|
|
- An interactive dose optimizer based on population pharmacokinetic study to
guide dosing of methotrexate in Chinese patients with osteosarcoma-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Osteosarcoma is a rare tumor with an incidence of 4.4 cases per million per year in adolescent. High-dose methotrexate (HD-MTX) is the standard first-line chemotherapeutic agent for osteosarcoma. However, its efficacy can vary significantly among individuals due to wide pharmacokinetic variability. Despite this, only a few population pharmacokinetics (popPK) models based on Chinese patients with osteosarcoma have been reported. Thus, this study aimed to develop a HD-MTX popPK model and an individual model-based dose optimizer for osteosarcoma therapy. Method A total of 680 MTX serum concentrations from 57 patients with osteosarcoma were measured at the end of MTX infusion and 10 h, 24 h, 48 h, and 72 h after the start of infusion. Using the first-order conditional estimation method with NONMEM, a popPK model was estimated. Goodness-of-fit plots, visual predictive checks, and bootstrap analysis were generated to evaluate the final model. A dose optimizer tool was developed based on the validated models using R Shiny. Additionally, clinical data from 12 patients with newly diagnosed osteosarcoma were collected and used as the validation set to preliminarily verify the predictive ability of the popPK model and the dose optimizer tool. Results Body surface area (BSA) was the most significant covariate for compartment distribution. Creatinine clearance (CrCL) and co-administration of NSAIDs were introduced as predictors for central compartmental and peripheral compartmental clearance, respectively. Co-administration of NSAIDs was associated with significantly higher MTX concentrations at 72 h (p = 0.019). The dose optimizer tool exhibited a high consistency in predicting MTX AUC compared to the actual AUC (r = 0.821, p < 0.001) in the validation set. Conclusion The dose optimizer tool could be used to estimate individual PK parameters, and optimize personalized MTX therapy in particular patients. PubDate: 2024-08-24
- Continuous exposure to doxorubicin induces stem cell-like characteristics
and plasticity in MDA-MB-231 breast cancer cells identified with the SORE6 reporter-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Cancer stem cells (CSCs) account for recurrence and resistance to breast cancer drugs, rendering them a cause of mortality and therapeutic failure. In this study, we examined the effects of exposure to low concentrations of doxorubicin (Dox) on CSCs and non-CSCs from TNBC. Methods The effects of Dox were studied using the SORE6 reporter system. We examined the enrichment of the CSCs population, as well as the proliferation, and death of the reporter-positive fraction (GFP + cells) by flow cytometry. The resistant and stemness phenotypes were analyzed by viability and mammosphere formation assay, respectively. We identified differentially expressed and coregulated genes by RNA-seq analysis, and the correlation between gene expression and clinical outcome was evaluated by Kaplan-Mayer analysis using public databases. Results In MDAMB231 and Hs578t cells, we identified enriched subsets in the CSCs population after continuous exposure to low concentrations of Dox. Cells from these enriched cultures showed resistance to toxic concentrations of Dox and increased efficiency of mammosphere formation. In purified GFP + or GFP- cells, Dox increased the mammosphere-forming efficiency, promoted phenotypic switches in non-CSCs populations to a CSC-like state, reduced proliferation, and induced differential gene expression. We identified several biological processes and molecular functions that partially explain the development of doxorubicin-resistant cells and cellular plasticity. Among the genes that were regulated by Dox exposure, the expression of ITGB1, SNAI1, NOTCH4, STAT5B, RAPGEF3, LAMA2, and GNAI1 was significantly associated with poor survival, the stemness phenotype, and chemoresistance. Conclusion The generation of chemoresistant cells that have characteristics of CSCs, after exposure to low concentrations of Dox, involves the differential expression of genes that have a clinical impact. PubDate: 2024-08-24
- Pharmacokinetics of trastuzumab and its efficacy and safety in
HER2-positive cancer patients-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Trastuzumab is a potent targeted therapy drug for HER2-positive cancer patients. A comprehensive understanding of trastuzumab’s mechanism of action, pharmacokinetic (PK) parameters, and steady-state exposure in different treatment regimens and administration routes is essential for a thorough evaluation of the drug’s safety and effectiveness. Due to the distinctive pharmacokinetics, indications, and administration methods of trastuzumab, this understanding becomes crucial. Drug exposure can be assessed by measuring trastuzumab’s peak concentration, trough concentration, or area under the curve through assays like enzyme-linked immunosorbent assay (ELISA) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dose-response (D-R) and exposure-response (E-R) relationships establish the correlation between drug dosage/exposure and the therapeutic effect and safety. Additionally, various covariates such as body weight, aspartate transaminase, and albumin levels can influence drug exposure. This review provides a comprehensive overview of trastuzumab’s mechanism of action, data on steady-state concentration and PK parameters under multiple administration routes and indications, discussions on factors influencing PK parameters, and evaluations of the effectiveness and safety of E-R and D-R in diverse HER2-positive cancer patients. PubDate: 2024-08-23
- Relative bioavailability and food effect of the galectin-3 inhibitor
selvigaltin (GB1211) administered as a tablet in healthy participants (GALBA-1)-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Overexpression of galectin-3, a β-galactoside-binding lectin, is associated with fibrotic diseases and cancer. Selvigaltin is an oral galectin-3 inhibitor, previously administered as a 50 mg capsule. This study aimed to evaluate the relative bioavailability and food effect of selvigaltin as a 100 mg tablet in healthy volunteers. Methods In this single-dose, randomized, three-period, crossover study (GALBA-1; NCT05747573), participants received selvigaltin as a 100 mg tablet (under fasted and fed conditions) or as two 50 mg capsules (under fasted conditions). Primary endpoints included plasma and urine pharmacokinetic (PK) parameters. Secondary endpoints were safety and tolerability. Results Of the 13 enrolled participants, 12 completed the study. Under fasted conditions, geometric mean maximum observed plasma concentration (Cmax) and systemic exposure (AUC0─inf) of selvigaltin were 161.0% and 84.0% higher, respectively, after administration of a tablet vs. capsules. Under fed vs. fasted conditions, geometric mean Cmax of the selvigaltin tablet was 20.0% lower, whereas AUC0─inf was unaffected. Geometric mean percentage of total dose of selvigaltin excreted in urine over 0─96 h was 30.3% and 35.9% for the tablet under fasted and fed conditions, respectively, and 14.5% for the capsules. No treatment-emergent severe or serious adverse events or study discontinuations due to a treatment-emergent adverse event were reported. Conclusion The tablet formulation of selvigaltin displayed higher bioavailability vs. the capsule formulation, with minimal effect of food on PK. Selvigaltin was well-tolerated during all treatments. These findings warrant further clinical development of the tablet formulation of selvigaltin without specific food restrictions. Clinical trial registration NCT05747573; February 28, 2023. PubDate: 2024-08-21
- Combination of ionizing radiation and 2-thio-6-azauridine induces cell
death in radioresistant triple negative breast cancer cells by downregulating CD151 expression-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Background Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). Methods The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. Results The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. Conclusion These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy. PubDate: 2024-08-21
- Dexamethasone reduces cisplatin-induced hair cell damage by inducing
cisplatin resistance through metallothionein-2-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Hair cell damage is a common side effect caused by the anticancer drug cisplatin (CDDP), which reduces patient quality of life. One CDDP resistance mechanism that occurs in recurrent cancers is heavy metal detoxification by metallothionein-2 (mt2). Here, we show that in zebrafish larvae, dexamethasone (DEX) reduces CDDP-induced hair cell damage by enhancing mt2 expression. Methods Transgenic zebrafish (cldn: gfp; atoh1: rfp) that express green and red fluorescent proteins in neuromasts and hair cells, respectively, were used. The zebrafish were pretreated with DEX at 52 h post-fertilization (hpf) for 8 h, followed by CDDP treatment for 12 h. The lateral line hair cells of CDDP-treated zebrafish at 72 hpf were observed by fluorescence microscopy. Results Reporting odds ratio (ROR) analysis using an adverse event database indicated an association between a decrease in CDDP-induced ototoxicity and DEX as an antiemetic treatment for cancer chemotherapy. Pretreatment with DEX protected 72 hpf zebrafish hair cells from CDDP-induced damage. The expression of mt2 mRNA was significantly increased by the combination of 10 µM DEX with CDDP. Gene editing of mt2 reversed the protective effect of DEX against CDDP-induced damage in hair cells. Conclusion DEX protects hair cells from CDDP-induced damage through increased mt2 expression, which is a resistance mechanism for platinum-based anticancer drugs. PubDate: 2024-08-14
- Acute kidney injury in a child treated with cisplatin and amphotericin B
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Cisplatin and amphotericin B are both known to be potentially nephrotoxic. We describe acute kidney injury due to the combination of Liposomal amphotericin B and cisplatin in an adolescent with osteosarcoma. Acute kidney injury (peak creatinine 431 µmol/L) consistent with drug-induced acute tubulointerstitial nephritis was observed a few days after concomitant administration of cisplatin and amphotericin B. Kidney function nearly normalised during follow-up. The timing of the concomitant administration of amphotericin B and cisplatin led us to presume that the combination was the cause of renal failure, and we conclude that concurrent administration of cisplatin and amphotericin B should be avoided. PubDate: 2024-08-07
- Advancements in physiologically based pharmacokinetic modeling for
fedratinib: updating dose guidance in the presence of a dual inhibitor of CYP3A4 and CYP2C19-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose A physiologically based pharmacokinetic (PBPK) model for fedratinib was updated and revalidated to bridge a gap between the observed drug–drug interaction (DDI) of a single sub-efficacious dose in healthy participants and the potential DDI in patients with cancer at steady state. The study aimed to establish an appropriate dose for fedratinib in patients coadministered with dual CYP3A4 and CYP2C19 inhibitors, providing quantitative evidence to inform dosing guidance. Methods The original minimal PBPK model was developed using Simcyp® Simulator v17. The model was updated by substituting a single distribution rate (Qsac) with 2 separate rates (CLin/CLout) and transitioning to v20. Model parameter updates were further informed with 3 clinical studies, and 3 more studies served as independent validation data. The validated model was applied to simulate potential DDIs between fedratinib and a known dual inhibitor of CYP3A4 and CYP2C19 (fluconazole). Results Coadministration of fedratinib with fluconazole in patients was predicted to increase fedratinib exposure by < 2-fold in all simulated scenarios. For patients with cancer receiving the approved dose of fedratinib 400 mg once daily along with fluconazole 200 mg daily, the model predicted an approximate 50% increase in fedratinib exposure at steady state. Conclusions The updated PBPK model improved description of the observed pharmacokinetics and predicted a low risk of clinically significant DDIs between fedratinib and fluconazole. The quantitative evidence serves as a primary foundation for providing dose guidance in clinical practice for the coadministration of fedratinib with dual CYP3A4 and CYP2C19 inhibitors. PubDate: 2024-08-07
- Effect of midostaurin on the pharmacokinetics of P-gp, BCRP, and CYP2D6
substrates: assessing potential drug-drug interactions in healthy participants-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Midostaurin, approved for FLT3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is mainly metabolized by cytochrome P450 (CYP) 3A4. Midostaurin exhibited potential inhibitory effects on P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion-transporting polyprotein 1B1, and CYP2D6 in in vitro studies. This study investigated the pharmacokinetic (PK) effects of midostaurin on P-gp (digoxin), BCRP (rosuvastatin) and CYP2D6 (dextromethorphan) substrates in healthy adults. Methods This was an open-label, single-sequence, phase I clinical study evaluating the effect of single-dose midostaurin (100 mg) on the PK of digoxin and rosuvastatin (Arm 1), and dextromethorphan (Arm 2). Participants were followed up for safety 30 days after last dose. In addition, the effect of midostaurin on the PK of dextromethorphan metabolite (dextrorphan) was assessed in participants with functional CYP2D6 genes in Arm 2. Results The effect of midostaurin on digoxin was minor and resulted in total exposure (AUC) and peak plasma concentration (Cmax) that were only 20% higher. The effect on rosuvastatin was mild and led to an increase in AUCs of approximately 37-48% and of 100% in Cmax. There was no increase in the primary PK parameters (AUCs and Cmax) of dextromethorphan in the presence of midostaurin. The study treatments were very well tolerated with no occurance of severe adverse events (AEs), AEs of grade ≥ 2, or deaths. Conclusion Midostaurin showed only a minor inhibitory effect on P-gp, a mild inhibitory effect on BCRP, and no inhibitory effect on CYP2D6. Study treatments were well tolerated in healthy adults. PubDate: 2024-08-07
- Selinexor targeting XPO1 promotes PEG3 nuclear accumulation and suppresses
cholangiocarcinoma progression-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Background The role of selinexor, a targeted inhibitor of exportin 1 (XPO1), in the treatment of cholangiocarcinoma is not yet fully understood. This study conducted comprehensive in vitro and in vivo investigations to elucidate the effects of selinexor on cholangiocarcinoma, with a focus on its mechanistic relationship with the cellular localization of Paternally Expressed Gene 3 (PEG3). Methods A patient-derived xenograft (PDX) model was established using samples from a cholangiocarcinoma patient in immunodeficient mice to assess the in vivo effects of selinexor. Additionally, cholangiocarcinoma cell lines HuCC-T1 and BRE were cultured to evaluate selinexor’s impact on cell proliferation, invasion, migration, cell cycle, and apoptosis. HuCC-T1 cells were also implanted in immunodeficient mice for further investigation. Immunofluorescence and Western blotting were employed to observe the expression and localization of the PEG3 protein. Results The results demonstrated that selinexor significantly inhibited tumor growth in the cholangiocarcinoma PDX model and promoted the accumulation of PEG3 protein within the nuclei of tumor cells. In vitro experiments showed that selinexor effectively suppressed cholangiocarcinoma cell proliferation, invasion, and migration, while also impeding the cell cycle and inducing apoptosis. Notably, selinexor markedly facilitated the nuclear accumulation of PEG3 protein in cholangiocarcinoma cells. However, when PEG3 expression was knocked down, the effects of selinexor on cholangiocarcinoma were significantly reversed. Conclusion These findings suggest that selinexor inhibits the progression of cholangiocarcinoma by targeting XPO1 and promoting the nuclear accumulation of PEG3 protein, thereby hindering the cell cycle and inducing apoptosis. PubDate: 2024-08-05
- Population pharmacokinetic and exposure-toxicity analyses of
nab-paclitaxel after pegylated recombinant human granulocyte colony-stimulating factor administration in patients with metastatic breast cancer-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose This study aimed to establish a population pharmacokinetic (PK) model to evaluate the dynamic relationship between the concentrations of total and unbound paclitaxel, and the exposure-response analysis of albumin-bound paclitaxel (nab-paclitaxel) after pegylated recombinant human granulocyte colony-stimulating factor (PEG-G-CSF) administration in patients with metastatic breast cancer. Methods A total of 653 concentrations corresponding to total paclitaxel and 334 concentrations corresponding to unbound paclitaxel were analyzed in 24 subjects who randomized received a single 260 mg/m2 dose of two nab-paclitaxel formulations with a 21–35-day washout period. PEG-G-CSF was administered to all the patients in each cycle to prevent neutropenia. The exposure-response relationships were evaluated using the exposure to total, albumin-coated, and unbound paclitaxel, as well as the reduction in neutrophil count. The exposure data were analyzed using nonlinear mixed-effect modeling. A linear regression model was used to test the statistical significance of the correlation between percentage of reduction in neutrophil count and exposure. Results The PK characteristics of total paclitaxel were described using a three-compartment model with first-order elimination, and a mechanism-based model incorporating linear release of nab-paclitaxel and the saturated binding of unbound paclitaxel to plasma components was established. The release ratio of paclitaxel from nab-paclitaxel was estimated to be 4.60% and the maximum unbound fraction (2.76%) was reached at the end of the infusion. The study found that a longer duration of total paclitaxel concentration > 0.19 µmol/L was significantly correlated with a reduction in neutrophil count (r2 = 0.23, P = 0.00062). Specifically, a duration of > 8.6 h was a predictor of a decreased neutrophil count. Conclusion The decrease in neutrophils induced by nab-paclitaxel was significantly correlated with the duration above a total paclitaxel concentration of 0.19 µmol/L despite the use of PEG-G-CSF. PubDate: 2024-07-31
- Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate
genes with 4hydroxycyclophosphamide formation in children with Cancer-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose 4-hydroxycyclophosphamide (4HCY) is the principal precursor to the cytotoxic metabolite of cyclophosphamide (CY), which is often used as first-line treatment of children with cancer. There is conflicting data regarding the relationship between CY efficacy, toxicity, and pharmacokinetics with the genes encoding proteins involved in 4HCY pharmacokinetics, specifically its formation and elimination. Methods We evaluated germline pharmacogenetics in children with various malignancies receiving their first CY dose. Using linear regression, we analyzed the associations between two pharmacokinetic outcomes – how fast a child cleared CY (i.e., CY clearance) and the ratio of the 4HCY/CY exposure, specifically area under the plasma concentration-time curve (AUC), and 372 single nucleotide polymorphisms (SNP) in 14 drug-metabolizing transporters or enzymes involved in 4HCY formation or elimination. Results Age was associated with the ratio of 4HCY/CY AUC (P = 0.004); Chemotherapy regimen was associated with CY clearance (P = 0.003). No SNPs were associated with CY clearance or the ratio of 4HCY/CY AUC after controlling for a false discovery rate. Conclusion Age and chemotherapy regimen, but not germline pharmacogenomics, were associated with CY clearance or the ratio of 4HCY/CY AUC. Other methods, such as metabolomics or lipidomics, should be explored. PubDate: 2024-07-30
- Pharmacokinetics and clinical outcomes of low-dose nivolumab relative to
conventional dose in patients with advanced cancer-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Nivolumab is approved at various doses, including 3 mg/kg, 240 mg and 480 mg flat doses at various dosing intervals. The concept of low-dose immunotherapy is gaining traction in recent years. However, there is a need to better understand the pharmacokinetics and clinical outcomes at lower doses. Methods Patients were either administered 40 mg flat dose or 3 mg/kg Q2W/Q3W, depending on affordability as per prevailing hospital practice. All patients were hospitalized on day 1 and pharmacokinetic samples were collected at 0, 0.5, 1.0, 6.0, 24.0, 72.0 h and day 14 following administration of the first dose of nivolumab. Plasma nivolumab levels were measured by ELISA. Patients were followed up for response and toxicity. Results Twenty five patients were included in the study. Fourteen received nivolumab at conventional dose (3 mg/kg), while 11 patients received low-dose (40 mg flat). The geometric means of dose normalized Cmax and AUC0-t were comparable between those who received conventional dose and low-dose of nivolumab (0.28 versus 0.23 µg/mL/mg and 0.0014 versus 0.0011 d/mL respectively). Nineteen patients were evaluable for response. ORR among patients who received conventional dose was 5/11 (45.5%) whereas it was 4/9 (44.4%) in the low-dose cohort. All 14 (100%) patients in conventional dosing group and 7/11 patients (63.64%) in low-dose group had treatment emergent adverse events. Grade ≥ 3 toxicities were observed in 4/14 patients in conventional dose group and none in low-dose group. Conclusion Low-dose nivolumab leads to lower exposure in patients as compared with conventional dose, but low-dose was better tolerated, while response rates were comparable to conventional dose. PubDate: 2024-07-26
- The Gustave Roussy Immune score is a powerful biomarker for predicting
therapeutic resistance to chemotherapy in gastric cancer patients-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose It is highly important to be able to predict the therapeutic efficacy of chemotherapy on patients with unresectable advanced or recurrent gastric cancer (GC). The Gustave Roussy Immune Score (GRIm-s) is a predictor of therapeutic sensitivity to chemotherapy and immune checkpoint inhibitors (ICIs) in other cancers. The present study aimed to analyze the association of the GRIm-s with the therapeutic sensitivity of first-line chemotherapy in GC patients. Methods We included 156 patients receiving primary chemotherapy treatment for unresectable or advanced recurrent GC between January 2012 and December 2021 at our institution. We evaluated the correlation between the GRIm-s and therapeutic sensitivities to chemotherapy. The GRIm-s was assessed before the start of first-line chemotherapy. Results Among the 156 patients, 138 (88.5%) and 18 (11.5%) were classified in the low- and high-risk groups, respectively. The GRIm-s high-risk group was significantly older (p = 0.013), had more advanced unresectable cancer (p = 0.0098), and was significantly less likely to progress to second-line chemotherapy (p = 0.014). The overall survival rate (OS) (p = 0.039) and the progression free survival rate (PFS) (p = 0.017) were significantly worse in the GRIm-s high-risk group. The high GRIm-s was an independent prognostic factor for poor survival in multivariate analysis (p = 0.0094). Conclusions Focusing on the GRIm-s before first-line chemotherapy initiation for unresectable advanced or postoperative recurrent GC was useful in predicting the therapeutic resistance to chemotherapy, transition to second-line chemotherapy, and poor prognosis. PubDate: 2024-07-25
- Impact of ALDH1A1 and NQO1 gene polymorphisms on the response and toxicity
of chemotherapy in Bangladeshi breast cancer patients-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Cyclophosphamide, Epirubicin/Doxorubicin, 5-fluorouracil (CEF or CAF) chemotherapy has long been a standard first-line treatment for breast cancer. The genetic variations of enzymes that are responsible for the metabolism of these drugs have been linked to altered treatment response and toxicity. Two drug-metabolizing enzymes ALDH1A1 and NQO1 are critically involved in the pathways of CEF/CAF metabolism. This study aimed to evaluate the effect of ALDH1A1 (rs13959) and NQO1 (rs1800566) polymorphisms on treatment response and toxicities caused by adjuvant (ACT) and neoadjuvant chemotherapy (NACT) where CEF/CAF combination was used to treat Bangladeshi breast cancer patients. Methods A total of 330 patients were recruited from various hospitals, with 150 receiving neoadjuvant chemotherapy and 180 receiving adjuvant chemotherapy. To extract genomic DNA, a non-enzymatic simple salting out approach was adopted. The polymerase chain reaction-restriction fragment length polymorphism method was used to detect genetic polymorphisms. Unconditional logistic regression was used to derive odds ratios (ORs) with 95% confidence intervals (CIs) to study the association between genetic polymorphisms and clinical outcome and toxicity. Results A statistically significant association was observed between ALDH1A1 (rs13959) polymorphism and treatment response (TT vs. CC: aOR = 6.40, p = 0.007; recessive model: aOR = 6.38, p = 0.002; allele model: p = 0.032). Patients with the genotypes TT and CT + TT of the NQO1 (rs1800566) polymorphism had a significantly higher risk of toxicities such as anemia (aOR = 0.34, p = 0.006 and aOR = 0.58, p = 0.021), neutropenia (aOR = 0.42, p = 0.044 and aOR = 0.57, p = 0.027), leukopenia (aOR = 0.33, p = 0.010 and aOR = 0.46, p = 0.005), and gastrointestinal toxicity (aOR = 0.30, p = 0.02 and aOR = 0.38, p = 0.006) when compared to the wild CC genotype, while patients with the genotype CT had a significant association with gastrointestinal toxicity (aOR = 0.42, p = 0.02) and leukopenia (aOR = 0.52, p = 0.010). The TT and CT + TT genotypes of rs13959 had a significantly higher risk of anemia (aOR = 2.00, p = 0.037 and aOR = 1.68, p = 0.029). There was no significant association between rs1800566 polymorphism and treatment response. Conclusion Polymorphisms in ALDH1A1 (rs13959) and NQO1 (rs1800566) may be useful in predicting the probability of treatment response and adverse effects from CEF or CAF-based chemotherapy in breast cancer patients. PubDate: 2024-07-16
- Systematic review: genetic polymorphisms in the pharmacokinetics of
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Variations in pharmacokinetic responses to high-dose methotrexate are essential for the prognosis and management of toxicity in the treatment of pediatric acute lymphoblastic leukemia (ALL) patients. This systematic review aimed to identify and evaluate genetic polymorphisms that are significantly associated with the pharmacokinetic parameters of methotrexate during the consolidation phase of pediatric ALL treatment. Using the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, we systematically reviewed the literature from 2013 to 2023. The databases used were PubMed and Scopus. The outcomes of interest are the study design, patient characteristics, sample size, chemotherapy protocol utilized, pharmacokinetic parameters identified, and genetic polymorphisms implicated. We included 31 articles in the qualitative synthesis and found that the SLCO1B1, ABCB1, ABCC2, and MTHFR genes appear to play significant roles in MTX metabolism and clearance. Among these, variations in SLCO1B1 have the most significant and consistent impact on methotrexate clearance. These implicated variants may contribute to the precision and tailoring of HD-MTX treatment in pediatric ALL patients. PubDate: 2024-07-13
- Ferroptosis – a potential feature underlying neratinib-induced
colonic epithelial injury-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. Methods Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. Results The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. Conclusion Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity. PubDate: 2024-07-13
- A joint model of longitudinal pharmacokinetic and time-to-event data to
study exposure–response relationships: a proof-of-concept study with alectinib-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose In exposure–response analyses of oral targeted anticancer agents, longitudinal plasma trough concentrations are often aggregated into a single value even though plasma trough concentrations can vary over time due to dose adaptations, for example. The aim of this study was to compare joint models to conventional exposure–response analyses methods with the application of alectinib as proof-of-concept. Methods Joint models combine longitudinal pharmacokinetic data and progression-free survival data to infer the dependency and association between the two datatypes. The results from the best joint model and the standard and time-dependent cox proportional hazards models were compared. To normalize the data, alectinib trough concentrations were normalized using a sigmoidal transformation to transformed trough concentrations (TTC) before entering the models. Results No statistically significant exposure–response relationship was observed in the different Cox models. In contrast, the joint model with the current value of TTC in combination with the average TTC over time did show an exposure–response relationship for alectinib. A one unit increase in the average TTC corresponded to an 11% reduction in progression (HR, 0.891; 95% confidence interval, 0.805–0.988). Conclusion Joint models are able to give insights in the association structure between plasma trough concentrations and survival outcomes that would otherwise not be possible using Cox models. Therefore, joint models should be used more often in exposure–response analyses of oral targeted anticancer agents. PubDate: 2024-07-11
- Regorafenib plus FOLFIRINOX as first-line treatment for patients with
RAS-mutant metastatic colorectal cancer (FOLFIRINOX-R trial): a dose-escalation study-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose The combination of bevacizumab and FOLFIRINOX is used in patients with RAS-mutant metastatic colorectal cancer (RASm-mCRC). Regorafenib, an oral multi-tyrosine kinase inhibitor, has antiangiogenic properties, cytostatic effects and also true cytotoxic effects, unlike bevacizumab. The aim of this study was to determine the maximum tolerated dose (MTD) and the recommended phase 2 dose (RP2D) of the regorafenib-FOLFIRINOX combination in patients with RASm-mCRC. Methods The FOLFIRINOX-R trial was a phase 1/2 study where the dose-escalation part (3 + 3 design with three dose levels, DLs) was completed before its early termination. FOLFIRINOX (14-day cycle) included oxaliplatin (standard dose), folinic acid, fluorouracil and irinotecan (150 or 180 mg/m²). Regorafenib (120 or 160 mg daily) was given from day 4 to day 10 of each cycle. Dose-limiting toxicity (DLT) was studied in the first three cycles. Eligibility criteria included ECOG performance status ≤ 1 and not previously treated RASm-mCRC. Results Thirteen patients (median age: 65 years; min-max: 40–76) were enrolled. DLT could not be evaluated in one patient (DL3) due to poor observance. The median treatment duration and median follow-up were 6.2 (min-max: 2.3–10) and 13.4 (min-max: 3.8–18.0) months, respectively. Dose was modified in 12/13 (92%) patients. One grade 3 hypokalemia occurred at DL2. MTD was not reached at DL3. Grade 3 diarrhea was recorded in 7/13 patients (13 events) equally distributed in all DLs. Conclusion The RP2D for this regorafenib-FFX combination could not be determined due to a high prevalence of grade 3 diarrhea related to treatment as advised by our Independent Data Monitoring Committee. Trial registration numbers ClinicalTrials.gov: NCT03828799. PubDate: 2024-07-10
- Aclarubicin: contemporary insights into its mechanism of action, toxicity,
pharmacokinetics, and clinical standing-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Aclarubicin (aclacinomycin A) is one of the anthracycline antineoplastic antibiotics with a multifaceted mechanism of antitumor activity. As a second-generation drug, it offers several advantages compared to standard anthracycline drugs such as doxorubicin or daunorubicin, which could position it as a potential blockbuster drug in antitumor therapy. Key mechanisms of action for aclarubicin include the inhibition of both types of topoisomerases, suppression of tumor invasion processes, generation of reactive oxygen species, inhibition of chymotrypsin-like activity, influence on cisplatin degradation, and inhibition of angiogenesis. Therefore, aclarubicin appears to be an ideal candidate for antitumor therapy. However, despite initial interest in its clinical applications, only a limited number of high-quality trials have been conducted thus far. Aclarubicin has primarily been evaluated as an induction therapy in acute myeloid and lymphoblastic leukemia. Studies have indicated that aclarubicin may hold significant promise for combination therapies with other anticancer drugs, although further research is needed to confirm its potential. This paper provides an in-depth exploration of aclarubicin’s diverse mechanisms of action, its pharmacokinetics, potential toxicity, and the clinical trials in which it has been investigated. PubDate: 2024-07-04
|