and motor block by antiparkinsonian drugs (pramipexole and selegiline), and the combination of pramipexole and the local anesthetic lidocaine. Methods Using a technique of spinal blockade in rats, the effects of pramipexole, selegiline, and coadministration of pramipexole and lidocaine on spinal blockades of motor and sensory function were investigated. Results Under a concentration of 100 mM, pramipexole displayed more potent and had a longer duration of nociceptive, proprioceptive, and motor block than selegiline, whereas pramipexole and selegiline were less potent in comparison to lidocaine. Pramipexole produced spinal nociceptive, proprioceptive, and motor blocks in a dose-related manner. On the ED50 (50% effective dose) basis, the rank-order potency on nociceptive, proprioceptive, and motor block was pramipexole < lidocaine. The spinal block duration of pramipexole was greater than lidocaine at every equipotent dose tested (ED25, ED50, and ED75). Coadministration of lidocaine (ED50 or ED95) with pramipexole (4.5 μmol/kg) improved the effect (efficacy) and duration of the spinal block. Conclusions Pramipexole and selegiline were less potent than lidocaine to block sensory and motor responses. The duration of the spinal anesthetic effect of pramipexole was longer than lidocaine. At a non-effective dose, pramipexole increased the duration of efficacy of lidocaine.
      PubDate: 2022-05-13
       
  • Comparative study of the binding between chlorogenic acid and four
           proteins by isothermal titration calorimetry, spectroscopy and docking
           methods

    • Free pre-print version: Loading...

      Abstract: As a polyphenolic compound, chlorogenic acid has antioxidant, anti-inflammatory, antiviral, anti-obesity and other effects. Based on the interactions between chlorogenic acid and the proteins (human serum albumin (HSA), pepsin (Pep), trypsin (Try), fat mass and obesity-associated protein (FTO)), results will provide clues for screening effective inhibitors. The interaction between chlorogenic acid and the four proteins (HSA, Pep, Try, FTO) was analyzed by the aid of fluorescence quenching, synchronous fluorescence, three-dimensional fluorescence, isothermal titration calorimetry, and molecular docking. It can be concluded that there is no obvious interaction between chlorogenic acid and FTO. The binding affinity between chlorogenic acid and three proteins is HSA > Try > Pep. The binding process is spontaneous, and the quenching type is static quenching. Hydrophobic interaction and hydrogen bonding is observed in the binding process. This study provides valuable information for understanding the interaction mechanism between chlorogenic acid and proteins, and provides clues for screening inhibitors. Graphical abstract
      PubDate: 2022-05-11
       
  • Acetaminophen treatment evokes anticontractile effects in rat aorta by
           blocking L-type calcium channels

    • Free pre-print version: Loading...

      Abstract: Background Acetaminophen (APAP) is the most widely used analgesic and antipyretic in the world. However, in high or continuous doses, it can cause serious side effects including blood pressure variability and cardiovascular injuries, which are barely explored. This study aimed to evaluate the acute effect of APAP treatment on vascular tone focused on the blocking of Ca2+ channels. Methods Rats were treated with APAP orally by gavage (500 mg/kg/single dose). After 12 h, the aorta was isolated for vascular reactivity studies in an isolated organ bath. Vascular contraction and relaxation were measured after different stimuli. Moreover, molecular docking studies were performed to evaluate the action of NAPQI (APAP metabolite) on L-type calcium channels. Results Phenylephrine-induced maximal vascular contraction was reduced in the APAP group (138.4 ± 9.2%) compared to the control group (172.2 ± 11.1%). APAP treatment significantly reduced contraction induced by Ca2+ influx stimulated with phenylephrine or KCl and reduced contraction mediated by Ca2+ released from the sarcoplasmic reticulum induced by caffeine. There was no difference in vascular relaxation induced by acetylcholine or sodium nitroprusside. Computational molecular docking demonstrated that NAPQI is capable of blocking L-type Ca2+ channels (Cav1.2), which would limit the influx of Ca2+. Conclusion These results suggest that APAP treatment causes an anticontractile effect in rat aorta, possibly by blocking the influx of Ca2+ through L-type channels (Cav1.2). Graphical abstract
      PubDate: 2022-04-19
       
  • Exposure to chronic stressor upsurges the excitability of serotoninergic
           neurons and diminishes concentrations of circulating corticosteroids in
           rats two weeks thereafter

    • Free pre-print version: Loading...

      Abstract: Background Exposure to predator scent (PS) has been used as a model of stress associated with danger to life and body integrity. Under stress conditions, the brain serotoninergic (5-HT) system plays an important role. Methods We tested the hypothesis that repeated PS exposure alters the excitability of 5-HT neurons of the dorsal raphe nucleus. To study the mechanisms involved, we approached serum and adrenal corticosterone and aldosterone concentrations, as well as brain-derived neurotrophic factor (BDNF) expression. Adult male Sprague–Dawley rats were exposed to PS for 10 min daily for 10 consecutive days. Two weeks after the last exposure, electrophysiological and biochemical assessments were performed. Results Measurements by in vivo electrophysiology showed increased firing activity of 5-HT neurons in rats exposed to PS. Exposure to PS resulted in reduced serum corticosterone and aldosterone concentrations. Concentrations of both corticosteroids in the adrenal glands and the relative weight of the adrenals were unaffected. The gene expression of hippocampal BDNF of rats exposed to PS remained unaltered. PS exposure failed to induce changes in the gene expression of selected adrenal steroidogenic factors. Conclusion Reduced corticosteroid concentrations in the blood appear to be the result of increased metabolism and/or tissue uptake rather than altered steroidogenesis. The decrease in circulating corticosterone in rats who experienced repeated PS may represent part of the mechanisms leading to increased excitability of 5-HT neurons. The increase in 5-HT neuronal activity might be an important compensatory mechanism designated to diminish the harmful effects of the repeated PS exposure on the brain.
      PubDate: 2022-04-15
       
  • Salubrious effects of ulinastatin and quercetin alone or in combination in
           endothelial dysfunction and vascular dementia

    • Free pre-print version: Loading...

      Abstract: Background Vascular dementia is the second most prevalent form of dementia. Hypertension is the leading risk factor for endothelial dysfunction and the progression of dementia that is of vascular origin. This study investigates the role of ulinastatin (UTI) and quercetin alone as well as in combination in hypertension-induced endothelial dysfunction and vascular dementia (VaD). Method Two-kidney one-clip (2K1C) renovascular model was set up to induce hypertension in the Albino Wistar rats (males). Rats were assessed for mean arterial blood pressure, behavioral function (Morris water maze, attention set-shifting tests), vascular endothelial function, and biochemical levels (aortic superoxide anion and serum nitrite/nitrate), as well as brains’ thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, interleukin-6, 10, tumor necrosis factor-TNF-α and acetylcholinesterase-AChE). UTI (10,000 U/kg, ip) and quercetin (60 mg/kg) were used alone and in combination for treatment. Donepezil (0.5 mg/kg) was used as a positive control. Results 2K1C rats showed impairment in learning, memory, executive functioning, and reversal learning. These rats further showed endothelial dysfunction as well as an increase in mean arterial blood pressure, brains’ oxidative stress, inflammation, and AChE-activity. Treatment with UTI and quercetin alone as well in combination significantly attenuated the 2K1C model induced impairments in the behavioural, biochemical, and endothelial parameters. Conclusion 2K1C renovascular hypertension-induced impairment in behavioural, biochemical, and endothelial parameters were attenuated by the treatment with UTI and quercetin alone as well as in combination. Therefore, the utility of these agents might be studied further to understand their full potential in hypertension-induced VaD.
      PubDate: 2022-04-09
       
  • Palbociclib regulates intracellular lipids in mammary tumor cells by
           secreting lipoprotein lipase

    • Free pre-print version: Loading...

      Abstract: Background Lipoprotein metabolism is essential for the growth and proliferation of cancer cells, and is involved in the supply of energy and cellular components. Lipoprotein lipase (LPL) is a very important enzyme in lipoprotein metabolism; however, the details underlying the mechanism of LPL secretion are unclear. Palbociclib is an antitumor drug that inhibits cell cycle progression and suppresses the growth of cancer cells. The effects of palbociclib on energy metabolism, particularly on lipid metabolism, have not been fully elucidated. Methods We examined the regulation of LPL secretion, which is primarily involved in lipoprotein metabolism. FM3A mouse mammary tumor cells, which are hormone receptor-positive breast cancer cells, were treated with palbociclib, and the activity and protein levels of secreted LPL were measured. Moreover, the changes in intracellular lipid content were measured by fluorescence staining using Nile Red. Results FM3A cells were treated with palbociclib, the activity and protein content of secreted LPL were increased. The stimulatory secretion of LPL by palbociclib was suppressed by an intracellular Ca2+ chelator (BAPTA-AM) and a Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor (STO-609). Furthermore, the palbociclib-stimulated secretion of LPL was not observed in AMP-activated protein kinase (AMPK)-knockdown cells. An increase in the fluorescence intensity of Nile Red was observed in palbociclib-treated cells; however, no increase was observed in LPL-knockdown cells. Conclusions Our data suggest that palbociclib causes intracellular lipid accumulation in breast cancer cells by stimulating Ca2+/CaMKK/AMPK-mediated LPL secretion.
      PubDate: 2022-04-03
       
  • Glycolytic metabolism supports microglia training during age-related
           neurodegeneration

    • Free pre-print version: Loading...

      Abstract: Glucose is a major energy source for the brain, necessary to preserve proper neurophysiological functions; aberrant glucose metabolism in the brain has been documented in chronic neurodegenerative pathologies. In addition, glucose-dependent metabolic pathways, including substrates of the Krebs cycle, are involved in peripheral and central innate immune activation through a molecular program known as trained immunity. Notably, it seems that defective glucose metabolism favors trained immunity in the brain, leading to neuronal damage and neurodegeneration. In addition, defective glucose metabolism in the brain correlates with a positive proinflammatory profile and microglia activation, as was found in postmortem samples of neurodegenerative pathologies. We hypothesized that fluctuations in glucose supply or metabolism in the brain during aging may alter microglial training, turning these cells to unresponsive or overresponsive to a challenge during age-related neurodegeneration. This review will cover the most significant advances in glucose-dependent metabolic pathways that favor innate trained immunity of microglia and their contribution to neurodegeneration. Graphical abstract
      PubDate: 2022-04-03
       
  • A perspective on the applications of furin inhibitors for the treatment of
           SARS-CoV-2

    • Free pre-print version: Loading...

      Abstract: Abstract Currently, the world is facing a pandemic of the new coronavirus SARS-CoV-2 that causes COVID-19. Identifying key targets in the viral infection lifecycle is urgently needed for designing therapeutic strategies to combat the virus. Furin is a subtilisin-like proprotein convertase with diverse cellular functions. Emerging evidence suggests that furin plays a critical role in the activation and/or infectivity of SARS-CoV-2. In this perspective, we discuss the potential role of furin in the entry SARS-CoV-2 into host cells. Furthermore, we evaluate available peptide and non-peptide furin inhibitors and potential outcomes, including immune responses.
      PubDate: 2022-04-01
       
  • How do phosphodiesterase-5 inhibitors affect cancer' A focus on
           glioblastoma multiforme

    • Free pre-print version: Loading...

      Abstract: Abstract Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
      PubDate: 2022-04-01
       
  • Selected transgenic murine models of human autoimmune liver diseases

    • Free pre-print version: Loading...

      Abstract: Abstract Murine models of human diseases are of outmost importance for both studying molecular mechanisms driving their development and testing new treatment strategies. In this review, we first discuss the etiology and risk factors for autoimmune liver disease, including primary biliary cholangitis, autoimmune hepatitis and primary sclerosing cholangitis. Second, we highlight important features of murine transgenic models that make them useful for basic scientists, drug developers and clinical researchers. Next, a brief description of each disease is followed by the characterization of selected animal models.
      PubDate: 2022-04-01
       
  • The effects of Sorafenib and Natural killer cell co-injection in
           combinational treatment of hepatocellular carcinoma; an in vivo approach

    • Free pre-print version: Loading...

      Abstract: Background Natural killer cells (NKC) and Sorafenib (Sor) are two important agents for the treatment of hepatocellular carcinoma (HCC). Over the past decade, the interaction of Sor and NKC against HCC has been widely challenging. This study aimed to assess the efficacy of NKC & Sor for the treatment of HCC in vivo. Methods Subcutaneous xenograft models of HCC were established in nude mice. For safety assessment of treatment, the kidney and liver functions were analyzed. Paraffin embedded tumor sections were histopathologically studied and immunohistochemistry (IHC) tests were done to evaluate the angiogenesis (CD34) and proliferation (Ki67) indexes. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to identify the tumor cells undergoing apoptosis. The serum levels of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by enzyme-linked immunosorbent assay (ELISA) and expression levels of major inflammatory cytokines and cytoplasmic granules in xenograft HCC were quantified using real-time PCR. Results NKC & Sor significantly inhibited necrosis and apoptosis in tumor cells and increased angiogenesis and proliferation of HCC compared to the monotherapy of NKC or Sor alone. The serum levels of TNF-α, IFN-γ as well as the expression levels of TNF-α, IFN-γ, interleukins (ILs)-1, 6, 10, granzyme-B and perforin in the xenograft HCC tissues of the treated mice with NKC & Sor were significantly lower than those of treated with NKC or Sor alone. Conclusion Therapy with the specific dosage of NKC & Sor could not inhibit the HCC xenograft growth rate through a synergistic effect in a mouse model of HCC.
      PubDate: 2022-04-01
       
  • Decreased efficacy of the ketamine and scopolamine-induced sustained
           antidepressant-like effects in rats receiving metformin

    • Free pre-print version: Loading...

      Abstract: Background Metformin is the most widely used drug for treating type 2 diabetes mellitus (DM), which frequently co-occurs with depressive disorders. Thus, patients with depression are likely to receive metformin. Metformin activates AMP-activated kinase (AMPK), which inhibits mechanistic target of rapamycin complex 1 (mTORC1) signaling. mTORC1 activation is essential for the antidepressant effects of ketamine and scopolamine. Thus, we hypothesized that metformin may attenuate ketamine- or scopolamine-induced antidepressant efficacies by blocking their mTORC1 activation. Methods We assessed the acute and sustained antidepressant-like actions of ketamine and scopolamine in male Sprague–Dawley rats subjected to the forced swim test with or without metformin pretreatment. The expressions of AMPK, mTORC1, and brain-derived neurotrophic factor (BDNF) in their prefrontal cortex were assessed. Results Metformin (50 mg/kg) attenuated the sustained, but not acute, antidepressant-like effects of ketamine (10 mg/kg) and scopolamine (25 μg/kg). Although metformin reduced mTORC1 downstream activated P70S6K, it did not significantly alter mTORser2448 activation and even increased BDNF expression. Notably, ketamine, scopolamine, and metformin all exerted significant antidepressant-like actions, as evidenced by increased AMPK phosphorylation and BDNF expression. Conclusions Metformin-induced attenuation of sustained antidepressant-like effects are not directly dependent on AMPK-deactivated mTORC1. Our results indicate the complexity of interactions between AMPK, BDNF, and mTORC1. Further research, including mechanistic studies, is warranted to comprehensively evaluate the application of metformin in patients receiving mTORC1-based antidepressants. Graphical abstract
      PubDate: 2022-04-01
       
  • Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death
           signalling pathway targeting STAT3 in solid tumour

    • Free pre-print version: Loading...

      Abstract: Background Anomalous activation of intra-cellular signalling cascades confers neoplastic properties on malignant cells. The JAK2/STAT3 proteins play a pivotal role in the pathogenesis of most of the solid malignancies. The over expression of STAT3 in these tumours results in an evasion of apoptosis and thereby pathogenesis. Hence, strategy to target STAT3 to regress tumour development is an emerging new concept. As an approach, anti-neoplastic drug, Azo-hydrozone analogue, BT-1F with potential anti-proliferative effect was evaluated to demonstrate its capacity to counteract STAT3 signal with mechanistic approach. Methods Cell based screening for cytotoxicity was performed through MTT, LDH and Trypan blue. The BT-1F induced anti-clonogenic property by clonogenic assay. The apoptotic capacity was examined by crystal violet staining, flow cytometry, Annexin-FITC, DAPI and TUNEL assay. The altered signalling events were studied using immunoblot. The drug-induced anti-tumour effect was evaluated in an in-vivo solid tumour model and molecular interaction was further validated by in-silico studies. Results The BT-1F exerts chemo-sensitivity specifically against EAC and A549 cells without altering its normal counterpart. The anti-proliferative/anti-clonogenic effect was due to the induction of apoptosis through inhibition of STAT3Tyr705 signal. Eventually downstream signalling proteins p53, Bax, Bad and Bcl-xL were significantly altered. Further in-vivo experimental results validated  in-vitro findings. The computational approaches assures the BT-1F efficiency in binding with STAT3. Conclusion Systemic validation of STAT3 target drug, BT-1F in in-vitro, in-silico and in-vivo models has promising strategy for solid cancer treatment. Graphical abstract
      PubDate: 2022-04-01
       
  • Allosteric modulation of dopamine D2L receptor in complex with Gi1 and Gi2
           proteins: the effect of subtle structural and stereochemical ligand
           modifications

    • Free pre-print version: Loading...

      Abstract: Background Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson’s disease. Methods To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. Results Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. Conclusions Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator. Graphical abstract
      PubDate: 2022-04-01
       
  • Berberine and its derivatives represent as the promising therapeutic
           agents for inflammatory disorders

    • Free pre-print version: Loading...

      Abstract: Abstract Berberine, with the skeleton of quaternary ammonium, has been considered as the well-defined natural product in treating multiple diseases, including inflammation, acute and chronic infection, autoimmune diseases, and diabetes. However, due to the low bioavailability and systemic exposure, broad clinical applications of berberine have been largely impeded. Numerous studies have been conducted to further explore the therapeutic capacities of berberine in preclinical and clinical trials. Over the past, berberine and its derivatives have been shown to possess numerous pharmacological activities, as evidenced in intestinal, pulmonary, skin, and bone inflammatory disorders. In the present review, the pharmacological impact of berberine on inflammatory diseases are fully discussed, with indication that berberine and its potential derivatives represent promising natural therapeutic agents with anti-inflammatory properties.
      PubDate: 2022-04-01
       
  • Evaluation of anti-inflammatory response of berberine-loaded gum
           nanocomplexes in carrageenan-induced acute paw edema in rats

    • Free pre-print version: Loading...

      Abstract: Background Berberine is a natural plant alkaloid and has been reported to possess anti-inflammatory activity. However, berberine’s poor bioavailability and low solubility have limited its clinical applicability. Nanoencapsulation of berberine using a suitable carrier can be a promising strategy to improve its efficacy. Therefore, this study aimed to produce berberine-loaded gum nanocomplexes to evaluate their therapeutic effects in a carrageenan-induced rat model. Methods Berberine-loaded gum nanocomplexes were prepared by the ionic complexation between the negative charges of the gums (tragacanth and acacia gum) using a cross-linker for loading cationic berberine and their anti-inflammatory activity was evaluated against carrageenan-induced paw edema in rats. ELISA and qRT-PCR were employed to measure the concentration and mRNA expression level of inflammatory mediators in plasma and paw tissue, respectively. Results Berberine nanocomplexes were characterized for particle size (219.5 nm), zeta potential by the dynamic light scattering (DLS), and for entrapment efficiency (93.2%) Infrared spectroscopy affirmed the loading of berberine in gum nanocomplexes. Transmission electron microscopy of formulation showed the spherical shape of nanocomplexes and small particle size (100–150 nm). Pretreatment of rats with berberine nanocomplexes significantly reduced the paw edema in inflamed rat paws, decreased the production of nitrite and TNF-α in plasma and repressed the mRNA expression levels of TNF-α and IL-1β in paw tissue in comparison to berberine per se treated rats. Conclusion The obtained berberine-loaded gum nanocomplexes produced a better anti-inflammatory effect as compared to berberine alone and hence can be used as an efficient candidate in the treatment of inflammation. Graphical abstract The schematic representation of the preparation of the preparation of berberine-loaded tragacanth/acacia gum nanocomplexes and the evaluation in vivo for anti-inflammatory effects.
      PubDate: 2022-04-01
       
  • An update on mode of action of metformin in modulation of
           meta-inflammation and inflammaging

    • Free pre-print version: Loading...

      Abstract: Abstract Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activation, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflammation, aging, and inflammaging.
      PubDate: 2022-04-01
       
  • Antiviral drug research for Japanese encephalitis: an updated review

    • Free pre-print version: Loading...

      Abstract: Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20–30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon. Graphical abstract
      PubDate: 2022-02-19
      DOI: 10.1007/s43440-022-00355-2
       
  • Effect of caffeine on the anticonvulsant action of pregabalin against
           electroconvulsions in mice

    • Free pre-print version: Loading...

      Abstract: Background Experimental data indicate that caffeine (CAF) can reduce the anticonvulsant activity of antiepileptic drugs (AEDs) in animal models of seizures. The purpose of the current study was to examine the effect of CAF on the protective action of pregabalin (PGB) against electroconvulsions in mice. Methods Maximal electroshock seizure (MES) test was used in the current study. In addition, the combined treatment with CAF and PGB was assessed in the passive avoidance task (long-term memory) and the chimney test (motor coordination). Drugs were injected intraperitoneally (ip) as single injections. CAF was administered at doses reported to compromise the anticonvulsant action of AEDs in mice. Results CAF at a dose of 23.1 mg/kg reduced the anticonvulsant action of PGB in the MES test. The brain concentration of PGB was not significantly changed by CAF and vice versa. In the chimney test, CAF (23.1 mg/kg) protected mice against PGB-induced motor coordination impairment. Conclusions Regarding seizure control, it might be suggested that patients with epilepsy treated with PGB should avoid taking CAF. The estimated total brain concentration of PGB and CAF does not suggest a pharmacokinetic interaction as an explanation for these results.
      PubDate: 2022-02-16
      DOI: 10.1007/s43440-022-00356-1
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.25.113
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-