Subjects -> PHARMACY AND PHARMACOLOGY (Total: 575 journals)
| A B C D E F G H I J K L M N O P Q R S T U V W X Y Z | The end of the list has been reached or no journals were found for your choice. |
|
|
- Editorial: Natural products in the treatment of neurological diseases:
identification of novel active compounds and therapeutic targets Authors: Jia Zhao, Di Wang, Wei Cui, Hansen Chen PubDate: 2023-09-22T00:00:00Z
- The pharmacological mechanism of chaihu-jia-longgu-muli-tang for treating
depression: integrated meta-analysis and network pharmacology analysis Authors: Yang Zhao, Dan Xu, Jing Wang, Dandan Zhou, Anlan Liu, Yingying Sun, Yuan Yuan, Jianxiang Li, Weifeng Guo Abstract: Aim: Chaihu-jia-Longgu-Muli-tang (CLM) is derived from “Shang Han Lun” and is traditionally prescribed for treating depression. However, there is still a lack of evidence for its antidepressant effects, and the underlying mechanism is also unclear. This study aimed to assess clinical evidence on the efficacy of CLM in patients with depression using a meta-analysis and to explore its underlying antidepressant molecular mechanisms via network pharmacology.Methods: Eight open databases were searched for randomized controlled trials (RCTs) comparing the effects of CLM alone or combined with serotonin-norepinephrine reuptake inhibitors (SNRIs) and selective serotonin reuptake inhibitors (SSRIs) in patients with depression, evaluating the total effective rate of the treatment group (CLM alone or combined with SSRIs/SNRIs) and the control group (SNRIs or SSRIs), and comparing changes in depression scale, anxiety scale, sleep scale, inflammation indicators and adverse effects. Subsequently, the active ingredients and target genes of CLM were screened through six databases. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network and topology analysis were performed. Finally, Molecular docking was applied to evaluate the binding affinity between components and predicted targets.Results: Twenty-four RCTs with a total of 2,382 patients were included. For the efficacy of antidepression and adverse effects, whether CLM alone or in combination with SSRIs/SNRIs, the treatment group has no inferior to that of the control group. Additionally, the intervention of CLM + SSRI significantly improved the symptoms of anxiety and insomnia, and reduced serum IL-6 and TNF-α levels. For network pharmacology, a total of 129 compounds and 416 intersection targets in CLM were retrieved. The interaction pathway between CLM and depression is mainly enriched in PI3K-Akt, JAK-STAT, and NF-κB signaling pathway, PIK3R1, MAPK3, and AKT1 may be the potential targets of Stigmasterol, β-stiosterol, coumestrol.Conclusion: Compared to SSRIs/SNRIs alone, CLM is more effective and safe in treating depression. It not only significantly alleviates depressive mood, but improves symptoms such as anxiety and insomnia, with fewer side effects, especially in combination with SSRI. Its antidepressant mechanism may be correlated with the regulation of the PI3K/Akt signaling pathway and inhibiting inflammatory response. PubDate: 2023-09-21T00:00:00Z
- Mechanistic insights into MARK4 inhibition by galantamine toward
therapeutic targeting of Alzheimer’s disease Authors: Mohd Adnan, Debarati DasGupta, Saleha Anwar, Anas Shamsi, Arif Jamal Siddiqui, Mejdi Snoussi, Fevzi Bardakci, Mitesh Patel, Md Imtaiyaz Hassan Abstract: Introduction: Hyperphosphorylation of tau is an important event in Alzheimer’s disease (AD) pathogenesis, leading to the generation of “neurofibrillary tangles,” a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics.Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4–GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT.Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4–GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM).Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT’s inhibition of MARK4 provides newer insights into the mechanism of GLT’s action, which is already used to improve cognition in AD patients. PubDate: 2023-09-19T00:00:00Z
- Methamphetamine exposure drives cell cycle exit and aberrant
differentiation in rat hippocampal-derived neurospheres Authors: Shaomin Wang, Liang Wang, Qian Bu, Qian Wei, Linhong Jiang, Yanping Dai, Ni Zhang, Weihong Kuang, Yinglan Zhao, Xiaobo Cen Abstract: Introduction: Methamphetamine (METH) abuse by pregnant drug addicts causes toxic effects on fetal neurodevelopment; however, the mechanism underlying such effect of METH is poorly understood.Methods: In the present study, we applied three-dimensional (3D) neurospheres derived from the embryonic rat hippocampal tissue to investigate the effect of METH on neurodevelopment. Through the combination of whole genome transcriptional analyses, the involved cell signalings were identified and investigated.Results: We found that METH treatment for 24 h significantly and concentration-dependently reduced the size of neurospheres. Analyses of genome-wide transcriptomic profiles found that those down-regulated differentially expressed genes (DEGs) upon METH exposure were remarkably enriched in the cell cycle progression. By measuring the cell cycle and the expression of cell cycle-related checkpoint proteins, we found that METH exposure significantly elevated the percentage of G0/G1 phase and decreased the levels of the proteins involved in the G1/S transition, indicating G0/G1 cell cycle arrest. Furthermore, during the early neurodevelopment stage of neurospheres, METH caused aberrant cell differentiation both in the neurons and astrocytes, and attenuated migration ability of neurospheres accompanied by increased oxidative stress and apoptosis.Conclusion: Our findings reveal that METH induces an aberrant cell cycle arrest and neuronal differentiation, impairing the coordination of migration and differentiation of neurospheres. PubDate: 2023-09-19T00:00:00Z
- Fentanyl-induced reward seeking is sex and dose dependent and is prevented
by D-cysteine ethylester Authors: Zackery T. Knauss, Caden J. Hearn, Nathan C. Hendryx, Fanan S. Aboalrob, Yazmin Mueller-Figueroa, Derek S. Damron, Stephen J. Lewis, Devin Mueller Abstract: Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology.Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors.Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females.Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD. PubDate: 2023-09-19T00:00:00Z
- Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone
drug-seeking, but not self-administration, in male rats Authors: Christina R. Merritt, Erik J. Garcia, Victoria D. Brehm, Robert G. Fox, F. Gerard Moeller, Noelle C. Anastasio, Kathryn A. Cunningham Abstract: The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The “hunger hormone” ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs. PubDate: 2023-09-19T00:00:00Z
- The relationship between anesthesia and melatonin: a review
Authors: Rui Guo, Junming Ye, Baozhen Liao, Xin Luo, Panguo Rao Abstract: Introduction: This comprehensive review delves into the intricate and multifaceted relationship between anesthesia and melatonin, aiming to provide essential insights for perioperative clinical anesthesiologists and stimulate interest in related research. Anesthesia and surgery have the potential to disrupt melatonin secretion, leading to sleep disorders, postoperative neurocognitive dysfunction and other symptoms. In comparison to previous reviews, this review provides a comprehensive summary of the various aspects linking melatonin and anesthesia, going beyond isolated perspectives. It explores the potential benefits of administering melatonin during the perioperative period, including alleviating anxiety, reducing pain, enhancing perioperative sleep quality, as well as demonstrating immunomodulatory and anti-tumor effects, potentially offering significant advantages for cancer surgery patients.Recent Findings: Anesthesia and surgery have a significant impact on melatonin secretion, the hormone crucial for maintaining circadian rhythms. These procedures disrupt the normal secretion of melatonin, leading to various adverse effects such as sleep disturbances, pain, and postoperative neurocognitive dysfunction. However, the administration of exogenous melatonin during the perioperative period has yielded promising results. It has been observed that perioperative melatonin supplementation can effectively reduce anxiety levels, improve pain management, enhance the quality of perioperative sleep, and potentially decrease the occurrence of postoperative delirium. In recent years, studies have found that melatonin has the potential to improve immune function and exhibit anti-cancer effects, further underscoring its potential advantages for patients undergoing cancer surgery.Summary: In summary, melatonin can serve as an adjuvant drug for anesthesia during the perioperative period. Its administration has demonstrated numerous positive effects, including anti-anxiety properties, sedation, analgesia, improved postoperative sleep, and the potential to reduce the incidence of postoperative delirium. Furthermore, its immune-modulating and anti-tumor effects make it particularly valuable for cancer surgery patients. However, further studies are required to determine the optimal dosage, long-term safety, and potential adverse reactions associated with melatonin administration. PubDate: 2023-09-19T00:00:00Z
- Functional consequences of a rare human serotonergic 5-HT1A receptor
variant Authors: Merav Tauber, Yair Ben-Chaim Abstract: Serotonin (5-HT) plays a central role in various brain functions via the activation of a family of receptors, most of them G protein coupled receptors (GPCRs). 5-HT1A receptor, the most abundant 5-HT receptors, was implicated in many brain dysfunctions and is a major target for drug discovery. Several genetic polymorphisms within the 5-HT1A receptor gene were identified and linked to different conditions, including anxiety and depression. Here, we used Xenopus oocytes to examine the effects of one of the functional polymorphism, Arg220Leu, on the function of the receptor. We found that the mutated receptor shows normal activation of G protein and normal 5-HT binding. On the other hand, the mutated receptor shows impaired desensitization, probably due to impairment in activation of β arrestin-dependent pathway. Furthermore, while the 5-HT1A receptor was shown to exhibit voltage dependent activation by serotonin and by buspirone, the mutated receptor was voltage-independent. Our results suggest a pronounced effect of the mutation on the function of the 5-HT1A receptor and add to our understanding of the molecular mechanism of its voltage dependence. Moreover, the findings of this study may suggest a functional explanation for the possible link between this variant and brain pathologies. PubDate: 2023-09-18T00:00:00Z
- Associations between psychotropic drugs and rsEEG connectivity and network
characteristics: a cross-sectional study in hospital-admitted psychiatric patients|Introduction|Methods|Results|Conclusion Authors: Melissa G. Zandstra, Hannah Meijs, Metten Somers, Cornelis J. Stam, Bieke de Wilde, Jan van Hecke, Peter Niemegeers, Jurjen J. Luykx, Edwin van Dellen Abstract: IntroductionResting-state EEG (rsEEG) characteristics, such as functional connectivity and network topology, are studied as potential biomarkers in psychiatric research. However, the presence of psychopharmacological treatment in study participants poses a potential confounding factor in biomarker research. To address this concern, our study aims to explore the impact of both single and multi-class psychotropic treatments on aforementioned rsEEG characteristics in a psychiatric population.MethodsRsEEG was analyzed in a real-world cross-sectional sample of 900 hospital-admitted psychiatric patients. Patients were clustered into eight psychopharmacological groups: unmedicated, single-class treatment with antipsychotics (AP), antidepressants (AD) or benzodiazepines (BDZ), and multi-class combinations of these treatments. To assess the associations between psychotropic treatments and the macroscale rsEEG characteristics mentioned above, we employed a general linear model with post-hoc tests. Additionally, Spearman’s rank correlation analyses were performed to explore potential dosage effects.ResultsCompared to unmedicated patients, single-class use of AD was associated with lower functional connectivity in the delta band, while AP was associated with lower functional connectivity in both the delta and alpha bands. Single-class use of BDZ was associated with widespread rsEEG differences, including lower functional connectivity across frequency bands and a different network topology within the beta band relative to unmedicated patients. All of the multi-class groups showed associations with functional connectivity or topology measures, but effects were most pronounced for concomitant use of all three classes of psychotropics. Differences were not only observed in comparison with unmedicated patients, but were also evident in comparisons between single-class, multi-class, and single/multi-class groups. Importantly, multi-class associations with rsEEG characteristics were found even in the absence of single-class associations, suggesting potential cumulative or interaction effects of different classes of psychotropics. Dosage correlations were only found for antipsychotics.ConclusionOur exploratory, cross-sectional study suggests small but significant associations between single and multi-class use of antidepressants, antipsychotics and benzodiazepines and macroscale rsEEG functional connectivity and network topology characteristics. These findings highlight the importance of considering the effects of specific psychotropics, as well as their interactions, when investigating rsEEG biomarkers in a medicated psychiatric population. PubDate: 2023-09-15T00:00:00Z
- Accelerated differentiation of human induced pluripotent stem cells into
regionally specific dorsal and ventral spinal neural progenitor cells for application in spinal cord therapeutics Authors: Anne Huntemer-Silveira, Dane Malone, Anna Frie, Patrick Walsh, Ann M. Parr Abstract: Spinal cord injury can attenuate both motor and sensory function with minimal potential for full recovery. Research utilizing human induced pluripotent stem cell (hiPSC) -derived spinal cell types for in vivo remodeling and neuromodulation after spinal cord injury has grown substantially in recent years. However, the majority of protocols for the differentiation of spinal neurons are lengthy, lack the appropriate dorsoventral or rostrocaudal specification, and are not typically replicated in more than one cell line. Furthermore, most researchers currently utilize hiPSC-derived motor neurons for cell transplantation after injury, with very little exploration of spinal sensory neuron transplantation. The lack of studies that utilize sensory populations may be due in part to the relative scarcity of dorsal horn differentiation protocols. Building upon our previously published work that demonstrated the rapid establishment of a primitive ectoderm population from hiPSCs, we describe here the production of a diverse population of both ventral spinal and dorsal horn progenitor cells. Our work creates a novel system allowing dorsal and ventral spinal neurons to be differentiated from the same intermediate ectoderm population, making it possible to construct the dorsal and ventral domains of the spinal cord while decreasing variability. This technology can be used in tandem with biomaterials and pharmacology to improve cell transplantation for spinal cord injury, increasing the potential for neuroregeneration. PubDate: 2023-09-15T00:00:00Z
- Benzodiazepine-induced anterograde amnesia: detrimental side effect to
novel study tool Authors: Kameron Kaplan, Holly Christian Hunsberger Abstract: Benzodiazepines (BZDs) are anxiolytic drugs that act on GABAa receptors and are used to treat anxiety disorders. However, these drugs come with the detrimental side effect of anterograde amnesia, or the inability to form new memories. In this review we discuss, behavioral paradigms, sex differences and hormonal influences affecting BZD-induced amnesia, molecular manipulations, including the knockout of GABAa receptor subunits, and regional studies utilizing lesion and microinjection techniques targeted to the hippocampus and amygdala. Additionally, the relationship between BZD use and cognitive decline related to Alzheimer’s disease is addressed, as there is a lack of consensus on whether these drugs are involved in inducing or accelerating pathological cognitive deficits. This review aims to inspire new research directions, as there is a gap in knowledge in understanding the cellular and molecular mechanisms behind BZD-induced amnesia. Understanding these mechanisms will allow for the development of alternative treatments and potentially allow BZDs to be used as a novel tool to study Alzheimer’s disease. PubDate: 2023-09-14T00:00:00Z
- Recent advances in the study of anesthesia-and analgesia-related
mechanisms of S-ketamine Authors: Jian-shun Zhou, Guan-fa Peng, Wei-dong Liang, Zhen Chen, Ying-ying Liu, Bing-yu Wang, Ming-ling Guo, Yun-ling Deng, Jun-ming Ye, Mao-lin Zhong, Li-feng Wang Abstract: Ketamine is a racemic mixture of equal amounts of R-ketamine and S-ketamine and is well known to anesthesiologists for its unique dissociative anesthetic properties. The pharmacological properties of ketamine, namely, its sympathetic excitation, mild respiratory depression, and potent analgesia, are still highly valued in its use as an anesthetic for some patients. In particular, since its advent, S-ketamine has been widely used as an anesthetic in many countries due to its increased affinity for NMDA receptors and its enhanced anesthetic and analgesic effects. However, the anesthetic and analgesic mechanisms of S-ketamine are not fully understood. In addition to antagonizing NMDA receptors, a variety of other receptors or channels may be involved, but there are no relevant mechanistic summaries in the literature. Therefore, the purpose of this paper is to review the mechanisms of action of S-ketamine on relevant receptors and systems in the body that result in its pharmacological properties, such as anesthesia and analgesia, with the aim of providing a reference for its clinical applications and research. PubDate: 2023-09-14T00:00:00Z
- A new approach to ‘on-demand’ treatment of lifelong premature
ejaculation by treatment with a combination of a 5-HT1A receptor antagonist and SSRI in rats Authors: Jocelien D. A. Olivier, Josien A. Janssen, Diana C. Esquivel-Franco, Stephen de Prêtre, Berend Olivier Abstract: Lifelong premature ejaculation (PE) in men lacks an adequate on-demand pharmacological treatment. Although selective serotonin reuptake inhibitors (SSRIs) are used for PE they only work after chronic treatment, or if used on-demand, less adequately than chronic SSRI treatment. It has been shown that the addition of a behaviorally silent 5-HT1A–receptor antagonist to an SSRI can generate acute inhibitory effects on male rat sexual behavior. Atlas987 is a selective 5-HT1A-receptor antagonist with equal potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT1A receptors in rat and human brain. To investigate whether Atlas987 together with the SSRI paroxetine, a combination called Enduro, induces acute inhibitory effects on male rat sexual behavior, we tested Enduro in Wistar rats in a dose-dependent manner. We first tested the 5-HT1A receptor antagonist Atlas987 in 8-OH-DPAT induced serotonergic behavior in rats. Second, we tested Enduro in a dose-dependent manner in male sexual behavior. Third, we tested the effective time window of Enduro’s action, and lastly, we measured the plasma levels of Atlas987 and paroxetine over an 8-h period. Results showed that Enduro acutely and dose-dependently reduced the number of ejaculations and increased the ejaculation latencies. The behavioral pattern induced reflected a specific effect on sexual behavior excluding non-specific effects like sedation or sensoric-motoric disturbances. The time-window of activity of Enduro showed that this sexual inhibitory activity was at least found in a 1–4 h’ time window after administration. Plasma levels showed that in this time frame both Atlas987 and paroxetine are present. In conclusion, in rats, Enduro is successful in acutely inhibiting sexual behavior. These results may be therapeutically attractive as “on demand” treatment for life-long premature ejaculation in men. PubDate: 2023-09-13T00:00:00Z
- Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental
Alzheimer’s disease models: a systematic review and meta-analysis of preclinical studies Authors: Fanjing Kong, Tianyu Wu, Jingyi Dai, Zhenwei Zhai, Jie Cai, Zhishan Zhu, Ying Xu, Tao Sun Abstract: Alzheimer’s disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE’s risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD. PubDate: 2023-09-13T00:00:00Z
- Neuroprotective effects of crude extracts, compounds, and isolated
molecules obtained from plants in the central nervous system injuries: a systematic review Authors: Maria Vitoria Nava Moura, Gabriel Mesquita da Conceição Bahia, Marcio Gonçalves Correa, Maíza Amanda Araujo Sarges, Thaís Alves Lobão, Erica Miranda Sanches, Karen R. H. Matos Oliveira, Anderson Manoel Herculano, Carlomagno Pacheco Bahia Abstract: The number of people with central nervous system (CNS) injuries increases worldwide and only a few therapies are used to mitigate neurological damage. Crude extracts, compounds, and isolated molecules obtained from plants have neuroprotective effects; however, their actions on the central nervous system are still not fully understood. This systematic review investigated the neuroprotective effects of crude extracts, compound, and isolated molecules obtained from plants in different CNS lesions. This PICO (Population/Problem, Intervention, Control, Outcome) systematic review included in vivo and in vitro studies that used small rodents as experimental models of CNS injuries (P) treated with crude extracts, compounds, and/or isolated molecules obtained from plants (I), compared to non-intervention conditions (C), and that showed a neuroprotective effect (O). Fourteen out of 5,521 studies were selected for qualitative analysis. Several neuroprotective effects (improvement of antioxidant activity, modulation of the inflammatory response, tissue preservation, motor and cognitive recovery) in the brain and spinal cord were reported after treatment with different doses of crude extracts (10 studies), compounds (2 studies), and isolated molecules (2 studies). Crude extracts, compounds, or isolated molecules obtained from plants showed promising neuroprotective effects against several CNS injuries in both the brain and spinal cord, regardless of gender and age, through the modulation of inflammatory activity and oxidative biochemistry, tissue preservation, and recovery of motor and cognitive activity. PubDate: 2023-09-12T00:00:00Z
- Oxidative stress in rat brain during experimental status epilepticus:
effect of antioxidants Authors: Marius Fuchs, Christian Viel, Alina Lehto, Helene Lau, Jochen Klein Abstract: Antioxidants have been proposed as a treatment for diseases of the central nervous system. However, few studies actually studied their effects in the brain. To test central actions of antioxidants, we used the lithium–pilocarpine (Li-Pilo) model of status epilepticus (SE) in the rat in which seizures are accompanied by significant oxidative stress. We used in vivo microdialysis to determine isoprostane levels during SE in real time and brain homogenates for other measures of oxidative stress. Six different antioxidants were tested in acute and preventive experiments (vitamin C, vitamin E, ebselen, resveratrol, n-tert-butyl-α-phenylnitrone and coenzyme Q10). None of the antioxidants had an effect when given acutely during SE. In contrast, when antioxidants were given for 3 days prior to seizure induction, vitamins C and E reduced isoprostane formation by 58% and 65%, respectively. Pretreatment with the other antioxidants was ineffective. In brain homogenates prepared after 90 min of seizures, SE decreased the ratio of reduced vs. oxidized glutathione (GSH/GSSG ratio) from 60.8 to 7.50 and caused a twofold increase of 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels and protein carbonyls. Pretreatment with vitamin C or vitamin E mitigated these effects and increased the GSH/GSSG ratio to 23.9 and 28.3, respectively. Again, the other antioxidants were not effective. We conclude that preventive treatment with vitamin C or vitamin E ameliorates seizure-induced oxidative damage in the brain. Several well-studied antioxidants were inactive, possibly due to limited brain permeability or a lack of chain-breaking antioxidant activity in hydrophilic compounds. PubDate: 2023-09-12T00:00:00Z
- A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death,
gliosis, and electroretinogram distortion in male rats subjected to perinatal asphyxia Authors: Manuel Rey-Funes, Juan Carlos Fernández, Rafael Peláez, Manuel Soliño, Daniela S. Contartese, Nicolás S. Ciranna, Ronan Nakamura, Aníbal Sarotto, Verónica B. Dorfman, José M. Zapico, Ana Ramos, Beatriz de Pascual-Teresa, Juan José López-Costa, Ignacio M. Larrayoz, Alfredo Martínez, César Fabián Loidl Abstract: Introduction: Perinatal asphyxia (PA) represents a major problem in perinatology and may cause visual losses, including blindness. We, and others, have shown that hypothermia prevents retinal symptoms associated to PA. In the present work, we evaluate whether a hypothermia mimetic small molecule, zr17-2, has similar effects in the context of PA.Methods: Four experimental groups were studied in male rats: Naturally born rats as controls (CTL), naturally born rats injected s.c. with 50 µL of 330 nmols/L zr17-2 (ZR), animals that were exposed to PA for 20 min at 37°C (PA), and rats that were exposed to PA and injected with zr17-2 (PA-ZR). Forty-five days after treatment, animals were subjected to electroretinography. In addition, morphological techniques (TUNEL, H&E, multiple immunofluorescence) were applied to the retinas.Results: A reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram (ERG) was detected in PA animals. Treatment with zr17-2 resulted in a significant amelioration of these parameters (p < 0.01). In PA animals, a large number of apoptotic cells was found in the GCL. This number was significantly reduced by treatment with the small molecule (p < 0.0001). In a similar way, the thickness of the inner retina and the intensity of GFAP immunoreactivity (gliosis) increased in PA retinas (p < 0.0001). These parameters were corrected by the administration of zr17-2 (p < 0.0001). Furthermore, injection of the small molecule in the absence of PA did not modify the ERG nor the morphological parameters studied, suggesting a lack of toxicity.Discussion: In conclusion, our results indicate that a single s.c. injection of zr17-2 in asphyctic neonates may provide a novel and efficacious method to prevent the visual sequelae of PA. PubDate: 2023-09-11T00:00:00Z
- A type II cannabis extract and a 1:1 blend of Δ(9)-tetrahydrocannabinol
and cannabidiol display distinct antinociceptive profiles and engage different endocannabinoid targets when administered into the subarachnoid space Authors: Besma Benredjem, Graciela Pineyro Abstract: Introduction: Cannabis extracts are being increasingly used to mitigate chronic pain. Current guidelines for their prescription rely on Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content as well as the ratio of these major cannabinoids present in the blend. Here we assessed whether these descriptors were representative of product effectiveness to produce a desired outcome such as analgesia.Methods: In this study, we used a rat model of diabetic neuropathy and assessed the reduction in mechanical allodynia following intrathecal injection of pure THC, pure CBD, a 1:1 mix of these compounds and a “balanced” chemotype II cannabis extract. Engagement of endocannabinoid targets by different treatments was investigated using CB1 (AM251) and CB2 (AM630) receptor antagonists as well as a TRPV1 channel blocker (capsazepine).Results: Antinociceptive responses induced by an equivalent amount of THC administered in its pure form, as a THC:CBD mix or as a “balanced” extract were distinct. Furthermore, the 1:1 THC:CBD mix and the balanced extract had not only different response profiles but their relative engagement of CB1, CB2 receptors and TRPV1 channels was distinct.Discussion: These findings indicate that antinociceptive responses and targets engaged by blended cannabinoids are composition-specific, and cannot be simply inferred from THC and CBD contents. This information may have implications in relation to the way medicinal cannabis products are prescribed. PubDate: 2023-09-08T00:00:00Z
- Repetitive mild traumatic brain injury-induced neurodegeneration and
inflammation is attenuated by acetyl-L-carnitine in a preclinical model Authors: Matthew I. Hiskens, Katy M. Li, Anthony G. Schneiders, Andrew S. Fenning Abstract: Repetitive mild traumatic brain injuries (rmTBI) may contribute to the development of neurodegenerative diseases through secondary injury pathways. Acetyl-L-carnitine (ALC) shows neuroprotection through anti-inflammatory effects and via regulation of neuronal synaptic plasticity by counteracting post-trauma excitotoxicity. This study aimed to investigate mechanisms implicated in the etiology of neurodegeneration in rmTBI mice treated with ALC. Adult male C57BL/6J mice were allocated to sham, rmTBI or ALC + rmTBI groups. 15 rmTBIs were administered across 23 days using a modified weight drop model. Neurological testing and spatial learning and memory assessments via the Morris Water Maze (MWM) were undertaken at 48 h and 3 months. RT-PCR analysis of the cortex and hippocampus was undertaken for MAPT, GFAP, AIF1, GRIA, CCL11, TDP43, and TNF genes. Gene expression in the cortex showed elevated mRNA levels of MAPT, TNF, and GFAP in the rmTBI group that were reduced by ALC treatment. In the hippocampus, mRNA expression was elevated for GRIA1 in the rmTBI group but not the ALC + rmTBI treatment group. ALC treatment showed protective effects against the deficits displayed in neurological testing and MWM assessment observed in the rmTBI group. While brain structures display differential vulnerability to insult as evidenced by location specific postimpact disruption of key genes, this study shows correlative mRNA neurodegeneration and functional impairment that was ameliorated by ALC treatment in several key genes. ALC may mitigate damage inflicted in the various secondary neurodegenerative cascades and contribute to functional protection following rmTBI. PubDate: 2023-09-08T00:00:00Z
- Rationale and protocol of a double-blind, randomized, placebo-controlled
trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201)|Introduction|Methods|Endpoints|Conclusions Authors: Chiara Pane, Alberto Maria Marra, Ludovica Aliberti, Mario Campanile, Federica Coscetta, Giulia Crisci, Roberta D'Assante, Angela Marsili, Giorgia Puorro, Andrea Salzano, Antonio Cittadini, Francesco Saccà Abstract: IntroductionFriedreich Ataxia (FRDA) is an autosomal recessive neurodegenerative disorder that causes gait and limb ataxia, dysarthria, and impaired vibratory sense, with cardiomyopathy being the predominant cause of death. There is no approved therapy, which results in the use of symptomatic treatments and the chronic support of physiotherapy. Dimethyl fumarate (DMF) is a fumaric acid ester used for the treatment of psoriasis and Multiple Sclerosis (MS). It induces Nrf2 in vitro and in vivo, and it increases frataxin in FRDA patient lymphoblasts, in mouse models, and in MS treated patients.MethodsThe aim of our study is to investigate if DMF can increase the expression of the FXN gene and frataxin protein and ameliorate in-vivo detectable measures of mitochondrial dysfunction in FRDA. The study is composed of a screening visit and two sequential 12-week phases: a core phase and an extension phase. During the first phase (core), patients will be randomly assigned to either the DMF or a placebo group in a 1:1 ratio. During the first week, patients will receive a total daily dose of 240 mg of DMF or placebo; from the second week of treatment, the dose will be increased to two 120 mg tablets BID for a total daily dose of 480 mg. During the second phase (extension), all patients will be treated with DMF. EudraCT number 2021-006274-23.EndpointsThe primary endpoint will be a change in FXN gene expression level after 12 weeks of treatment. Secondary endpoints will be frataxin protein level, cardiopulmonary exercise test outputs, echocardiographic measures, Nrf2 pathway and mitochondrial biogenesis gene expression, safety, clinical scales, and quality of life scales.ConclusionsThis is the first study aimed at exploring the ability of DMF, an already available treatment for MS and psoriasis, to correct the biological deficits of FRDA and potentially improve mitochondrial respiration in-vivo. PubDate: 2023-09-07T00:00:00Z
|