|
|
- Vinyl Sulfone-functionalized Acetalated Dextran Microparticles as a
Subunit Broadly Acting Influenza Vaccine-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Influenza is a global health concern with millions of infections occurring yearly. Seasonal flu vaccines are one way to combat this virus; however, they are poorly protective against influenza as the virus is constantly mutating, particularly at the immunodominant hemagglutinin (HA) head group. A more broadly acting approach involves Computationally Optimized Broadly Reactive Antigen (COBRA). COBRA HA generates a broad immune response that is capable of protecting against mutating strains. Unfortunately, protein-based vaccines are often weekly immunogenic, so to help boost the immune response, we employed the use of acetalated dextran (Ace-DEX) microparticles (MPs) two ways: one to conjugate COBRA HA to the surface and a second to encapsulate cGAMP. To conjugate the COBRA HA to the surface of the Ace-DEX MPs, a poly(L-lactide)-polyethylene glycol co-polymer with a vinyl sulfone terminal group (PLLA-PEG-VS) was used. MPs encapsulating the STING agonist cGAMP were co-delivered with the antigen to form a broadly active influenza vaccine. This vaccine approach was evaluated in vivo with a prime-boost-boost vaccination schedule and illustrated generation of a humoral and cellular response that could protect against a lethal challenge of A/California/07/2009 in BALB/c mice. Graphical  PubDate: 2023-01-31
- The Development and Characterization of a Highly Sensitive Mature TGFβ3
Assay to Evaluate Anti-TGFβ3 Target Engagement-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: MTBT 1466A is a monoclonal antibody designed to bind to mature human TGFβ3 in human tissue and systemic circulation. To evaluate binding of this therapeutic, a mature TGFβ3 assay was needed to be able to monitor pharmacodynamic responses in non-human primate (NHP) studies. However, mature TGFβ3 levels in systemic circulation are very low and require development of a highly sensitive assay for detection. This study describes the development of a highly sensitive, drug-tolerant pharmacodynamic biomarker assay for demonstrating target engagement in a pre-clinical study using MTBT1466A. Since mature TGFβ3 is a dimer, a single MAb was used as both the capture and detection antibodies. This assay was developed on the SMCxPRO platform and qualified based on current accepted criteria for biomarker assays. The assay demonstrated specificity to mature TGFβ3, with a lower limit of quantification of 31.3pg/mL. Although baseline levels of mature TGFβ3 were below the assay detection limit in 40% of animals within our study, 2- to 16-fold increases were observed in many of the animals following multiple-dosing regimen. Graphical  PubDate: 2023-01-26
- Product Quality Research for Developing and Assessing Regulatory
Submissions for Generic Cyclosporine Ophthalmic Emulsions-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Approval of the first generic 0.05% cyclosporine ophthalmic emulsion (COE) in the U.S. represents a milestone achievement of the science and research program in the U.S. Food and Drug Administration’s Center for Drug Evaluation and Research (CDER). COE is a locally acting complex drug product indicated to increase tear production in patients whose production is presumed to be suppressed due to ocular inflammation associated with keratoconjunctivitis sicca. The path to approval required overcoming numerous scientific challenges to determining therapeutic equivalence to the reference listed drug. Researchers in CDER’s Office of Pharmaceutical Quality and Office of Generic Drugs developed a quality by design approach to understand the effects of process and formulation variables on the product’s critical quality attributes, including globule size distribution (GSD), turbidity, viscosity, zeta potential, surface tension, and osmolality. CDER researchers explored multiple techniques to perform physicochemical characterization and analyze the GSD including laser diffraction, nanoparticle tracking analysis, cryogenic transmission electron microscopy, dynamic light scattering, asymmetric field flow fractionation, and two-dimensional diffusion ordered spectroscopy nuclear magnetic resonance. Biphasic models to study drug transfer kinetics demonstrated that COEs with qualitative and quantitative sameness and comparable GSDs, analyzed using earth mover’s distance, can be therapeutic equivalents. This body of research facilitated the review and approval of the first U.S. generic COE. In addition, the methods and fundamental understanding developed from this research may support the development and assessment of other complex generics. The approval of a generic COE should improve the availability of this complex drug product to U.S. patients. Graphical  PubDate: 2023-01-26
- Theoretical Examination Seeking Tangible Physical Meanings of Slopes and
Intercepts of Plasma Concentration–Time Relationships in Minimal Physiologically Based Pharmacokinetic Models-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: In minimal physiologically based pharmacokinetic (mPBPK) models, physiological (e.g., cardiac output) and anatomical (e.g., blood/tissue volumes) variables are utilized in the domain of differential equations (DEs) for mechanistic understanding of the plasma concentration–time relationships \({C}_{p}(t)\) . Although fundamental biopharmaceutical variables in terms of distribution (e.g., \({K}_{p}\) and \({f}_{d}\) ) and elimination kinetics (e.g., \(CL\) ) in mPBPK provide greater insights in comparison to classical compartment models, an absence of kinetic elucidation of slopes and intercepts in light of such DE model parameters hinders more intuitive appreciation of \({C}_{p}(t)\) . Therefore, this study seeks the tangible physical meanings of slopes and intercepts of the plasma concentration–time relationships in one- and two-tissue mPBPK models (i.e., m2CM and m3CM), with respect to time parameters that are readily understandable in PK analyses, i.e., the mean residence ( \(MRT\) ) and transit ( \(MTT\) ) times. Utilizing the explicit equations (EEs) for the slopes, intercepts, and areas of each exponential phase in the m2CM and m3CM, we theoretically and numerically examined the limiting/boundary conditions of such kinetic properties, based on the ratio of the longest tissue \(MTT\) to the \(MRT\) in the body (i.e., \({K}_{det}={MTT}_{max}/MR{T}_{B}\) ) that is useful for dissecting complex PBPK systems. The kinetic contribution of the area of each exponential phase to the total drug exposure was assessed to identify the elimination phase between the terminal and non-terminal phases of the \({C}_{p}\left(t\right)\) in the m2CM and m3CM. This assessment provides improved understanding of the complexities inherent in all PBPK profiles and models. Graphical  PubDate: 2023-01-26
- A Novel Neutralization Antibody Assay Method to Overcome Drug Interference
with Better Compatibility with Acid-Sensitive Neutralizing Antibodies-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Immunogenicity testing to detect and characterize anti-drug antibody (ADA) is required for almost all biotherapeutics. Monoclonal antibody biotherapeutics usually have long half-lives and for high-dose indications such as oncology, high level of drug will be present in the testing samples and interfere with ADA and/or neutralization antibody (NAb) measurement. To overcome this drug interference, acid-dissociation-based sample pre-treatment such as Bead-Extraction and Acid Dissociation (BEAD) has been successfully applied. The main concern for these acid-dissociation-based methods, however, is that harsh acid treatment could denature positive control Abs as well as NAb species in testing samples. In addition, high amount of biotinylated drug is needed in order to have effective competition with high level of drug in the samples, which in turn requires expensive magnetic beads. And the whole process of magnetic beads handling is tedious if doing manually and often causes trouble during assay transfer. Here, we describe a novel method which we named as Precipitation, Acid Dissociation and Biotin-drug as Assay Drug (PABAD). This novel method will need only one step of acid dissociation, with much milder and shorter acid treatment to maximally preserve NAb activity. In addition, only a fraction of biotinylated-drug is needed and there is no need to use additional streptavidin (SA)-plate or SA-magnetic beads for extraction. Compared to a BEAD-based assay, PABAD demonstrates significantly improved recovery of acid-sensitive NAb positive controls (PCs) and similar recovery of acid-resistant NAb PCs. Graphical  PubDate: 2023-01-25
- Best Practices for Submission of NMR Data to Support Higher Order
Structure Assessment of Generic Peptide Drugs-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2023-01-20
- Model-Informed Approach Supporting Approval of Nexviazyme (Avalglucosidase
Alfa-ngpt) in Pediatric Patients with Late-Onset Pompe Disease-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract In August 2021, the US Food and Drug Administration approved Nexviazyme (avalglucosidase alfa-ngpt) for intravenous infusion to treat patients 1 year of age and older with late-onset Pompe disease (LOPD). The effectiveness and safety were studied in patients with LOPD and patients with infantile-onset Pompe disease (IOPD). The dosage(s) tested in clinical trials was 20 mg/kg every other week (qow) in patients with LOPD and 20 mg/kg and 40 mg/kg qow in patients with IOPD. While patients 3 years old and greater with LOPD were eligible for participation in the pivotal trial, the youngest patient enrolled was 16 years old. Therefore, pediatric patients with LOPD were not well represented in the clinical trial. The prevalence of LOPD in pediatrics is extremely low. Thus, conducting a clinical trial in pediatric patients with LOPD would be challenging. Given the similar pathophysiology, mechanism of action, and disease manifestations across the age spectrum of patients with LOPD, the approved dosages for pediatric patients younger than 16 years old with LOPD were based on extrapolation of efficacy using a model-informed exposure bridging strategy, leveraging the safety data from pediatric patients with IOPD. Specifically, the exposure associated with 20 mg/kg qow in adult patients with LOPD was the target exposure for bridging of efficacy. The safety data obtained with 40 mg/kg qow in patients with IOPD was leveraged to support approval in pediatric patients with LOPD aged 1 year and older. This article illustrates a regulatory use of model-informed extrapolation approach for dose selection in pediatric patients with a rare disease. PubDate: 2023-01-18
- Correction: End-to-End Approach to Surfactant Selection, Risk Mitigation,
and Control Strategies for Protein-Based Therapeutics-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2023-01-11
- Lessons from CDER’s Quality Management Maturity Pilot Programs
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Between October 2020 and March 2022, FDA’s Center for Drug Evaluation and Research (CDER) completed two pilot programs to assess the quality management maturity (QMM) of drug manufacturing establishments. Mature quality systems promote proactive detection of vulnerabilities, prevent problems before they occur, and foster a culture that rewards process and system improvements. A CDER QMM program may help to advance supply chain resiliency and robustness and mitigate drug shortages. One pilot program evaluated seven establishments located within the U.S. that produce finished dosage form products marketed in the U.S. A second pilot program evaluated eight establishments located outside the U.S. that produce active pharmaceutical ingredients used in drug products marketed in the U.S. The execution of these pilot programs afforded FDA the opportunity to learn important lessons about the establishment QMM assessment process, scoring approach, assessor behaviors, and perceptions of the assessment questions, reports, and ratings. Many of the participating establishments reported that the QMM pilot assessments helped to identify their strengths, weaknesses, and new areas for improvement which they had not previously identified through internal audits or CGMP inspections. There has been a great deal of interest in the outcomes of CDER’s QMM pilot programs and this paper describes, for the first time, the lessons CDER learned and will continue to heed in the development of a QMM program. Graphical  PubDate: 2023-01-10
- Pancreatic Hormone Insulin Modulates Organic Anion Transporter 1 in the
Kidney: Regulation via Remote Sensing and Signaling Network-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Organic anion transporter 1 (OAT1) expressed in the kidney plays an important role in the elimination of numerous anionic drugs used in the clinic. We report here that insulin, a pancreas-secreted hormone, regulated the expression and activity of kidney-specific OAT1 both in cultured cells and in rats. We showed that treatment of OAT1-expressing cells with insulin led to an increase in OAT1 expression, transport activity, and SUMOylation. Such insulin-induced increase was blocked by afuresertib, a specific inhibitor for protein kinase B (PKB), suggesting insulin regulates OAT1 through PKB signaling pathway. Furthermore, insulin stimulated transport activity and SUMOylation of endogenously expressed OAT1 in rat kidneys. In conclusion, our data support a remote sensing and signaling model, in which OAT1 plays an essential role in intercellular and inter-organ communication and in maintaining local and whole-body homeostasis. Such complex and dedicated communication is carried out by insulin, and PKB signaling and membrane sorting. Graphical  PubDate: 2023-01-10
- Development and Validation of a Western Blot Method to Quantify
Mini-Dystrophin in Human Skeletal Muscle Biopsies-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Duchenne muscular dystrophy (DMD) is a degenerative muscular disease affecting roughly one in 5000 males at birth. The disease is often caused by inherited X-linked recessive pathogenic variants in the dystrophin gene, but may also arise from de novo mutations. Disease-causing variants include nonsense, out of frame deletions or duplications that result in loss of dystrophin protein expression. There is currently no cure for DMD and the few treatment options available aim at slowing muscle degradation. New advances in gene therapy and understanding of dystrophin (DYS) expression in other muscular dystrophies have opened new opportunities for treatment. Therefore, reliable methods are needed to monitor dystrophin expression and assess the efficacy of new therapies for muscular dystrophies such as DMD and Becker muscular dystrophy (BMD). Here, we describe the validation of a novel Western blot (WB) method for the quantitation of mini-dystrophin protein in human skeletal muscle tissues that is easy to adopt in most laboratory settings. This WB method was assessed through precision, accuracy, selectivity, dilution linearity, stability, and repeatability. Based on mini-DYS standard performance, the assay has a dynamic range of 0.5–15 ng protein (per 5 µg total protein per lane), precision of 3.3 to 25.5%, and accuracy of − 7.5 to 3.3%. Our stability assessment showed that the protein is stable after 4 F/T cycles, up to 2 h at RT and after 7 months at − 70°C. Furthermore, our WB method was compared to the results from our recently published LC–MS method. Graphical Workflow for our quantitative WB method to determine mini-dystrophin levels in muscle tissues (created in Biorender.com). Step 1 involves protein extraction from skeletal muscle tissue lysates from control, DMD, or BMD biospecimen. Step 2 measures total protein concentrations. Step 3 involves running gel electrophoresis with wild-type dystrophin (wt-DYS) from muscle tissue extracts alongside mini-dystrophin STD curve and mini-DYS and protein normalization with housekeeping GAPDH.  PubDate: 2022-12-20
- Challenges and Strategies for Solubility Measurements and Dissolution
Method Development for Amorphous Solid Dispersion Formulations-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract This manuscript represents the view of the Dissolution Working Group of the IQ Consortium on the challenges of and recommendations on solubility measurements and development of dissolution methods for immediate release (IR) solid oral dosage forms formulated with amorphous solid dispersions. Nowadays, numerous compounds populate the industrial pipeline as promising drug candidates yet suffer from low aqueous solubility. In the oral drug product development process, solubility along with permeability is a key determinant to assure sufficient drug absorption along the intestinal tract. Formulating the drug candidate as an amorphous solid dispersion (ASD) is one potential option to address this issue. These formulations demonstrate the rapid onset of drug dissolution and can achieve supersaturated concentrations, which poses significant challenges to appropriately characterize solubility and develop quality control dissolution methods. This review strives to categorize the different dissolution and solubility challenges for ASD associated with 3 different topics: (i) definition of solubility and sink conditions for ASD dissolution, (ii) applications and development of non-sink dissolution (according to conventional definition) for ASD formulation screening and QC method development, and (iii) the advantages and disadvantages of using dissolution in detecting crystallinity in ASD formulations. Related to these challenges, successful examples of dissolution experiments in the context of control strategies are shared and may lead as an example for scientific consensus concerning dissolution testing of ASD. PubDate: 2022-12-13
- Development of a Near-Infrared Spectroscopy (NIRS)–Based
Characterization Approach for Inherent Powder Blend Heterogeneity in Direct Compression Formulations-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: With the advent of continuous direct compression (CDC) process, it becomes increasingly desirable to characterize inherent powder blend heterogeneity at a small batch scale for a robust and CDC-amenable formulation. To accomplish this goal, a near infrared spectroscopy (NIRS)-based characterization approach was developed and implemented on multiple direct compression (DC) blends in this study, with the intended purpose of complementing existing formulation development tools and enabling to build an early CMC data package for late-phased process analytical technology (PAT) method development. Three fumaric acid DC blends, designed to harbor varied degrees of inherent blend heterogeneity, were employed. Near infrared spectral data were collected on a kg-scale batch blender via both time- and angle-based triggering modes. The time-triggered data were used to investigate the blending heterogeneity with respect to rotation angles, while the angle-triggered data were used to provide blending variability characterization and compare against off-line HPLC-based results. The time-triggered data revealed that the greatest blend variability was observed between revolutions, while the blending variability within a single revolution stayed relatively low with respect to rotation angles. This confirmed earlier literature findings that the bottom layer of powder blends tends to move with the blender within each revolution, and the most intense powder mixing takes place across revolutions. This also indicates the use of blending speed and the number of co-adds are not able to increase sampling volume to improve signal-to-noise ratio under a tumble-bin blender as what were typically done in a feedframe application. The angle-triggered data showed that there is a consistent trend between NIRS and HPLC-based methods on characterizing blend heterogeneity across the blends at a given sample size. This study contributes to establishing NIRS as a potential characterization approach for inherent powder blend heterogeneity for early R&D. It also highlights the promise of continuous characterization of inherent powder blend heterogeneity from gram scale to mini-batch CDC scale. Graphical  PubDate: 2022-12-08
- Overcoming Biopharmaceutical Interferents for Quantitation of Host Cell
DNA Using an Automated, High-Throughput Methodology-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The rapid development of biologics and vaccines in response to the current pandemic has highlighted the need for robust platform assays to characterize diverse biopharmaceuticals. A critical aspect of biopharmaceutical development is achieving a highly pure product, especially with respect to residual host cell material. Specifically, two important host cell impurities of focus within biopharmaceuticals are residual DNA and protein. In this work, a novel high-throughput host cell DNA quantitation assay was developed for rapid screening of complex vaccine drug substance samples. The developed assay utilizes the commercially available, fluorescent-sensitive Picogreen dye within a 96-well plate configuration to allow for a cost effective and rapid analysis. The assay was applied to in-process biopharmaceutical samples with known interferences to the dye, including RNA and protein. An enzymatic digestion pre-treatment was found to overcome these interferences and thus allow this method to be applied to wide-ranging, diverse analyses. In addition, the use of deoxycholate in the digestion treatment allowed for disruption of interactions in a given sample matrix in order to more accurately and selectively quantitate DNA. Critical analytical figures of merit for assay performance, such as precision and spike recovery, were evaluated and successfully demonstrated. This new analytical method can thus be successfully applied to both upstream and downstream process analysis for biologics and vaccines using an innovative and automated high-throughput approach. Graphical  PubDate: 2022-12-08
- End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control
Strategies for Protein-Based Therapeutics-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions. Graphical  PubDate: 2022-12-05
- Stability and Function of Extracellular Vesicles Derived from Immortalized
Human Corneal Stromal Stem Cells: A Proof of Concept Study-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: With significant advancement and development of extracellular vesicle (EV)-based therapies, there is a growing need to understand how their storage affects their physical and functional characteristics. EVs were isolated from the conditioned medium of a corneal stromal stem cell line (imCSSC) using Total Exosome isolation kit (TEI) and ultracentrifugation (UC) combined protocol. Purified EVs were stored at 4°C, − 80°C, room temperature (RT) after lyophilization with or without trehalose for 4 weeks. EVs stored at − 80°C and RT (lyophilization with trehalose) demonstrated a comparable morphology, while the freeze-dried samples without trehalose showed aggregation and degradation under a transmission electron microscope (TEM). Lyophilized samples without trehalose demonstrated a decreased particle concentration, recovery rate and protein concentration, which was remediated by the addition of trehalose. EVs stored at − 80℃ showed no change in the protein expression of CD9, CD63, and CD81. Regardless of the storage condition, all EV samples investigated reduced inflammation, as well as inhibited expression of fibrotic markers in vitro. Lyophilization of EVs with trehalose was a feasible storage method that retained the physical property and in vitro biological activities of EVs after 4 weeks of storage, while − 80°C offered the best retention of imCSSC-derived EV physical properties. For the first time, this data demonstrated a practical and translatable method for the storage of CSSC-derived EVs for clinical use. Graphical  PubDate: 2022-12-05
- Addressing the Accuracy of Plasma Protein Binding Measurement for Highly
Bound Compounds Using the Dilution Method-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Currently, regulatory guidelines recommend using 0.01 as the lower limit of plasma fraction unbound (fu) for prediction of drug-drug interactions (DDI) to err on the conservative side. One way to increase experimental fu of highly bound compounds is to dilute the plasma. With the dilution method, a diluted fu, or fu,d, of ≥ 0.01 can be achieved by adjusting the dilution factor. The undiluted fu can be calculated from fu,d and be used for DDI prediction. In this study, the dilution method was evaluated, and the results showed that it gave similar fu values as those determined using the pre-saturation method without plasma dilution. The dilution method enables generation of accurate fu values and alignment with the regulatory recommendation of reportable fu values of ≥ 0.01 for DDI prediction. We recommend using the dilution method to bridge the regulatory recommended fu limit of 0.01 for DDI prediction and the pre-saturation or equivalent methods for definitive plasma protein binding studies. As the pharmaceutical industry continues to generate high quality PPB data, regulatory agencies will gain confidence in the accuracy of fu measurements for highly bound compounds, and the fu lower limit may no longer be needed in the future. Graphical  PubDate: 2022-12-05
- Monoclonal Antibody Pharmacokinetics in Cynomolgus Monkeys Following
Subcutaneous Administration: Physiologically Based Model Predictions from Physiochemical Properties-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: An integrated physiologically based modeling framework is presented for predicting pharmacokinetics and bioavailability of subcutaneously administered monoclonal antibodies in cynomolgus monkeys, based on in silico structure-derived metrics characterizing antibody size, overall charge, local charge, and hydrophobicity. The model accounts for antibody-specific differences in pinocytosis, transcapillary transport, local lymphatic uptake, and pre-systemic degradation at the subcutaneous injection site and reliably predicts the pharmacokinetics of five different wild-type mAbs and their Fc variants following intravenous and subcutaneous administration. Significant associations were found between subcutaneous injection site degradation rate and the antibody’s local positive charge of its complementarity-determining region (R = 0.56, p = 0.0012), antibody pinocytosis rate and its overall positive charge (R = 0.59, p = 0.00063), and antibody paracellular transport and its overall charge together with hydrophobicity (R = 0.63, p = 0.00096). Based on these results, population simulations were performed to predict the relationship between bioavailability and antibody local positive charge. In addition, model simulations were conducted to calculate the relative contribution of absorption pathways (lymphatic and blood), pre-systemic degradation pathways (interstitial and lysosomal), and the influence of injection site lymph flow on antibody bioavailability and pharmacokinetics. The proposed physiologically based modeling framework integrates fundamental mechanisms governing antibody subcutaneous absorption and disposition, with structured-based physiochemical properties, to predict antibody bioavailability and pharmacokinetics in vivo. Graphical  PubDate: 2022-12-01
- Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions After
Intramuscular Administration in Different Animal Species and Humans—a Review-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Formulating aqueous suspensions is an attractive strategy to incorporate poorly water-soluble drugs, where the drug release can be tailored to maintain desired release profiles of several weeks to months after parenteral (i.e., intramuscular or subcutaneous) administration. A sustained drug release can be desirable to combat chronic diseases by overcoming pill fatigue of a daily oral intake, hence, improving patient compliance. Although the marketed aqueous suspensions for intramuscular injection efficiently relieve the daily pill burden in chronic diseases, the exact drug release mechanisms remain to be fully unraveled. The in vivo drug release and subsequent absorption to the systemic circulation are influenced by a plethora of variables, resulting in a complex in vivo behavior of aqueous suspensions after intramuscular administration. A better understanding of the factors influencing the in vivo performance of aqueous suspensions could advance their drug development. An overview of the potential influential variables on the drug release after intramuscular injection of aqueous suspensions is provided with, where possible, available pharmacokinetic parameters in humans or other species derived from literature, patents, and clinical trials. These variables can be categorized into drug substance and formulation properties, administration site properties, and the host response towards drug particles. Based on the findings, the most critical factors are particle size, dose level, stabilizing excipient, drug lipophilicity, gender, body mass index, and host response. Graphical  PubDate: 2022-12-01
- ACUVRA: Anion-Exchange Chromatography UV-Ratio Analysis—A QC-Friendly
Method for Monitoring Adeno-Associated Virus Empty Capsid Content To Support Process Development and GMP Release Testing-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The genome content of adeno-associated virus (AAV) vectors is critical to the safety and potency of AAV-based gene therapy products. Empty capsids are considered a product-related impurity and a critical quality attribute (CQA) of the drug product, thus requiring characterization throughout the production process to demonstrate they are controlled to acceptable levels in the final drug product. Anion exchange chromatography has been used to achieve separation between empty and full capsids, but requires method development and gradient optimization for different serotypes and formulations. Here, we describe an alternative approach to quantitation that does not rely on achieving separation between empty and full capsids, but instead uses the well-established relationship between absorbance at UV A260/A280 and relation to DNA/protein content, in combination with anion-exchange chromatography to allow one to calculate the relative proportion of empty and full capsids in AAV samples from a single peak. We call this approach ACUVRA: Anion-exchange Chromatography UV-Ratio Analysis, and show the applicability of the method through a case study with recombinant AAV2 (rAAV2) process intermediates and drug substance. Method qualification and GMP validation in a quality control (QC) laboratory results show that ACUVRA is a fit-for-purpose method for process development support and characterization, while also being a QC-friendly option for GMP release testing at all stages of clinical development. Graphical abstract  PubDate: 2022-11-22 DOI: 10.1208/s12248-022-00768-0
|