|
|
- Prophylactic (R,S)-Ketamine Is Effective Against Stress-Induced Behaviors
in Adolescent but Not Aged Mice Authors: Mastrodonato A; Pavlova I, Kee N, et al. Abstract: AbstractBackground(R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations.MethodsHere, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor. Following CFC, we assessed behavioral despair, avoidance, perseverative behavior, locomotion, and contextual fear discrimination. To assess whether the prophylactic effect could persist into adulthood, adolescent mice were injected with saline or varying doses of (R,S)-ketamine and administered a 3-shock CFC as a stressor 1 month later. Mice were then re-exposed to the aversive context 5 days later and administered behavioral tests as aforementioned. Brains were also processed to quantify Cyclooxygenase 2 expression as a proxy for inflammation to determine whether the prophylactic effects of (R,S)-ketamine were partially due to changes in brain inflammation.ResultsOur data indicate that (R,S)-ketamine is prophylactic at sex-specific doses in adolescent but not aged mice. (R,S)-ketamine attenuated learned fear and perseverative behavior in females, reduced behavioral despair in males, and facilitated contextual fear discrimination in both sexes. (R,S)-ketamine reduced Cyclooxygenase 2 expression specifically in ventral Cornu Ammonis region 3 of male mice.ConclusionsThese findings demonstrate that prophylactic (R,S)-ketamine efficacy is sex, dose, and age dependent and will inform future studies investigating (R,S)-ketamine efficacy across the lifespan. PubDate: Tue, 01 Mar 2022 00:00:00 GMT
- High S100B Levels Predict Antidepressant Response in Patients With Major
Depression Even When Considering Inflammatory and Metabolic Markers Authors: Navinés R; Oriolo , Horrillo I, et al. Abstract: AbstractBackgroundThe relationship between antidepressant response and glial, inflammatory, and metabolic markers is poorly understood in depression. This study assessed the ability of biological markers to predict antidepressant response in major depressive disorder (MDD).MethodsWe included 31 MDD outpatients treated with escitalopram or sertraline for 8 consecutive weeks. The Montgomery-Åsberg Depression Rating Scale (MADRS) was administered at baseline and at week 4 and 8 of treatment. Concomitantly, blood samples were collected for the determination of serum S100B, C-reactive protein (CRP), and high-density lipoprotein cholesterol (HDL)-C levels. Treatment response was defined as ≥50% improvement in the MADRS score from baseline to either week 4 or 8. Variables associated with treatment response were included in a linear regression model as predictors of treatment response.ResultsTwenty-seven patients (87%) completed 8 weeks of treatment; 74% and 63% were responders at week 4 and 8, respectively. High S100B and low HDL-C levels at baseline were associated with better treatment response at both time points. Low CRP levels were correlated with better response at week 4. Multivariate analysis showed that high baseline S100B levels and low baseline HDL-C levels were good predictors of treatment response at week 4 (R2 = 0.457, P = .001), while S100B was at week 8 (R2 = 0.239, P = .011). Importantly, baseline S100B and HDL-C levels were not associated with depression severity and did not change over time with clinical improvement.ConclusionsSerum S100B levels appear to be a useful biomarker of antidepressant response in MDD even when considering inflammatory and metabolic markers. PubDate: Thu, 17 Feb 2022 00:00:00 GMT
- Sex Differences in Responses to Antidepressant Augmentations in
Treatment-Resistant Depression Authors: Moderie C; Nuñez N, Fielding A, et al. Abstract: AbstractBackgroundWomen are nearly twice as likely as men to suffer from major depressive disorder. Yet, there is a dearth of studies comparing the clinical outcomes of women and men with treatment-resistant depression (TRD) treated with similar augmentation strategies. We aimed to evaluate the effects of the augmentation strategies in women and men at the McGill University Health Center.MethodsWe reviewed health records of 76 patients (42 women, 34 men) with TRD, treated with augmentation strategies including antidepressants (AD) with mood stabilizers (AD+MS), antipsychotics (AD+AP), or in combination (AD+AP+MS). Clinical outcomes were determined by comparing changes on the 17-item Hamilton Depression Rating Scale (HAMD-17), Montgomery-Åsberg Depression Rating Scale (MADRS), Quick Inventory of Depressive Symptomatology (QIDS-C16), and Clinical Global Impression rating scale (CGI-S) at the beginning and after 3 months of an unchanged treatment. Changes in individual items of the HAMD-17 were also compared between the groups.ResultsWomen and men improved from beginning to 3 months on all scales (P < .001, η p2 ≥ 0.68). There was also a significant sex × time interaction for all scales (P < .05, η p2 ≥ 0.06), reflecting a greater improvement in women compared with men. Specifically, women exhibited greater improvement in early (P = .03, η p2 = 0.08) and middle-of-the-night insomnia (P = .01, η p2 = 0.09) as well as psychomotor retardation (P < .001 η p2 = 0.16) and psychic (P = .02, η p2 = 0.07) and somatic anxiety (P = .01, η p2 = 0.10).ConclusionsThe combination of AD+AP/MS generates a significantly greater clinical response in women compared with men with TRD, supporting the existence of distinct pharmacological profiles between sexes in our sample. Moreover, they emphasize the benefit of augmentation strategies in women, underscoring the benefit of addressing symptoms such as insomnia and anxiety with AP and MS. PubDate: Tue, 15 Feb 2022 00:00:00 GMT
- Butyric Acid Precursor Tributyrin Modulates Hippocampal Synaptic
Plasticity and Prevents Spatial Memory Deficits: Role of PPARγ and AMPK Authors: Belén Sanz-Martos A; Fernández-Felipe J, Merino B, et al. Abstract: AbstractBackgroundShort chain fatty acids (SCFA), such as butyric acid (BA), derived from the intestinal fermentation of dietary fiber and contained in dairy products, are gaining interest in relation to their possible beneficial effects on neuropsychological disordersMethodsC57BL/6J male mice were used to investigate the effect of tributyrin (TB), a prodrug of BA, on hippocampus (HIP)-dependent spatial memory, HIP synaptic transmission and plasticity mechanisms, and the expression of genes and proteins relevant to HIP glutamatergic transmission.ResultsEx vivo studies, carried out in HIP slices, revealed that TB can transform early-LTP into late-LTP (l-LTP) and to rescue LTP-inhibition induced by scopolamine. The facilitation of l-LTP induced by TB was blocked both by GW9662 (a PPARγ antagonist) and C-Compound (an AMPK inhibitor), suggesting the involvement of both PPARγ and AMPK on TB effects. Moreover, 48-hour intake of a diet containing 1% TB prevented, in adolescent but not in adult mice, scopolamine-induced impairment of HIP-dependent spatial memory. In the adolescent HIP, TB upregulated gene expression levels of Pparg, leptin, and adiponectin receptors, and that of the glutamate receptor subunits AMPA-2, NMDA-1, NMDA-2A, and NMDA-2B.ConclusionsOur study shows that TB has a positive influence on LTP and HIP-dependent spatial memory, which suggests that BA may have beneficial effects on memory. PubDate: Sun, 13 Feb 2022 00:00:00 GMT
- Auricular Transcutaneous Vagus Nerve Stimulation Diminishes
Alpha-Band–Related Inhibitory Gating Processes During Conflict Monitoring in Frontal Cortices Authors: Konjusha A; Colzato L, Mückschel M, et al. Abstract: AbstractBackgroundPursuing goals is compromised when being confronted with interfering information. In such situations, conflict monitoring is important. Theoretical considerations on the neurobiology of response selection and control suggest that auricular transcutaneous vagus nerve stimulation (atVNS) should modulate conflict monitoring. However, the neurophysiological-functional neuroanatomical underpinnings are still not understood.MethodsAtVNS was applied in a randomized crossover study design (n = 45). During atVNS or sham stimulation, conflict monitoring was assessed using a Flanker task. EEG data were recorded and analyzed with focus on theta and alpha band activity. Beamforming was applied to examine functional neuroanatomical correlates of atVNS-induced EEG modulations. Moreover, temporal EEG signal decomposition was applied to examine different coding levels in alpha and theta band activity.ResultsAtVNS compromised conflict monitoring processes when it was applied at the second appointment in the crossover study design. On a neurophysiological level, atVNS exerted specific effects because only alpha-band activity was modulated. Alpha-band activity was lower in middle and superior prefrontal regions during atVNS stimulation and thus lower when there was also a decline in task performance. The same direction of alpha-band modulations was evident in fractions of the alpha-band activity coding stimulus-related processes, stimulus-response translation processes, and motor response–related processes.ConclusionsThe combination of prior task experience and atVNS compromises conflict monitoring processes. This is likely due to reduction of the alpha-band–associated inhibitory gating process on interfering information in frontal cortices. Future research should pay considerable attention to boundary conditions affecting the direction of atVNS effects. PubDate: Sat, 05 Feb 2022 00:00:00 GMT
- Differential Recruitment of the Infralimbic Cortex in Recent and Remote
Retrieval and Extinction of Aversive Memory in Post-Weanling Rats Authors: Awad W; Kritman M, Ferreira G, et al. Abstract: AbstractBackgroundWe previously showed that the infralimbic medial prefrontal cortex (IL-mPFC) plays an important role in recent and remote memory retrieval and extinction of conditioned odor aversion (COA) and contextual fear conditioning (CFC) in adult rats. Because the mPFC undergoes maturation during post-weaning, here, we aimed to explore (1) whether post-weanling rats can form recent and remote COA and CFC memory, and (2) the role of the IL-mPFC in mediating these processes.MethodsTo investigate the retrieval process, we transiently inactivated the IL-mPFC with lidocaine prior to the retrieval test at either recent or remote time points. To target the consolidation process, we applied the protein synthesis inhibitor after the retrieval at recent or remote time points.ResultsOur results show that the post-weanling animals were able to develop both recent and remote memory of both COA and CFC. IL-mPFC manipulations had no effect on retrieval or extinction of recent and remote COA memory, suggesting that the IL has no effect in COA at this developmental stage. In contrast, the IL-mPFC played a role in (1) the extinction of recent, but not remote, CFC memory, and (2) the retrieval of remote, but not recent, CFC memory. Moreover, remote, but not recent, CFC retrieval enhanced c-Fos protein expression in the IL-mPFC.ConclusionsAltogether, these results point to a differential role of the IL-mPFC in recent and remote CFC memory retrieval and extinction and further confirm the differences in the role of IL-mPFC in these processes in post-weanling and adult animals. PubDate: Fri, 04 Feb 2022 00:00:00 GMT
- Obesity and Cerebral Blood Flow in the Reward Circuitry of Youth With
Bipolar Disorder Authors: Grigorian A; Kennedy K, Luciw N, et al. Abstract: AbstractBackgroundBipolar disorder (BD) is associated with elevated body mass index (BMI) and increased rates of obesity. Obesity among individuals with BD is associated with more severe course of illness. Motivated by previous research on BD and BMI in youth as well as brain findings in the reward circuit, the current study investigates differences in cerebral blood flow (CBF) in youth BD with and without comorbid overweight/obesity (OW/OB).MethodsParticipants consisted of youth, ages 13–20 years, including BD with OW/OB (BDOW/OB; n = 25), BD with normal weight (BDNW; n = 55), and normal-weight healthy controls (HC; n = 61). High-resolution T1-weighted and pseudo-continuous arterial spin labeling images were acquired using 3 Tesla magnetic resonance imaging. CBF differences were assessed using both region of interest and whole-brain voxel-wise approaches.ResultsVoxel-wise analysis revealed significantly higher CBF in reward-associated regions in the BDNW group relative to the HC and BDOW/OB groups. CBF did not differ between the HC and BDOW/OB groups. There were no significant region of interest findings.ConclusionsThe current study identified distinct CBF levels relating to BMI in BD in the reward circuit, which may relate to underlying differences in cerebral metabolism, compensatory effects, and/or BD severity. Future neuroimaging studies are warranted to examine for changes in the CBF-OW/OB link over time and in relation to treatment. PubDate: Sat, 29 Jan 2022 00:00:00 GMT
- Functional Neuroimaging Correlates of Placebo Response in Patients With
Depressive or Anxiety Disorders: A Systematic Review Authors: Huneke N; Aslan I, Fagan H, et al. Abstract: AbstractBackgroundThe mechanisms underlying placebo effects of psychotropic drugs remain poorly understood. We carried out the first, to our knowledge, systematic review of functional neuroimaging correlates of placebo response in adults with anxiety/depressive disorders.MethodsWe systematically searched a large set of databases up to February 2021 based on a pre-registered protocol (PROSPERO CRD42019156911). We extracted neuroimaging data related to clinical improvement following placebo or related to placebo mechanisms. We did not perform a meta-analysis due to the small number of included studies and significant heterogeneity in study design and outcome measures.ResultsWe found 12 relevant studies for depressive disorders and 4 for anxiety disorders. Activity in the ventral striatum, rostral anterior cingulate cortex and other default mode network regions, orbitofrontal cortex, and dorsolateral prefrontal cortex correlated with placebo antidepressant responses. Activity in regions of the default mode network, including posterior cingulate cortex, was associated with placebo anxiolysis. There was also evidence for possible involvement of the endogenous opioid, dopamine, and serotonin systems in placebo antidepressant and anxiolytic effects.ConclusionsSeveral brain regions and molecular systems may be involved in these placebo effects. Further adequately powered studies exploring causality and controlling for confounders are required. PubDate: Tue, 25 Jan 2022 00:00:00 GMT
|