|
|
- Osteogenic effect of an adiponectin-derived short peptide that rebalances
bone remodeling: a potential disease-modifying approach for postmenopausal osteoporosis therapy-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Adiponectin, an adipokine, regulates metabolic processes, including glucose flux, lipid breakdown, and insulin response, by activating adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). We have previously shown that globular adiponectin (gAd), an endogenous form of adiponectin, has osteoanabolic and anti-catabolic effects in rodent models of postmenopausal osteopenia. Moreover, we reported the identification of a 13-mer peptide (ADP-1) from the collagen domain of adiponectin, which exhibited significant adiponectin-mimetic properties. Since the clinical development of gAd is constrained by its large size, here, we investigated the osteogenic property of ADP-1. ADP-1 induced osteoblast differentiation more potently than gAd. ADP-1 elicited osteoblast differentiation through two downstream pathways that involved the participation of adiponectin receptors. Firstly, it enhanced mitochondrial biogenesis and OxPhos, leading to osteoblast differentiation. Secondly, it activated the Akt-glycogen synthase kinase 3β-Wnt pathway, thereby increasing osteoblast differentiation. Additionally, ADP-1 suppressed the production of receptor–activator of nuclear kappa B ligand from osteoblasts, enabling it to act as a dual-action molecule (suppressing osteoclast function besides promoting osteoblast function). In osteopenic ovariectomized rats, ADP-1 increased bone mass and strength and improved trabecular integrity by stimulating bone formation and inhibiting bone resorption. Furthermore, by increasing ATP-producing intermediates within the tricarboxylic acid cycle in bones, ADP-1 likely fueled osteoblast function. Given its dual-action mechanism and high potency, ADP-1 offers a unique opportunity to address the unmet clinical need to reset the aberrant bone remodeling in osteoporosis to normalcy, potentially offering a disease-modifying impact. PubDate: 2024-07-29
- E3 ubiquitin ligase RNF180 mediates the ALKBH5/SMARCA5 axis to promote
colon inflammation and Th17/Treg imbalance in ulcerative colitis mice-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract SMARCA5, a protein in the SWI/SNF family, has been previously implicated in the development of ulcerative colitis (UC) through methylation. However, the specific molecular mechanisms by which SMARCA5 contributes to colonic inflammation and the imbalance between Th17 and Treg cells remain unclear. This study was designed to explore these molecular mechanisms. A UC mouse model was established using dextran sulfate sodium induction, followed by measurements of mouse weight, disease activity index (DAI) score, colon length, pathological changes in the colon, and FITC-dextran concentration. The levels of IL-17a, IFN-γ, IL-6, TNF-α, TGF-β, and IL-10 were measured, along with the protein expression of ZO-1 and Occludin. Flow cytometry was used to assess the presence of IL-17 + CD4 + (Th17 +) cells and FOXP3 + CD25 + CD4 + (Treg +) cells in the spleen and mesenteric lymph nodes of UC mice. We observed that SMARCA5 and RNF180 were increased, while ALKBH5 was downregulated in UC mouse colon tissue. SMARCA5 or RNF180 knockdown or ALKBH5 overexpression ameliorated the colon inflammation and Th17/Treg cell imbalance in UC mice, shown by increased body weight, colon length, FOXP3 + CD25 + CD4 + T cells, and the levels of ZO-1, Occludin, TGF-β, IL-10, and FOXP3. It decreased DAI scores, IL-17 + CD4 + T cells, and levels of IL-17a, IFN-γ, IL-6, TNF-α, and ROR-γt. ALKBH5 inhibited SMARCA5 expression via m6A modification, while RNF180 reduced ALKBH5 expression via ubiquitination. Our findings indicate that RNF180 aggravated the colon inflammation and Th17/Treg cell imbalance in UC mice by regulating the ALKBH5/SMARCA5 axis. PubDate: 2024-07-27
- Antitumor activity of Polygonatum sibiricum polysaccharides
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Cancer is a global public health problem. Natural polysaccharides have been shown to enhance the effectiveness of cancer treatments. Polygonatum sibiricum (PS) has been used for millennia to treat diverse diseases. PS comprises numerous active constituents, including saponins, peptides, volatile oils, polysaccharides, and lectins. Many studies have highlighted the crucial role of polysaccharides in PS. Modern studies have shown that Polygonatum sibiricum polysaccharide (PSP) exhibits diverse pharmacological activities, including immunomodulatory, antitumor, antioxidant, and anti-aging effects. However, further study of the antitumor mechanisms is difficult because the activities of PSP are closely associated with its complex structural features and the different molecular weights of its components. Therefore, this review focuses on the research background and the extraction and purification of PSP. Studies related to the mechanism of the antitumor effects of PSP constituents of different molecular weights are also summarized, and perspectives on PSP research are presented. PubDate: 2024-07-26
- Pentacyclic triterpenes, potential novel therapeutic approaches for
cardiovascular diseases-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs. PubDate: 2024-07-24
- C-phycocyanin reinforces autophagy to block pulmonary fibrogenesis by
inhibiting lncIAPF biogenesis-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Pulmonary fibrosis is a chronic and irreversible progressive lung disease caused by various factors, such as age and environmental pollution. With countries stepping into an aging society and the seriousness of environmental pollution caused by global industrialization, the incidence of pulmonary fibrosis is annually increasing. However, no effective drug is available for pulmonary fibrosis treatment. C-phycocyanin (C-PC), extracted from blue-green algae, has good water solubility and antioxidation. This study elucidated that C-PC reinforces autophagy to block pulmonary fibrogenesis by inhibiting long noncoding RNA (lncRNA) biogenesis in vivo and in vitro. Cleavage under targets and release using nuclease (CUT & RUN)-PCR, co-immunoprecipitation (Co-IP), and nuclear–cytoplasmic separation experiments clarified that C-PC blocked the nuclear translocation of activating transcription factor 3 (ATF3) to prevent the binding between ATF3 and transcription factor Smad3, thereby hindering lncIAPF transcription. Human antigen R (HuR) truncation experiment and RNA binding protein immunoprecipitation (RIP) were then performed to identify the binding domain with lncIAPF in the 244–322 aa of HuR. lncIAPF exerted its profibrogenic function through the binding protein HuR, a negative regulator of autophagy. In summary, C-PC promoted autophagy via down-regulating the lncIAPF–HuR-mediated signal pathway to alleviate pulmonary fibrosis, showing its potential as a drug for treating pulmonary fibrosis. Exploring how C-PC interacts with biological molecules will help us understand the mechanism of this drug and provide valuable target genes to design new drugs. PubDate: 2024-07-22
- Dual roles of myeloid-derived suppressor cells in various diseases: a
review-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches. PubDate: 2024-07-15
- Implications of inflammatory cell death-PANoptosis in health and disease
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body’s balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of “PANoptosis” has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer. PubDate: 2024-07-10
- Dihydroartemisinin inhibits follicular helper T and B cells: implications
for systemic lupus erythematosus treatment-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton’s tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE. PubDate: 2024-07-08
- Correction: Antibody drug conjugates as targeted cancer therapy: past
development, present challenges and future opportunities-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2024-06-26
- Challenges and opportunities of developing small-molecule therapies for
age-related macular degeneration-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Age-related macular degeneration (AMD) is the leading cause of vision loss in senior adults. The disease can be categorized into two types: wet AMD and dry AMD. Wet AMD, also known as exudative or neovascular AMD, is less common but more severe than dry AMD and is responsible for 90% of the visual impairment caused by AMD and affects 20 million people worldwide. Current treatment options mainly involve biologics that inhibit the vascular endothelial growth factor or complement pathways. However, these treatments have limitations such as high cost, injection-related risks, and limited efficacy. Therefore, new therapeutic targets and strategies have been explored to improve the outcomes of patients with AMD. A promising approach is the use of small-molecule drugs that modulate different factors involved in AMD pathogenesis, such as tyrosine kinases and integrins. Small-molecule drugs offer advantages, such as oral administration, low cost, good penetration, and increased specificity for the treatment of wet and dry AMD. This review summarizes the current status and prospects of small-molecule drugs for the treatment of wet AMD. These advances are expected to support the development of effective and targeted treatments for patients with AMD. PubDate: 2024-06-20
- Interplay between YAP/TAZ and metabolic dysfunction-associated steatotic
liver disease progression-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology. PubDate: 2024-06-14
- Antibacterial properties of natural products from marine fungi reported
between 2012 and 2023: a review-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The oceans are rich in diverse microorganisms, animals, and plants. This vast biological complexity is a major source of unique secondary metabolites. In particular, marine fungi are a promising source of compounds with unique structures and potent antibacterial properties. Over the last decade, substantial progress has been made to identify these valuable antibacterial agents. This review summarizes the chemical structures and antibacterial activities of 223 compounds identified between 2012 and 2023. These compounds, effective against various bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus, exhibit strong potential as antibacterial therapeutics. The review also highlights the relevant challenges in transitioning from drug discovery to product commercialization. Emerging technologies such as metagenomics and synthetic biology are proposed as viable solutions. This paper sets the stage for further research on antibacterial compounds derived from marine fungi and advocates a multidisciplinary approach to combat drug-resistant bacteria. PubDate: 2024-06-08
- Exploring molecular mechanisms, therapeutic strategies, and clinical
manifestations of Huntington’s disease-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Huntington’s disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments. PubDate: 2024-05-19
- Phytochemical and pharmacological properties of the genus Tamarix: a
comprehensive review-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The genus Tamarix in the Tamaricaceae family consists of more than 100 species of halophyte plants worldwide that are mainly used to improve saline-alkali land and for coastal windbreaks, sand fixation, and afforestation in arid areas. A considerable number of species in this genus are also used as traditional medicines to treat various human diseases, especially in Asian and African countries. This review presents a comprehensive summary of 655 naturally occurring compounds derived from the genus Tamarix, categorized into flavonoids (18.0%), phenols (13.9%), tannins (9.3%), terpenoids (10.5%), essential oils (31.0%), and others (17.3%). The investigation revealed that the crude extracts and phytochemicals of this genus exhibited significant therapeutic potential, including anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, antibacterial, and antifungal activities. Six species of Tamarix have anticancer effects by causing cancer cell death, inducing autophagy, and stopping cell division. Seven species from the same genus have the potential for treating diabetes by inhibiting α-glycosidase activity, suppressing human islet amyloid polypeptide, regulating blood glucose levels, and modulating autophagy or inflammation. The focus on antibacterial and antidiabetic effects is due to the presence of volatile oil and flavonoid components. Extensive research has been conducted on the biological activity of 30 constituents, including 15 flavonoids, 5 phenols, 3 terpenoids, 1 tannin, and 6 others. Therefore, future research should thoroughly study the mechanisms of action of these and similar compounds. This is the most comprehensive review of the phytochemistry and pharmacological properties of Tamarix species, with a critical assessment of the current state of knowledge. PubDate: 2024-05-15
- Potential of natural products in inflammation: biological activities,
structure–activity relationships, and mechanistic targets-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure–activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products. PubDate: 2024-05-13
- Continuous TNF-α exposure in mammary epithelial cells promotes cancer
phenotype acquisition via EGFR/TNFR2 activation-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME. PubDate: 2024-05-11
- PBPK modeling to predict the pharmacokinetics of venlafaxine and its
active metabolite in different CYP2D6 genotypes and drug–drug interactions with clarithromycin and paroxetine-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Venlafaxine, a serotonin-norepinephrine reuptake inhibitor (SNRI), is indicated for the treatment of major depressive disorder, social anxiety disorder, generalized anxiety disorder, and panic disorder. Venlafaxine is metabolized to the active metabolite desvenlafaxine mainly by CYP2D6. Genetic polymorphism of CYP2D6 and coadministration with other medications can significantly affect the pharmacokinetics and/or pharmacodynamics of venlafaxine and its active metabolite. This study aimed to establish the PBPK models of venlafaxine and its active metabolite related to CYP2D6 genetic polymorphism and to predict drug–drug interactions (DDIs) with clarithromycin and paroxetine in different CYP2D6 genotypes. Clinical pharmacogenomic data for venlafaxine and desvenlafaxine were collected to build the PBPK model. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) characteristics of respective compounds were obtained from previously reported data, predicted by the PK-Sim® software, or optimized to capture the plasma concentration–time profiles. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and plasma concentration–time profiles to the observed data. Predicted plasma concentration–time profiles of venlafaxine and its active metabolite were visually similar to the observed profiles and all predicted AUC and Cmax values for respective compounds were included in the twofold error range of observed values in non-genotyped populations and different CYP2D6 genotypes. When clarithromycin or clarithromycin plus paroxetine was concomitantly administered, predicted plasma concentration–time profiles of venlafaxine properly captured the observed profiles in two different CYP2D6 genotypes and all predicted DDI ratios for AUC and Cmax were included within the acceptance range. Consequently, the present model successfully captured the pharmacokinetic alterations of venlafaxine and its active metabolite according to CYP2D6 genetic polymorphism as well as the DDIs between venlafaxine and two CYP inhibitors. The present model can be used to predict the pharmacokinetics of venlafaxine and its active metabolite considering different races, ages, coadministered drugs, and CYP2D6 activity of individuals and it can contribute to individualized pharmacotherapy of venlafaxine. PubDate: 2024-04-25
- Combination therapy involving HSP90 inhibitors for combating cancer: an
overview of clinical and preclinical progress-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer. PubDate: 2024-04-17
- Advances in sarcopenia: mechanisms, therapeutic targets, and intervention
strategies-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors. PubDate: 2024-04-09
- Potential biological functions and future perspectives of sialylated milk
oligosaccharides-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Sialyllactoses (SLs) primarily include sialylated human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). First, the safety assessment of 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL) revealed low toxicity in various animal models and human participants. SLs constitute a unique milk component, highlighting the essential nutrients and bioactive components crucial for infant development, along with numerous associated health benefits for various diseases. This review explores the safety, biosynthesis, and potential biological effects of SLs, with a specific focus on their influence across various physiological systems, including the gastrointestinal system, immune disorders, rare genetic disorders (such as GNE myopathy), cancers, neurological disorders, cardiovascular diseases, diverse cancers, and viral infections, thus indicating their therapeutic potential. PubDate: 2024-04-01
|