A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> PHARMACY AND PHARMACOLOGY (Total: 575 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Naunyn-Schmiedeberg's Archives of Pharmacology
Journal Prestige (SJR): 0.836
Citation Impact (citeScore): 2
Number of Followers: 0  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0028-1298 - ISSN (Online) 1432-1912
Published by Springer-Verlag Homepage  [2468 journals]
  • Retraction Note: Astaxanthin ameliorates cardiomyocyte apoptosis after
           coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1
           pathway in rats

    • Free pre-print version: Loading...

      PubDate: 2024-03-01
       
  • Nrf2 knockout attenuates the astragaloside IV therapeutic effect on kidney
           fibrosis from liver cancer by regulating pSmad3C/3L pathways

    • Free pre-print version: Loading...

      Abstract: Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-β1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway. Graphical
      PubDate: 2024-03-01
       
  • Assessing the impact of direct-acting antivirals on hepatitis C
           complications: a systematic review and meta-analysis

    • Free pre-print version: Loading...

      Abstract: Direct-acting antivirals (DAA) have become the treatment of choice for hepatitis C. Nevertheless, efficacy of DAA in preventing hepatitis C complications remains uncertain. We evaluated the impact of DAA on hepatocellular carcinoma (HCC) occurrence and recurrence, all-cause mortality, liver decompensation and liver transplantation as compared to non-DAA treated hepatitis C and the association to baseline liver status. A systematic search for articles from March 1993 to March 2022 was conducted using three electronic databases. Randomized, case-control and cohort studies with comparison to non-DAA treatment and reporting at least one outcome were included. Meta-analysis and sub-group meta-analysis based on baseline liver status were performed. Of 1497 articles retrieved, 19 studies were included, comprising of 266,310 patients (56.07% male). DAA reduced HCC occurrence significantly in non-cirrhosis (RR 0.80, 95% CI 0.69–0.92) and cirrhosis (RR 0.39, 95% CI 0.24–0.64) but not in decompensated cirrhosis. DAA treatment lowered HCC recurrence (RR 0.71, 95% CI 0.55–0.92) especially in patients with baseline HCC and waiting for liver transplant. DAA also reduced all-cause mortality (RR 0.43, 95% CI 0.23–0.78) and liver decompensation (RR 0.52, 95% CI 0.33–0.83) significantly. However, DAA did not prevent liver transplantation. The study highlighted the importance of early DAA initiation in hepatitis C treatment for benefits beyond sustained virological response. DAA therapy prevented HCC particularly in non-cirrhosis and compensated cirrhosis groups indicating benefits in preventing further worsening of liver status. Starting DAA early also reduced HCC recurrence, liver decompensation, and all-cause mortality. Graphical abstract
      PubDate: 2024-03-01
       
  • Potential of oligonucleotide- and protein/peptide-based therapeutics in
           the management of toxicant/stressor-induced diseases

    • Free pre-print version: Loading...

      Abstract: Abstract Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
      PubDate: 2024-03-01
       
  • Effects of hydrogen sulfide on relaxation responses in the lower
           

    • Free pre-print version: Loading...

      Abstract: Abstract Hydrogen sulfide (H2S) is a significant physiologic inhibitory neurotransmitter. The main goal of this research was to examine the contribution of diverse potassium (K+) channels and nitric oxide (NO) in mediating the H2S effect on electrical field stimulation (EFS)-induced neurogenic contractile responses in the lower esophageal sphincter (LES). EFS-induced contractile responses of rabbit isolated LES strips were recorded using force transducers in organ baths that contain Krebs–Henseleit solutions (20 ml). Cumulative doses of NaHS, L-cysteine, PAG, and AOAA were evaluated in NO-dependent and NO-independent groups. The experiments were conducted again in the presence of K+ channel blockers. In both NO-dependent and NO-independent groups, NaHS, L-cysteine, PAG, and AOAA significantly reduced EFS-induced contractile responses. In the NO-dependent group, the effect of NaHS and L-cysteine decreased in the presence of 4-AP, and also the effect of NaHS decreased in the NO-dependent and independent group in the presence of TEA. In the NO-independent group, K+ channel blockers didn’t change L-cysteine-induced relaxations. K+ channel blockers had no impact on the effects of PAG and AOAA. In addition, NaHS significantly relaxed 80-mM KCl-induced contractions, whereas L-cysteine, PAG, and AOAA did not. In the present study, H2S decreased the amplitudes of EFS-induced contraction responses. These results suggest that Kv channels and NO significantly contribute to exogenous H2S and endogenous H2S precursor L-cysteine inhibitory effect on lower esophageal sphincter smooth muscle.
      PubDate: 2024-03-01
       
  • Molecular mechanism of lycorine in the treatment of glioblastoma based on
           network pharmacology and molecular docking

    • Free pre-print version: Loading...

      Abstract: Abstract Lycorine is a naturally active alkaloid that has been shown to have inhibitory effects on a variety of cancers. However, the underlying mechanism of lycorine in the treatment of glioblastoma (GBM) is unclear. In this study, we investigated the mechanism of lycorine in the treatment of GBM based on network pharmacology and molecular docking. Lycorine-related targets overlapped with GBM-related targets to obtain intersections that represent potential anti-GBM targets for lycorine. The protein-protein interaction (PPI) network was constructed using the STRING online database and analyzed by Cytoscape software, and 10 key target genes (AKT1, SRC, HSP90AA1, HRAS, MMP9, BCL2L1, IGF1, MAPK14, STAT1, and KDR) were obtained, which played an important role in the therapeutic effect of lycorine on GBM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that lycorine acts on GBM by multiple pathways, including inducing apoptosis and reactive oxygen species production. The molecular docking results showed that lycorine had strong binding efficiency with the 10 key genes. In addition, we found that the use of lycorine-induced apoptosis in U-87 MG glioblastoma cells. Here, the mechanism of action of lycorine against GBM was elucidated and verified by experiments, which provided evidence support for its clinical application.
      PubDate: 2024-03-01
       
  • Cytotoxicity of a new spiro-acridine derivative: modulation of cellular
           antioxidant state and induction of cell cycle arrest and apoptosis in
           HCT-116 colorectal carcinoma

    • Free pre-print version: Loading...

      PubDate: 2024-03-01
       
  • Caffeic acid phenethyl ester attenuates indomethacin-induced gastric ulcer
           in rats

    • Free pre-print version: Loading...

      Abstract: Abstract Gastric ulcer is one of the most frequent gastrointestinal ailments worldwide. Indomethacin, one of the most potent NSAIDs, suffers undesirable ulcerogenic activity. Caffeic acid phenethyl ester (CAPE) has known health benefits. The current study examined the potential of CAPE to combat indomethacin-induced gastric ulcers in rats. Animals were randomized into 5 groups: control, Indomethacin (50 mg/kg) mg/kg), Indomethacin + CAPE (5 mg/kg/day), Indomethacin + CAPE (10 mg/kg), and Indomethacin + Omeprazole (30 mg/kg). CAPE prevented the rise in ulcer index, attenuated histopathological changes and preserved gastric mucin concentration. CAPE efficiently significantly prevented accumulation of malondialdehude (MDA) and prevented exhaustion of the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Further, CAPE prevented the rise in the expression of tumor necrosis factor-α (TNF-α), cyclo-oxygenase-2 (COX-2) and nuclear factor kapp-B (NFκB). This was associated with down-regulation of Bax and up-regulation of Bcl-2 mRNA. Finally, CAPE prevented induced indomethacin-induced decrease in heat shock protein 70 (HSP70) in gastric tissues. In conclusion, CAPE possesses the ability to prevent indomethacin-induced gastric ulcer in rats. This involves, at least partially, antioxidation, anti-inflammation, anti-apoptosis and enhancement of HSP70 expression.
      PubDate: 2024-03-01
       
  • Curcumin inhibits the development of colorectal cancer via regulating the
           USP4/LAMP3 pathway

    • Free pre-print version: Loading...

      Abstract: Abstract In this study, we aimed to explore the effects of curcumin on the progression of colorectal cancer and its underlying mechanisms involved. Cell proliferation, apoptosis and invasion were determined through CCK-8 assay, colony formation assay, EdU assay, flow cytometry, and transwell invasion assay, respectively. The protein expression of Bax, MMP2, USP4 and LAMP3 was measured using western blot. Pearson correlation coefficient was used to evaluate the relationship between USP4 and LAMP3. Co-IP was also conducted to determine the interaction between USP4 and LAMP3. Xenograft tumor model was established to explore the role of curcumin in colorectal cancer in vivo. IHC was utilized to measure the expression of Bax, MMP2, USP4 and LAMP3 in tumor tissues from mice. Curcumin significantly accelerated cell apoptosis, and inhibited cell proliferation and invasion in LoVo and HCT-116 cells. LAMP3 was augmented in colorectal cancer tissues and cells, and curcumin could reduce the expression of LAMP3. Curcumin decreased LAMP3 expression to exhibit the inhibition role in the progression of colorectal cancer. USP4 interacted with LAMP3, and positively regulated LAMP3 expression in colorectal cancer cells. LAMP3 overexpression could reverse the suppressive effects of USP4 knockdown on the development of colorectal cancer. Curcumin downregulated USP4 to impeded the progression of colorectal cancer via repressing LAMP3 expression. In addition, curcumin obviously restrained tumor growth in mice through downregulating USP4 and LAMP3 expression. These data indicated that curcumin exert the anti-tumor effects on the development of colorectal cancer through modulating the USP4/LAMP3 pathway.
      PubDate: 2024-03-01
       
  • Targeted cancer treatment using folate-conjugated sponge-like ZIF-8
           nanoparticles: a review

    • Free pre-print version: Loading...

      Abstract: Abstract ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
      PubDate: 2024-03-01
       
  • Antitubercular drugs: possible role of natural products acting as
           antituberculosis medication in overcoming drug resistance and drug-induced
           hepatotoxicity

    • Free pre-print version: Loading...

      Abstract: Abstract  Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium’s genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
      PubDate: 2024-03-01
       
  • Exploring the therapeutic efficacy of crocetin in oncology: an
           evidence-based review

    • Free pre-print version: Loading...

      Abstract: Abstract With cancer being a leading cause of death globally, there is an urgent need to improve therapeutic strategies and identify effective chemotherapeutics. This study aims to highlight the potential of crocetin, a natural product derived from certain plants, as an anticancer agent. It was  conducted an extensive review of the existing literature to gather and analyze the most recent data on the chemical properties of crocetin and its observed effects in various in vitro and in vivo studies. The study  particularly focused on studies that examined crocetin’s impact on cell cycle dynamics, apoptosis, caspases and antioxidant enzyme levels, tumor angiogenesis, inflammation, and overall tumor growth. Crocetin exhibited diverse anti-tumorigenic activities including inhibition of tumor cell proliferation, apoptosis induction, angiogenesis suppression, and potentiation of chemotherapy. Multiple cellular and molecular pathways such as the PI3K/Akt, MAPK and NF-κB were modulated by it. Crocetin demonstrates promising anti-cancer properties and offers potential as an adjunctive or alternative therapy in oncology. More large-scale, rigorously designed clinical trials are needed to establish therapeutic protocols and ascertain the comprehensive benefits and safety profile of crocetin in diverse cancer types.
      PubDate: 2024-03-01
       
  • Antiproliferative, antimigratory, and apoptotic effects of diffractaic and
           vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer

    • Free pre-print version: Loading...

      Abstract: Abstract Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 μg/ml and 66.53 μg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.
      PubDate: 2024-03-01
       
  • Costunolide attenuates LPS-induced inflammation and lung injury through
           inhibiting IKK/NF-κB signaling

    • Free pre-print version: Loading...

      Abstract: Abstract Inflammation is an important pathological process of many acute and chronic diseases, such as sepsis, arthritis, and cancer. Many factors can lead to an inflammatory state of the body, among which bacterial infection plays an important role. Bacterial infection often leads to sepsis, acute lung injury (ALI), or its more serious form of acute respiratory distress syndrome, which are the main fatal diseases in intensive care units. Costunolide has been reported to possess excellent anti-inflammatory activity; however, whether it can affect inflammation induced by gram-negative bacterial is still unclear. Lipopolysaccharide (LPS) stimulated mouse peritoneal macrophages (MPMs) to release proinflammatory cytokines was used as the cell model. The mouse model of sepsis and ALI was built through injecting intravenously and intratracheally of LPS. In the present study, costunolide inhibited LPS-induced inflammatory response through IKK/NF-κB signaling pathway in macrophages. In vivo, costunolide attenuated LPS-induced septic death in mice. Meanwhile, costunolide treatment alleviated LPS-induced lung injury and inflammation via inhibiting the infiltration of inflammatory cells and the expression of inflammatory cytokines. Taken together, these results demonstrated that costunolide could attenuate gram-negative bacterial induced inflammation and diseases and might be a potential candidate for the treatment of inflammatory diseases.
      PubDate: 2024-03-01
       
  • Nanosynthesis, phycochemical constituents, and pharmacological properties
           of cyanobacterium Oscillatoria sp.

    • Free pre-print version: Loading...

      Abstract: Abstract The Oscillatoria sp., a blue-green alga or cyanobacterium, consists of about 305 species distributed globally. Cyanobacteria are prokaryotes possessing several secondary metabolites that have industrial and biomedical applications. Particularly, the published reviews on Oscillatoria sp. have not recorded any pharmacology, or possible details, while the detailed chemical structures of the alga are reported in the literature. Hence, this study considers pertinent pharmacological activities of the plethora of bioactive components of Oscillatoria sp. Furthermore, the metallic nanoparticles produced with Oscillatoria sp. were documented for plausible antibacterial, antifungal, antioxidant, anticancer, and cytotoxic effects against several cultured human cell lines. The antimicrobial activities of solvent extracts of Oscillatoria sp. and the biotic activities of its derivatives, pyridine, acridine, fatty acids, and triazine were structurally described in detail. To understand the connotations with research gaps and provide some pertinent prospective suggestions for further research on cyanobacteria as potent sources of pharmaceutical utilities, attempts were documented. The compounds of Oscillatoria sp. are a potent source of secondary metabolites that inhibit the cancer cell lines, in vitro. It could be expected that by holistic exploitation, the natural Oscillatoria products, as the source of chemical varieties and comparatively more potent inhibitors, would be explored against pharmacological activities with the integument of SARs.
      PubDate: 2024-03-01
       
  • The effect of intravenous lipid emulsion (ILE) on the
           pharmacokinetic/toxicokinetic dispositions of ivermectin and carprofen in
           rabbits

    • Free pre-print version: Loading...

      Abstract: Abstract Intravenous lipid emulsion (ILE) has been widely used as an effective antidote in both veterinary and human medicine for the treatment of acute intoxications caused by drugs and pesticides with high lipid solubility. This study was conducted to investigate the effect of ILE co-administration on the kinetic dispositions of ivermectin (IVM) and carprofen (CRP) following intravenous bolus administration at subtoxic doses in rabbits. Twenty-four male New Zealand rabbits weighing 2.78 ± 0.2 kg were used in this study. Rabbits were divided into four groups (Group 1: IVM and Group 2: IVM + ILE or Group 3: CRP and Group 4: CRP + ILE), each group consisting of 6 animals. In the IVM study, Group 1 received IVM (0.6 mg/kg) alone while Group 2 received IVM (0.6 mg/kg) and ILE (2.5 ml/kg). In the CRP study, Group 3 received CRP (12 mg/kg) alone while Group 4 received CRP (12 mg/kg) and ILE (2.5 ml/kg). In both drug groups, ILE was administered 3 times as an i.v. bolus at the 10th min and repeated 4th and 8th h after the drug administration. Blood samples were collected from the auricular vein at various times after drug administration. The drug concentrations in plasma samples were determined by high-pressure liquid chromatography. Kinetic parameters were calculated using a non-compartmental model for both CRP and IVM. The C0 and area under the concentration–time curve from zero up to ∞ (AUC0–∞) values were significantly greater with ILE co-administration (2136 ng/ml and 360.84 ng.d/ml) compared to the IVM alone (1340.63 ng/ml and 206 ng.d/ml), respectively. Moreover, the volume of distribution (Vdss) and clearance (Cl) of IVM were reduced by approximately 42% and 46% with ILE co-administration compared to IVM alone resulting in a reduction of the distribution and slower elimination, respectively. Similar differences in C0, and Vdss values were also observed in CRP with ILE co-administration compared to CRP alone. ILE co-administration changed significantly the kinetic profile of both IVM and CRP in rabbits, supporting the lipid sink theory in which highly lipid-soluble compounds are absorbed into the lipid phase of plasma from peripheral organs such as the heart and brain affected by the acute toxicity of the compounds.
      PubDate: 2024-03-01
       
  • Pelargonidin alleviates acrolein-induced inflammation in human umbilical
           vein endothelial cells by reducing COX-2 expression through the NF-κB
           pathway

    • Free pre-print version: Loading...

      Abstract: Abstract Acrolein, a common environmental pollutant, is linked to the development of cardiovascular inflammatory diseases. Pelargonidin is a natural compound with anti-inflammation activity. In this study, we aimed to explore the effects of pelargonidin on inflammation induced by acrolein in human umbilical vein endothelial cells (HUVECs). MTT assay was utilized for assessing cell viability in HUVECs. LDH release in HUVECs was measured using the LDH kit. Western blot was used to detect the protein expression of p-p65, p65 and COX-2. Inflammation was evaluated through determining the levels of PGE2, IL-1β, IL-6, IL-8 and TNF-α in HUVECs after treatment. COX-2 mRNA expression and COX-2 content were examined using RT-qPCR and a human COX-2 ELISA kit, respectively. Acrolein treatment at 50 μM resulted in a 45% decrease in the viability and an increase in LDH release (2.2-fold) in HUVECs. Pelargonidin at 5, 10, 20, and 40 μM alleviated acrolein-caused inhibitory effect on cell viability (increased to 1.3-, 1.5-, 1.8-, and 1.9-fold, respectively, compared to acrolein treatment group) and promoting effect on LDH release (decreased to 82%, 75%, 62%, and 58%, respectively, compared to acrolein treatment group) in HUVECs. Moreover, pelargonidin or pyrrolidine dithiocarbamate (PDTC; an NF-κB pathway inhibitor) inhibited acrolein-induced activation of the NF-κB pathway. Acrolein elevated the levels of PGE2, IL-1β, IL-6, IL-8 and TNF-α (from 40.2, 27.3, 67.2, 29.0, 24.8 pg/mL in control group to 224.0, 167.3, 618.3, 104.6, and 275.1 pg/mL in acrolein treatment group, respectively), which were retarded after pelargonidin (decreased to 134.8, 82.3, 246.2, 70.2, and 120.8 pg/mL in acrolein + pelargonidin treatment group) or PDTC (decreased to 107.9, 80.1, 214.6, 64.0, and 96.6 pg/mL in acrolein + PDTC treatment group) treatment in HUVECs. Pelargonidin inactivated the NF-κB pathway to reduce acrolein-induced COX-2 expression. Furthermore, pelargonidin relieved acrolein-triggered inflammation through decreasing COX-2 expression by inactivating the NF-κB pathway in HUVECs. In conclusion, pelargonidin could protect against acrolein-triggered inflammation in HUVECs through attenuating COX-2 expression by inactivating the NF-κB pathway.
      PubDate: 2024-03-01
       
  • How do German pharmacologists publish in the non-peer-reviewed science
           magazine Biospektrum'

    • Free pre-print version: Loading...

      Abstract: Abstract Publications in peer-reviewed journals are the most important currency in science. But what about publications in non-peer-reviewed magazines' The objective of this study was to analyze the publications of scientists, with a focus on pharmacologists, in the non-peer-reviewed German science magazine Biospektrum from 1999 to 2021. Biospektrum is edited by five scientific societies in Germany including the Society for Experimental and Clinical Society Pharmacology and Toxicology (DGPT) and provides opportunities to researchers to showcase their research to a broad audience. We analyzed 3197 authors of 1326 articles. Compared to the fields of biochemistry, microbiology, and genetics, pharmacology was largely underrepresented. Just three institutions in Germany contributed most papers to Biospektrum. Researchers with a doctoral degree were the largest author group, followed by researchers with a habilitation degree. Among all major fields, women were underrepresented as authors, particularly as senior authors. The Covid pandemic leads to a drop of publications of female first authors but not last authors. Compared to publications in the peer-reviewed journal Naunyn–Schmiedeberg’s Archives of Pharmacology (Zehetbauer et al., Naunyn-Schmiedebergs Arch Pharmacol 395:39–50 (2022)), female pharmacologists were underrepresented in the Biospektrum. Thus, German pharmacologists as a group do not value investing in “social impact” gained by publications in Biospektrum, and this attitude is even more prominent among female pharmacologists. Investing less in “social impact” by female pharmacologists may result in reduced visibility on the academic job market and may contribute to reduced opportunities to achieve high academic positions.
      PubDate: 2024-03-01
       
  • Agomelatine improves memory and learning impairments in a rat model of
           LPS-induced neurotoxicity by modulating the ERK/SorLA/BDNF/TrkB pathway

    • Free pre-print version: Loading...

      Abstract: Abstract The mutual interplay between neuroinflammation, synaptic plasticity, and autophagy has piqued researchers’ interest, particularly when it comes to linking their impact and relationship to cognitive deficits. Being able to reduce inflammation and apoptosis, melatonin has shown to have positive neuroprotective effects; that is why we thought to check the possible role of agomelatine (AGO) as a promising candidate that could have a positive impact on cognitive deficits. In the current study, AGO (40 mg/kg/day, p.o., 7 days) successfully ameliorated the cognitive and learning disabilities caused by lipopolysaccharide (LPS) in rats (250 μg/kg/day, i.p., 7 days). This positive impact was supported by improved histopathological findings and improved spatial memory as assessed using Morris water maze. AGO showed a strong ability to control BACE1 activity and to rein in the hippocampal amyloid beta (Aβ) deposition. Also, it improved neuronal survival, neuroplasticity, and neurogenesis by boosting BDNF levels and promoting its advantageous effects and by reinforcing the pTrkB expression. In addition, it upregulated the pre- and postsynaptic neuroplasticity biomarkers resembled in synapsin I, synaptophysin, and PSD-95. Furthermore, AGO showed a modulatory action on Sortilin-related receptor with A-type repeats (SorLA) pathway and adjusted autophagy. It is noteworthy that all of these actions were abolished by administering PD98059 a MEK/ERK pathway inhibitor (0.3 mg/kg/day, i.p., 7 days). In conclusion, AGO administration significantly improves memory and learning disabilities associated with LPS administration by modulating the ERK/SorLA/BDNF/TrkB signaling pathway parallel to its capacity to adjust the autophagic process.
      PubDate: 2024-03-01
       
  • Retraction Note: Combination therapy for cerebral ischemia: do
           progesterone and noscapine provide better neuroprotection than either
           alone in the treatment'

    • Free pre-print version: Loading...

      PubDate: 2024-02-06
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.239.9.151
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> PHARMACY AND PHARMACOLOGY (Total: 575 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.239.9.151
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-