Subjects -> ENVIRONMENTAL STUDIES (Total: 960 journals)
    - ENVIRONMENTAL STUDIES (853 journals)
    - POLLUTION (31 journals)
    - TOXICOLOGY AND ENVIRONMENTAL SAFETY (58 journals)
    - WASTE MANAGEMENT (18 journals)

ENVIRONMENTAL STUDIES (853 journals)                  1 2 3 4 5 | Last

Showing 1 - 200 of 378 Journals sorted alphabetically
ACS Chemical Health & Safety     Hybrid Journal   (Followers: 5)
ACS ES&T Engineering     Hybrid Journal   (Followers: 9)
Acta Brasiliensis     Open Access   (Followers: 3)
Acta Ecologica Sinica     Open Access   (Followers: 11)
Acta Environmentalica Universitatis Comenianae     Open Access   (Followers: 1)
Acta Limnologica Brasiliensia     Open Access   (Followers: 4)
Acta Oecologica     Hybrid Journal   (Followers: 12)
Acta Regionalia et Environmentalica     Open Access   (Followers: 1)
Advanced Electronic Materials     Hybrid Journal   (Followers: 7)
Advanced Energy and Sustainability Research     Open Access   (Followers: 8)
Advanced Sustainable Systems     Hybrid Journal   (Followers: 8)
Advances in Ecological Research     Full-text available via subscription   (Followers: 45)
Advances in Environmental Chemistry     Open Access   (Followers: 11)
Advances in Environmental Sciences - International Journal of the Bioflux Society     Open Access   (Followers: 21)
Advances in Environmental Technology     Open Access   (Followers: 1)
Advances in Life Science and Technology     Open Access   (Followers: 23)
Advances in Tropical Biodiversity and Environmental Sciences     Open Access   (Followers: 5)
Aeolian Research     Hybrid Journal   (Followers: 6)
African Journal of Environmental Science and Technology     Open Access   (Followers: 5)
Agricultura Tecnica     Open Access   (Followers: 5)
Agricultural & Environmental Letters     Open Access   (Followers: 3)
Agro-Science     Full-text available via subscription   (Followers: 3)
Agroecological journal     Open Access  
Agronomy for Sustainable Development     Open Access   (Followers: 22)
Agrosystems, Geosciences & Environment     Open Access   (Followers: 7)
Amazon's Research and Environmental Law     Open Access   (Followers: 5)
Ambiência     Open Access  
Ambiens. Revista Iberoamericana Universitaria en Ambiente, Sociedad y Sustentabilidad     Open Access   (Followers: 1)
Ambiente & sociedade     Open Access   (Followers: 3)
Ambiente & Agua : An Interdisciplinary Journal of Applied Science     Open Access   (Followers: 1)
American Journal of Energy and Environment     Open Access   (Followers: 5)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Environmental Protection     Open Access   (Followers: 9)
American Journal of Environmental Sciences     Open Access   (Followers: 11)
American Naturalist     Full-text available via subscription   (Followers: 85)
Annals of Civil and Environmental Engineering     Open Access   (Followers: 3)
Annals of Environmental Science and Toxicology     Open Access   (Followers: 3)
Annals of GIS     Open Access   (Followers: 29)
Annual Review of Ecology, Evolution, and Systematics     Full-text available via subscription   (Followers: 89)
Annual Review of Environment and Resources     Full-text available via subscription   (Followers: 16)
Annual Review of Pharmacology and Toxicology     Full-text available via subscription   (Followers: 36)
Annual Review of Resource Economics     Full-text available via subscription   (Followers: 10)
Applied and Environmental Soil Science     Open Access   (Followers: 20)
Applied Ecology and Environmental Sciences     Open Access   (Followers: 30)
Applied Environmental Education & Communication     Hybrid Journal   (Followers: 19)
Applied Journal of Environmental Engineering Science     Open Access   (Followers: 2)
Aquatic Ecology     Hybrid Journal   (Followers: 39)
Aquatic Toxicology     Hybrid Journal   (Followers: 25)
Arcada : Revista de conservación del patrimonio cultural     Open Access   (Followers: 2)
Architecture, Civil Engineering, Environment     Open Access   (Followers: 4)
Archives des Maladies Professionnelles et de l'Environnement     Full-text available via subscription  
Archives of Environmental and Occupational Health     Hybrid Journal   (Followers: 12)
Archives of Environmental Contamination and Toxicology     Hybrid Journal   (Followers: 14)
Archives of Toxicology     Hybrid Journal   (Followers: 20)
Arctic Environmental Research     Open Access   (Followers: 1)
Asian Journal of Environment & Ecology     Open Access   (Followers: 1)
Asian Journal of Rural Development     Open Access   (Followers: 9)
Asian Review of Environmental and Earth Sciences     Open Access   (Followers: 3)
ATBU Journal of Environmental Technology     Open Access   (Followers: 5)
Atmospheric and Climate Sciences     Open Access   (Followers: 35)
Atmospheric Environment     Hybrid Journal   (Followers: 75)
Atmospheric Environment : X     Open Access   (Followers: 3)
Augm Domus : Revista electrónica del Comité de Medio Ambiente de AUGM     Open Access  
Austral Ecology     Hybrid Journal   (Followers: 18)
Australasian Journal of Environmental Management     Hybrid Journal   (Followers: 13)
Australasian Journal of Human Security     Full-text available via subscription   (Followers: 1)
Australian Journal of Environmental Education     Full-text available via subscription   (Followers: 11)
Basic & Clinical Pharmacology & Toxicology     Hybrid Journal   (Followers: 13)
Basic and Applied Ecology     Hybrid Journal   (Followers: 25)
Behavioral Ecology     Hybrid Journal   (Followers: 60)
Behavioral Ecology and Sociobiology     Hybrid Journal   (Followers: 38)
Biocenosis     Open Access  
Biochar     Hybrid Journal   (Followers: 3)
Biodegradation     Hybrid Journal   (Followers: 2)
Biodiversity     Hybrid Journal   (Followers: 30)
Biofouling: The Journal of Bioadhesion and Biofilm Research     Hybrid Journal   (Followers: 7)
Bioremediation Journal     Hybrid Journal   (Followers: 5)
BioRisk     Open Access   (Followers: 3)
BMC Ecology     Open Access   (Followers: 24)
Boletín Instituto de Derecho Ambiental y de los Recursos Naturales     Open Access  
Boletín Semillas Ambientales     Open Access  
Boston College Environmental Affairs Law Review     Open Access   (Followers: 7)
Bothalia : African Biodiversity & Conservation     Open Access   (Followers: 1)
Built Environment     Full-text available via subscription   (Followers: 5)
Bulletin of Environmental Contamination and Toxicology     Hybrid Journal   (Followers: 15)
Bulletin of the American Meteorological Society     Open Access   (Followers: 51)
Bumi Lestari Journal of Environment     Open Access  
Canadian Journal of Earth Sciences     Hybrid Journal   (Followers: 23)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 50)
Canadian Journal of Soil Science     Full-text available via subscription   (Followers: 14)
Canadian Water Resources Journal     Hybrid Journal   (Followers: 20)
Capitalism Nature Socialism     Hybrid Journal   (Followers: 27)
Carbon Resources Conversion     Open Access   (Followers: 3)
Case Studies in Chemical and Environmental Engineering     Open Access   (Followers: 1)
Casopis Slezskeho Zemskeho Muzea - serie A - vedy prirodni     Open Access  
Cell Biology and Toxicology     Hybrid Journal   (Followers: 12)
Chain Reaction     Full-text available via subscription  
Challenges in Sustainability     Open Access   (Followers: 12)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 25)
Chemico-Biological Interactions     Hybrid Journal   (Followers: 3)
Chemosphere     Hybrid Journal   (Followers: 17)
Child and Adolescent Mental Health     Hybrid Journal   (Followers: 71)
China Population, Resources and Environment     Full-text available via subscription   (Followers: 4)
Ciencia, Ambiente y Clima     Open Access   (Followers: 3)
City and Environment Interactions     Open Access   (Followers: 4)
Civil and Environmental Engineering     Open Access   (Followers: 8)
Civil and Environmental Engineering Reports     Open Access   (Followers: 9)
Civil and Environmental Research     Open Access   (Followers: 22)
CLEAN - Soil, Air, Water     Hybrid Journal   (Followers: 21)
Clean Technologies     Open Access   (Followers: 1)
Clean Technologies and Environmental Policy     Hybrid Journal   (Followers: 5)
Cleanroom Technology     Full-text available via subscription   (Followers: 1)
Climate and Energy     Full-text available via subscription   (Followers: 7)
Climate Change Ecology     Open Access  
Climate Change Economics     Hybrid Journal   (Followers: 33)
Climate Policy     Hybrid Journal   (Followers: 51)
Climate Resilience and Sustainability     Open Access   (Followers: 21)
Coastal Engineering Journal     Hybrid Journal   (Followers: 9)
Cogent Environmental Science     Open Access  
Columbia Journal of Environmental Law     Open Access   (Followers: 15)
Computational Ecology and Software     Open Access   (Followers: 11)
Computational Water, Energy, and Environmental Engineering     Open Access   (Followers: 5)
Conservation and Society     Open Access   (Followers: 14)
Conservation Letters     Open Access   (Followers: 51)
Conservation Science     Open Access   (Followers: 30)
Consilience : The Journal of Sustainable Development     Open Access   (Followers: 3)
Contemporary Problems of Ecology     Hybrid Journal   (Followers: 4)
Critical Reviews in Environmental Science and Technology     Hybrid Journal   (Followers: 15)
Critical Reviews in Toxicology     Hybrid Journal   (Followers: 26)
Cuadernos de Investigación Geográfica / Geographical Research Letters     Open Access  
Culture, Agriculture, Food and Environment     Hybrid Journal   (Followers: 26)
Culture, Agriculture, Food and Environment     Hybrid Journal   (Followers: 11)
Current Environmental Engineering     Hybrid Journal  
Current Environmental Health Reports     Hybrid Journal   (Followers: 2)
Current Forestry Reports     Hybrid Journal   (Followers: 1)
Current Landscape Ecology Reports     Hybrid Journal   (Followers: 2)
Current Opinion in Environmental Science & Health     Hybrid Journal   (Followers: 1)
Current Opinion in Environmental Sustainability     Hybrid Journal   (Followers: 17)
Current Research in Ecological and Social Psychology     Open Access  
Current Research in Environmental Sustainability     Open Access   (Followers: 2)
Current Research in Green and Sustainable Chemistry     Open Access   (Followers: 1)
Current Research in Microbiology     Open Access   (Followers: 27)
Current Sustainable/Renewable Energy Reports     Hybrid Journal   (Followers: 9)
Current World Environment     Open Access   (Followers: 7)
Developments in Atmospheric Science     Full-text available via subscription   (Followers: 31)
Developments in Earth and Environmental Sciences     Full-text available via subscription   (Followers: 3)
Developments in Earth Surface Processes     Full-text available via subscription   (Followers: 1)
Developments in Environmental Modelling     Full-text available via subscription   (Followers: 8)
Developments in Environmental Science     Full-text available via subscription   (Followers: 4)
Developments in Integrated Environmental Assessment     Full-text available via subscription   (Followers: 5)
Die Bodenkultur : Journal of Land Management, Food and Environment     Open Access   (Followers: 2)
Disaster Prevention and Management     Hybrid Journal   (Followers: 32)
Discover Sustainability     Open Access   (Followers: 3)
disP - The Planning Review     Hybrid Journal   (Followers: 1)
Divulgación Científica     Open Access   (Followers: 1)
Drug and Chemical Toxicology     Hybrid Journal   (Followers: 16)
Duke Environmental Law & Policy Forum     Open Access   (Followers: 7)
Dynamiques Environnementales     Open Access   (Followers: 1)
E3S Web of Conferences     Open Access   (Followers: 2)
Earth and Environmental Science Transactions of the Royal Society of Edinburgh     Hybrid Journal   (Followers: 6)
Earth Interactions     Open Access   (Followers: 13)
Earth Science Informatics     Hybrid Journal   (Followers: 5)
Earth System Governance     Open Access  
Earth System Science Data (ESSD)     Open Access   (Followers: 8)
Earth Systems and Environment     Hybrid Journal   (Followers: 3)
Earthquake Science     Hybrid Journal   (Followers: 14)
EchoGéo     Open Access  
Eco-Thinking     Open Access   (Followers: 5)
Ecocycles     Open Access   (Followers: 6)
Ecohydrology     Hybrid Journal   (Followers: 11)
Ecohydrology & Hydrobiology     Full-text available via subscription   (Followers: 4)
Ecologia Aplicada     Open Access  
Ecología en Bolivia     Open Access  
Ecological Applications     Full-text available via subscription   (Followers: 213)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
Ecological Complexity     Hybrid Journal   (Followers: 7)
Ecological Engineering     Hybrid Journal   (Followers: 4)
Ecological Engineering : X     Open Access  
Ecological Indicators     Hybrid Journal   (Followers: 23)
Ecological Informatics     Hybrid Journal   (Followers: 4)
Ecological Management & Restoration     Hybrid Journal   (Followers: 15)
Ecological Modelling     Hybrid Journal   (Followers: 96)
Ecological Monographs     Full-text available via subscription   (Followers: 39)
Ecological Processes     Open Access   (Followers: 2)
Ecological Questions     Open Access   (Followers: 4)
Ecological Research     Hybrid Journal   (Followers: 12)
Ecological Restoration     Full-text available via subscription   (Followers: 23)
Ecologist, The     Full-text available via subscription   (Followers: 23)
Ecology     Full-text available via subscription   (Followers: 482)
Ecology and Evolution     Open Access   (Followers: 104)
Ecology Letters     Hybrid Journal   (Followers: 341)
EcoMat : Functional Materials for Green Energy and Environment     Open Access   (Followers: 3)
Economics and Policy of Energy and the Environment     Full-text available via subscription   (Followers: 14)
Économie rurale     Open Access   (Followers: 3)
Ecoprint : An International Journal of Ecology     Open Access   (Followers: 6)
Ecopsychology     Hybrid Journal   (Followers: 8)
Ecosphere     Open Access   (Followers: 9)
Ecosystem Services     Hybrid Journal   (Followers: 10)
Ecosystems     Hybrid Journal   (Followers: 33)
Ecosystems and People     Open Access   (Followers: 3)

        1 2 3 4 5 | Last

Similar Journals
Journal Cover
Applied and Environmental Soil Science
Journal Prestige (SJR): 0.451
Citation Impact (citeScore): 1
Number of Followers: 20  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-7667 - ISSN (Online) 1687-7675
Published by Hindawi Homepage  [343 journals]
  • Response of Potato (Solanum tuberosum L.) to NPS Fertilizer Rates and
           Inter-Row Spacing in Kechi District, South Western Ethiopia

    • Abstract: Fertilizer requirement and spacing vary across locations due to differences in soil types, nutrient and moisture availability, economic factors, and other environmental conditions. Therefore, a field experiment was carried out to investigate the effect of different rates of NPS fertilizers and inter-row spacing on growth, yield, yield components, and economic performance of potato in Kechi research farm, Dawro zone of south-western Ethiopia. The experiment was arranged in factorial combination of six NPS (19N–38P2O5–7S) fertilizer rates (0 kg/ha, 50 kg/ha, 100 kg/ha, 150 kg/ha, 200 kg/ha, and 250 kg/ha) and five inter-row spacings (45, 55, 65, 75, and 85 cm) which were laid out in RCBD with three replications using the Gudene variety. Growth, yield component, and yield data were collected and analyzed. In addition, a partial budget analysis was performed. The results showed that the main effect of NPS fertilizer and inter-row spacing had significantly () affected plant height, tuber number, tuber yield, and tuber size and average tuber weight. Maximum marketable tuber number per plant (11.627), total tuber number per plant (13.020), average tuber weight per plant (83.493 g), the proportion of large-sized tuber number per plant (41.893%), marketable tuber yield (48.056 t/ha), and total tuber yield (51.145 t/ha) were obtained from 200 kg/ha of NPS fertilizer which was statistically at par with 150 kg/ha and 250 kg/ha NPS, while the lowest result for those parameters was recorded from unfertilized plots. Results regarding inter-row spacing revealed that the highest marketable tuber number per plant (11.744), total tuber number per plant (13.144), and average tuber weight per plant (85.559 g) were recorded at 75 cm, while the lowest result for these parameters was recorded at 45 cm. Moreover, the highest marketable tuber yield (45.084 t/ha) and total tuber yield (48.462 t/ha) were obtained from the inter-row spacing of 65 cm which was statistically at par with 55 cm inter-row spacing, while the lowest result for these parameters was recorded at 85 cm. The partial budget analysis further revealed that 200 kg/ha NPS fertilizer gave the maximum net benefit. However, 150 kg/ha NPS resulted in the highest marginal rate of return (4303.91%). Thus, 150 kg/ha NPS fertilizer and inter-row spacing of 55 cm or 65 cm are suggested for attaining higher potato yield.
      PubDate: Tue, 05 Oct 2021 11:20:00 +000
       
  • Extent, Distribution, and Causes of Soil Acidity under Subsistence Farming
           System and Lime Recommendation: The Case in Wolaita, Southern Ethiopia

    • Abstract: Soil acidity is one of the most important environmental threats to the Ethiopian highlands where the livelihood of the majority of people is reliant on agriculture. Yet, information regarding its extent, distribution, causes, and lime requirement at a scale relevant to subsistence farming systems is still lacking. This study (1) investigates the extent and spatial distribution of soil acidity, (2) identifies factors attributing to soil acidification, and (3) predicts the lime requirement for major crops. A total of 789 soil samples were collected from arable lands in the Wolaita area which is mainly characterized by poor soil fertility and soil degradation in southern Ethiopia. Results revealed that the landscape is characterized by a gentle slope followed by strongly sloppy > flat > hilly topographies. Clay is the dominant soil textural class. A soil pH map, which is generated using geospatial analysis, demonstrates that 3.3, 78.0, and 18.7% of the total area were under strongly acidic, moderately acidic, and neutral soil reactions, respectively. The exchangeable acidity (Cmol(+)/kg) varied from nil to 5.1, whereas exchangeable Al ranged from 1.4 to 19.9 Cmol(+)/kg. The soil pH has shown a significantly ( 
      PubDate: Sun, 26 Sep 2021 06:20:01 +000
       
  • Evolutionary Prediction of Soil Loss from Observed Rainstorm Parameters in
           an Erosion Watershed Using Genetic Programming

    • Abstract: Various environmental problems such as soil degradation and landform evolutions are initiated by a natural process known as soil erosion. Aggregated soil surfaces are dispersed through the impact of raindrop and its associated parameters, which were considered in this present work as function of soil loss. In an attempt to monitor environmental degradation due to the impact of raindrop and its associated factors, this work has employed the learning abilities of genetic programming (GP) to predict soil loss deploying rainfall amount, kinetic energy, rainfall intensity, gully head advance, soil detachment, factored soil detachment, runoff, and runoff rate database collected over a three-year period as predictors. Three evolutionary trials were executed, and three models were presented considering different permutations of the predictors. The performance evaluation of the three models showed that trial 3 with the highest parametric permutation, i.e., that included the influence of all the studied parameters showed the least error of 0.1 and the maximum coefficient of determination (R2) of 0.97 and as such is the most efficient, robust, and applicable GP model to predict the soil loss value.
      PubDate: Tue, 21 Sep 2021 06:35:01 +000
       
  • Evaluation of Soil Quality in Arid Western Fringes of the Nile Delta for
           Sustainable Agriculture

    • Abstract: Egypt is currently witnessing an extensive desert greening plan with a target of adding one and a half million feddans to the agricultural area. The present study evaluates the soil quality in the western desert fringes of the Nile Delta using three indicator datasets, which involve the total dataset (TDS), the minimum dataset (MDS), and the expert dataset (EDS). Three quality index models are included: the Additive Soil Quality Index (SQI-A), the Weighted Additive Soil Quality Index (SQI-W), and the Nemoro Soil Quality Index (SQI-N). Linear and nonlinear scoring functions are evaluated for scoring soil and terrain indicators. Thirteen soil quality indicators and three terrain indicators were measured in 397 sampling sites for soil quality evaluation. Factor analyses determined five soil and terrain indicators for the minimum dataset and their associated weights. The linear scoring functions reflected the soil system functions more than nonlinear scoring functions. Soil quality estimation by the minimum dataset (MDS) and Weighted Additive Soil Quality Index (SQI-W) is more sensitive than that by SQI-A and SQI-N quality models to explain soil quality indicators. The moderate soil quality grade is the largest quality grade in the studied area. The minimum dataset of soil quality indicators could assist in reducing time and cost of evaluating soil quality and monitoring the temporal changes in soil quality of the region due to the increased agricultural development.
      PubDate: Mon, 20 Sep 2021 11:35:00 +000
       
  • The Influence of Different Seeding Application Rates and Sowing Time on
           Maize Hybrids’ Productivity in the Conditions of the Republic of
           Bashkortostan’s Southern Forest-Steppe Zone

    • Abstract: Maize takes the leading place in yield and is one of the most common crops in the world. Selection of the optimal seeding application rate and time is among the central issues in maize cultivation technology and is highly relevant. The research made in 2018–2020 aimed at improving the maize technology block for grain (seeding application rate and sowing time, southern forest-steppe, the Republic of Bashkortostan). For this purpose, a field experiment was launched in a fourfold replication. The experimental design included hybrids: Nur, Mashuk 171, Baikal and Mashuk 220 with a planting density of 60 (control), 70, 80, and 90 thousand pcs/ha. The experiment revealed a high correlation dependence of the yield of green mass and grain on the sowing time (r = 0.876–0.915 and r = 0.951–0.963). In the conditions of the Republic of Bashkortostan’s southern forest-steppe, Baikal and Mashuk 171 hybrids are recommended to be used for animals and poultry diets and the planning of maize cultivation technological schemes at early sowing time (May 10) and a seeding application rate of 80 thousand pcs/ha. The results of the research apply to the formation of agricultural feeding diets.
      PubDate: Thu, 16 Sep 2021 09:50:02 +000
       
  • Impacts of Land Cover and Greenness Change on Soil Loss and Erosion Risk
           in Damota Area Districts, Southern Ethiopia

    • Abstract: Soil erosion is a key problem in Ethiopia in view of tropical climate, lack of vegetation, and landscape relief. Therefore, soil and water conservation (SWC) measures have been practiced, but their impacts on soil loss have not been estimated adequately. The RUSLE modeling was applied using satellite imageries, ASTER GDEM, rainfall, and soil data to estimate total annual soil loss for a 100 km2 hilly and highly populated area in Ethiopia. Soil loss decreased in the Damota districts from 21 to 13 million tons from 2000 to 2020. Similarly, the average annual soil loss decreased by 36%. Very slight-risk areas ( 50 t ha−1 yr−1) decreased from 12 to 5%. Soil and water conservation measures showed an important implication against soil erosion through improved land cover and landscape greenness. However, still, the rate of soil erosion is high compared to the soil loss tolerance of 1–6 t ha−1 yr−1 for the Ethiopian highlands.
      PubDate: Thu, 16 Sep 2021 09:50:01 +000
       
  • Geospatial Analysis of Soil Erosion including Precipitation Scenarios in a
           Conservation Area of the Amazon Region in Peru

    • Abstract: The Tilacancha Private Conservation Area provides fresh water to the city of Chachapoyas. Therefore, the amount of soil lost in the year and under precipitation scenarios was determined. Individually, the values of the factors were obtained: rain erosivity (R) in 2019 and simulating increase and decrease of 15% of rainfall, soil erodibility (K), length and degree of slope (LS), land cover (C), and conservation practices (P); they were integrated into USLE, obtaining A = R  K  LS  PC, (t/ha.yr). Six ranges of erosion were found, and the ACP had areas where from 0.4 to 665.20 t/ha.yr of soil was lost. A 15% reduction in rainfall would represent a loss of soil from 0.20 to 301.56 t/ha.yr and an increase in rainfall by 15%, and the erosion ranges would vary from 0.2 to 1028.84 t/ha.yr.
      PubDate: Wed, 08 Sep 2021 09:20:00 +000
       
  • Source Identification and Spatial Distribution of Heavy Metal
           Concentrations in Shallot Fields in Brebes Regency, Central Java,
           Indonesia

    • Abstract: Shallots have been widely planted as the primary commodity crop in Brebes Regency, Central Java, Indonesia. Information on the distribution of heavy metals in the shallot fields of Brebes Regency, Central Java, Indonesia, is not yet available. Hence, the present study was conducted to identify the concentration and spatial distribution of several heavy metals (Pb, Cd, Co, Cr, and Ni) and their possible sources in the shallot fields through a field survey and a series of laboratory and statistical tests. The total concentration of heavy metals was analyzed from 184 sampling points of the shallot fields in Brebes Regency, Central Java, Indonesia, during the dry season from August to October 2019. The heavy metals concentration was as follows: Cr > Ni > Pb > Co > Cd. The values of total Pb, Cd, Co, Cr, and Ni concentrations in the soils were 7.84–18.94, 0.99–2.31, 3.02–9.98, 10.40–49.55, and 10.17–26.62 mg kg−1, respectively. All these concentration values of heavy metals are still lower than the critical values for agricultural soils and lower than the topsoil background values except Cd. Based on the concentration of heavy metals, the shallot fields in Brebes Regency, Central Java, are classified as uncontaminated soils. Multivariate and geostatistical analyses were employed to determine and describe the metals’ origin. Pb, Cr, and Ni mainly originate from a natural source, while Cd and Co are from anthropogenic sources (agricultural practices and industry).
      PubDate: Wed, 25 Aug 2021 15:20:03 +000
       
  • Assessment of Soil Erosion and Its Impact on Agricultural Productivity by
           Using the RMMF Model and Local Perception: A Case Study of Rangun
           Watershed of Mid-Hills, Nepal

    • Abstract: Soil erosion is a major concern for the environment and natural resources leading to a serious threat to agricultural productivity and one of the major causes of land degradation in the mid-hills region of Nepal. An accurate assessment of soil erosion is needed to reduce the problem of soil loss in highly fragile mountainous areas. The present study aimed to assess spatial soil loss rate and identified risk areas and their perceived impact on agricultural productivity by using the Revised Morgan–Morgan–Finney (RMMF) model and social survey in the Rangun watershed of Dadeldhura district, Nepal. Soil erosion was assessed by using data on soil, digital elevation model, rainfall, land use, and land cover visually interpreted from multitemporal satellite images, and ILWIS 3.3 academic software was used to perform the model. A household questionnaire survey (n = 120) and focus group discussion (n = 2) in identified risk areas were carried out to understand the people’s perception towards soil erosion and its impact on agricultural productivity. The predicted average soil erosions from the forest, agriculture, and barren land were 2.7 t ha−1 yr−1, 53.73 t ha−1 yr−1, and 462.59 t ha−1 yr−1, respectively. The erosion risk area under very low to low, moderate to moderately high, and high to very high covers 92.32%, 4.96%, and 2.73%, respectively. It indicates that the rate of soil erosion was lower in forest areas, whereas it was higher in the barren land. The cropped area of the watershed has been reduced by 2.96 ha−1 yr−1, and productivity has been decreased by 0.238 t ha−1 yr−1. The impacts such as removal of topsoil (weighted mean = 4.19) and gully formation (weighted mean = 3.56) were the highest perceived factors causing productivity decline due to erosion. People perceived the impact of erosion in agricultural productivity differently (significant at ). The study concluded that, comparatively, barren and agricultural lands seem more susceptible to erosion, so the long-term conservation and management investment in susceptible areas for restoration, protection, and socioeconomic support contribute significantly to land rehabilitation in the Rangun watershed.
      PubDate: Fri, 13 Aug 2021 14:20:12 +000
       
  • Growth, Nitrogen Uptake of Maize (Zea mays L.) and Soil Chemical
           Properties, and Responses to Compost and Nitrogen Rates and Their Mixture
           on Different Textured Soils: Pot Experiment

    • Abstract: Integrated nutrient management, which primarily involves the combined application of organic and inorganic nutrient sources, is one of the simplest approaches to handle declining soil fertility challenges and increase crop productivity and production. Keeping in view this fact, a pot experiment was conducted to evaluate the effects of compost and inorganic nitrogen fertilizer and their mixture on soil properties, growth, and nitrogen uptake of maize on loam and clay textured soils at the Awada Agricultural Research Subcenter. Treatments comprised factorial combinations of five compost rates (0, 5, 10, 15, and 20 t·ha−1) and four rates of inorganic nitrogen fertilizer (0, 46, 92, and 138 kg·N·ha−1) laid out as a completely randomized design with three replications. Results showed that both the main and interaction effects of compost and mineral N fertilizer rates significantly affected the selected soil chemical properties and yield, and nitrogen concentration of maize. There were significant associations between plant parameters and soil nitrogen contents. The addition of 92 kg·ha−1·N + 10 t·ha−1 compost and 46 kg·ha−1·N + 10 t·ha−1 compost was the best treatments for loam and clay textured soils of the study areas, which improved shoot dry matter by 179.5 and 284.5%, compared to the unfertilized pot, respectively. From the results of this experiment, we concluded that the integrated application of compost and mineral nitrogen fertilizer enhanced soil chemical properties and thus improved nitrogen uptake and sustainable production of maize in the study areas.
      PubDate: Mon, 09 Aug 2021 11:05:06 +000
       
  • Changes in Soil Phosphorus Pools and Chemical Properties under Liming in
           Nitisols of Farawocha, South Ethiopia

    • Abstract: Understanding the nutrient dynamics in acid soil is fundamental to carry out proper management. The study was conducted to investigate phosphorus (P) pools and selected properties under different rates of lime for acid nitisols of Farawocha, Southern Ethiopia. Four lime rates incubated for a month in three replications were tested. The lime rates were 0 t/ha (0%), 5.25 t/ha (50%), 10.5 t/ha (100%), and 15.75 t/ha (150%). Lime requirement (LR) for 100% was calculated targeting soil pH of 6.5. Data on the P pools such as soluble P (P-sol) and bounded forms of P with iron (Fe-P), aluminum (Al-P), calcium (Ca-P), organic part (Org-P), residual P (Res-P), and total of P fractions were measured. In addition, changes in soil chemical properties such as pH, exchangeable acidity, calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), copper (Cu), boron (B), zinc (Zn), and manganese (Mn) were analyzed. The result showed that total P was 357.5 mg/kg. Compared to nontreated soil, liming at a rate of 15.75 t/ha significantly improved P-sol (34.2%, r2 = 0.88), Ca-P (61.6%, r2 = 0.92), and Res-P (195%, r2 = 0.94); however, it reduced Fe-P (58.5%, r2 = −0.83), Al-P (71%, r2 = −0.97), and Org-P (19.1%, r2 = 0.93). Overall, the P-associated fractions in the soil, regardless of the lime rates, were in the order of Org_P > Res_P > Fe_P > Ca_P > Al_P > P-sol. Liming raised soil pH by 2.1 units (4.5 to 6.6) over nonlimed soil, whereas it reduced exchangeable acidity from 4.18 to 0.23 meq/100 g soil. Available P, Ca, Mg, S, Cu, Zn, and B contents were significantly improved with lime application. However, liming reduced Fe and Mn contents. In conclusion, these findings showed that liming facilitated the release of P from various pools, modified pH and exchangeable acidity, and resulted in beneficial changes for most of the soil chemical properties.
      PubDate: Wed, 04 Aug 2021 08:35:03 +000
       
  • Land Use/Land Cover Change Impact on Hydrological Process in the Upper
           Baro Basin, Ethiopia

    • Abstract: Understanding the hydrological process associated with Land Use/Land Cover (LU/LC) change is vital for decision-makers in improving human wellbeing. LU/LC change significantly affects the hydrology of the landscape, caused by anthropogenic activities. The scope of this study is to investigate the impact of LU/LC change on the hydrological process of Upper Baro Basin for the years 1987, 2002, and 2017. The Soil Water Assessment Tool (SWAT) model was used for the simulation of the streamflow. The required data for the SWAT model are soils obtained from the Food and Agriculture Organization; Digital Elevation Model (DEM) and LU/LC were obtained from the United States Geological Survey (USGS). The meteorological data such as Rainfall, Temperature, Sunshine, Humidity, and Wind Speeds were obtained from the Ethiopian National Meteorological Agency. Data on discharge were obtained from Ministry of Water, Irrigation and Electricity. Ecosystems are deemed vital. Landsat images were used to classify the LU/LC pattern using ERDAS Imagine 2014 software and the LU/LC were classified using the Maximum Likelihood Algorithm of Supervised Classification. The Sequential Uncertainty Fitting (SUFI-2) global sensitivity method within SWAT Calibration and Uncertainty Procedures (SWAT-CUP) was used to identify the most sensitive streamflow parameters. The calibration was carried out using observed streamflow data from 01 January 1990 to 31 December 2002 and a validation period from 01 January 2003 to 31 December 2009. LU/LC analysis shows that there was a drastic decrease of grassland by 15.64% and shrubland by 9.56% while an increase of agricultural land and settlement by 18.01% and 13.01%, respectively, for 30 years. The evaluation of the SWAT model presented that the annual surface runoff increased by 43.53 mm, groundwater flow declined by 27.58 mm, and lateral flow declined by 5.63 mm. The model results showed that the streamflow characteristics changed due to the LU/LC change during the study periods 1987–2017 such as change of flood frequency, increased peak flows, base flow, soil erosion, and annual mean discharge. Curve number, an available water capacity of the soil layer, and soil evaporation composition factor were the most sensitive parameters identified for the streamflow. Both the calibration and validation results disclosed a good agreement between measured and simulated streamflow. The performance of the model statistical test shows the coefficient of determination (R2) and Nash–Sutcliffe (NS) efficiency values 0.87 and 0.81 for calibration periods of 1990–2002 and 0.84 and 0.76 for the validation period of 2003 to 2009, respectively. Overall, LU/LC significantly affected the hydrological condition of the watershed. Therefore, different conservation strategies to maintain the stability and resilience of the ecosystem are vital.
      PubDate: Thu, 29 Jul 2021 05:05:01 +000
       
  • Soil Properties as Affected by Soil Conservation Practices and Soil Depths
           in Uwite Watershed, Hadero Tunto District, Southern Ethiopia

    • Abstract: Soil is a precious natural resource, forming the basis for sustained ecosystem services for the mankind. Its degradation due to the ever-increasing anthropogenic influence is, however, threatening food security and quality of the environment in many regions. The present investigation was, therefore, undertaken with an objective of assessing the effect of soil and water conservation practices of soil bund and Fanya juu terrace compared to no conservation practice on cultivated soils of Uwite watershed in Hadero Tunto District, southern Ethiopia. Soil sampling sites were selected both from the farm fields, where soil conservation structures were raised for the last 10 years, and from fields where there was no conservation practice. A total of eighteen composite soil samples (3 conservation practices × 2 depths, 0–15 and 15–30 cm, ×3 replicates) were collected and analyzed for different physical and chemical soil parameters. The results were subjected to analysis of variance using the General Linear Model of two-way ANOVA by RCBD with factorial arrangement using SAS software. Both practices, statistically similar to each other, indicated significant improvement in soil parameters compared to no conservation practice in higher content of clay, lower bulk density, higher total porosity, higher moisture content, higher pH, higher soil organic matter, higher percent base saturation, higher cation exchange capacity, and higher amounts of macro- (N, P, K, Ca, Mg, and S) and micronutrients (Fe, Zn, and Cu). The surface soil layer (0–15 cm) was significantly superior to the subsurface layer (15–30 cm) in most of these soil parameters. Both practices of soil bund and Fanya juu terrace merit their continuation on the existing lands and upscaling to other degraded areas for sustained land productivity and socioeconomic-environmental stability in the region
      PubDate: Wed, 21 Jul 2021 10:20:01 +000
       
  • Response of Bread Wheat (Triticum aestivum L.) to Potassium (K) and
           Blended NPS Fertilizer Rates in the Nitisols of Southern Ethiopia

    • Abstract: Wheat is the most important cereal crop ranking 4th in total grain production and area coverage in Ethiopia. However, its productivity is low compared to the yield obtained under the research station. Multinutrient deficiency, low/no chemical fertilizer usage, and poor management practices are among the major constraints. Thus, response of bread wheat to NPS and K fertilizer rates was evaluated in the nitisols at Kokate, Wolaita Sodo, Southern Ethiopia, in 2016. Four rates of KCl (0-0-60) (0, 25, 50, and 75 kg·ha−1) and five blended NPS (19N-38P2O5-7S) rates (0, 50, 100, 150, and 200 kg·ha−1) were investigated using randomized complete block design with factorial arrangement involving three replications. Soil physical and chemical properties, crop phenology, growth parameters, yield components, and yield data were collected. Analysis of variance showed that crop phenology, productive tillers, and straw yield were significantly affected by KCl and NPS fertilizer rates; however, most of growth parameters, yield components, grain yield, and agronomic efficiency were influenced by the interaction effects of KCl and NPS fertilizers. Combined application of 50 kg·ha−1 KCl and 150 kg·ha−1 NPS resulted in highest growth, yield component, grain yield, agronomic efficiency, and economic return, whereas the lowest measured values were recorded from unfertilized plots. The maximum grain yield (4.34 t ha−1) that was recorded from 50 kg·ha−1 KCl and 150 kg·ha−1 NPS was 8.86-fold higher than the minimum yield (0.44 t ha−1) from the control. It is concluded that 50 kg·ha−1 KCl and 150 kg·ha−1 NPS are suggested for better agronomic and economic performance of wheat. As NPS was tested in the blended form, the individual and interaction effects of nutrients under investigation are suggested as future research areas. Additional investigation over season and location is also recommended.
      PubDate: Wed, 30 Jun 2021 13:50:02 +000
       
  • Effects of Soil and Water Conservation Structures on Selected Soil
           Physicochemical Properties: The Case of Ejersa Lafo District, Central
           Highlands of Ethiopia

    • Abstract: Land degradation in the form of soil erosion and fertility depletion is the major environmental problem in Ethiopia. However, to curb this problem, soil and water conservation (SWC) structures are commonly practiced in many rural parts of Ethiopia. This study was conducted to assess the effects of SWC structures on selected soil physicochemical properties in Ejersa Lafo district. For this study, two kebeles (peasant associations) were selected purposively from the district based on the severity of soil erosion and information on SWC practices. The research design employed in this study was systematic, randomized, complete block design. A total of 12 composite soil samples were collected from the depth of 0 to 20 cm at two subwatersheds, namely, Jamjam laga batu and Koriso Odo guba with SWC and without SWC structures at three landscape positions. All the soil samples were analyzed following the standard and recommended procedures. The effect of independent variables (SWC practices and landscape positions) on the dependent variables (soil properties) was statistically tested using the SPSS computer program 21. In this study, most of the selected soil physicochemical properties were affected by watershed management intervention (SWC) structures. Soil moisture content (SMC), clay, pH, electrical conductivity (EC), total N (TN), available (AP), available K (AK), and organic carbon (OC) were higher in the subwatershed treated with SWC structures (conserved), whereas bulk density, silt, and sand were higher in the subwatershed without SWC structures (nonconserved). Most of the selected soil chemical properties were significantly varied () between conserved and nonconserved farm land except EC. All the selected soil physicochemical properties did not show any significant variation () at landscape positions except sandy soil. The physicochemical soil properties of selected parameters were in good conditions in the conserved areas with higher N and OM and lower BD, indicating fertility of the soil compared with the nonconserved land. The implementation of SWC structures improved some of the physicochemical properties of soil, such as SMC, clay particle, pH, EC, total N, AP, AK, and OC in the study area. Furthermore, efforts are required to enhance community adoption towards soil and water conservation. Additionally, further research has to be carried out on socioeconomic aspects and impacts of the intervention on crop productivity for better understanding of the sustainable use of the land.
      PubDate: Wed, 23 Jun 2021 07:05:01 +000
       
  • Spatial Variability and Geostatistical Analysis of Soil Properties in the
           Diversified Cropping Regions of Bangladesh Using Geographic Information
           System Techniques

    • Abstract: Mapping of soil properties is an important operation as it plays an important role in the knowledge about soil properties and how it can be used sustainably. The study was carried out in a local government area in Bangladesh in order to map out some soil properties and assess their variability within the area. From the study area, a total of 92 soil samples (0–20 cm) were collected from different cropping patterns at an interval of 2.2 × 2.2 km2 on a regular grid design. A portable global positioning system (GPS) was used to collect coordinates of each sampling site. Then, soil properties, that is, pH, electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (Total N), and soil available nutrients (P, K, and S) were measured in the laboratory. After the normalization of data, classical statistics were used to describe the soil properties, and geostatistical analysis was used to illustrate the spatial variability of the soil properties by using kriging interpolation techniques in a GIS environment. Results show that the spatial distribution and spatial dependency level of soil properties can be different even within the small or large scale. According to cross-validation results, for most soil properties, the kriging interpolation method provided the least interpolation error. The generated maps of soil properties that indicate soil nutrient status over the study region could be helpful for farmers and decision-makers to enhance site-specific nutrient management. Also, these prototype maps would be helpful for future nutrient and fertilizer applications management, including a site-specific condition to not only reduce the cost of input management but also prevent any environmental hazard. It also demonstrates that the effectiveness of geostatistics and GIS techniques provided a powerful tool for this study in terms of regionalized nutrient management.
      PubDate: Wed, 16 Jun 2021 11:35:01 +000
       
  • Variability of Bimodal Soil-Water Characteristic Curves under Different
           Confining Pressures

    • Abstract: Soils with two subcurves of Soil-Water Characteristic Curve (SWCC) (dual porosity soils) might be found within various residual soils. Soils located in different depths have different confining pressure. Residual soils are found in the unsaturated zones due to the deep groundwater table. There is a linear correlation between the hydraulic properties of the soil in the unsaturated area and that of its unsaturated properties. This study aims to examine the influence of the confining pressure towards the SWCC of dual porosity soil. The scope of this study involves measurements of the drying and wetting SWCC using Tempe cells, pressure plates, and an advanced triaxial apparatus. In this study, the mathematical equations were developed to explain the effect of confining pressure on SWCC. The experimental results indicated that the dual porosity soil exhibits bimodal characteristics for the drying curve of SWCC and it exhibits unimodal characteristics for the wetting curve of SWCC. As the confining pressure increases, the air entry values, the inflection points, and the standard deviation of drying SWCC increase. In addition, the hysteresis of SWCC is becoming smaller with the increasing confining pressure.
      PubDate: Mon, 07 Jun 2021 12:20:01 +000
       
  • Ecological and Edaphic Drivers of Yam Production in West Africa

    • Abstract: Yam is an important food and cash crop in West Africa (the yam belt) whose production is traditionally nonsedentary due to its substantial nutrient demand. Population growth, urbanization, and existing soil degradation have made nonsedentary farming virtually impossible. Despite the numerous research invested in yam production within and outside the yam belt, some gaps remain to be filled owing to changing climate events and global developments. Alarmingly, the yam belt is facing sharp yield declines despite increasing production areas. The key edaphic and ecological drivers of yam production in the global yam belt were reviewed. The implications for yam production were discussed along with prospects for future research, sustainable production, and soil management. The main findings are that (1) agroecological zone, postplanting cultural practices, and climate change and variability ecological drivers, while (2) tillage, soil type, texture, and fertility were the edaphic factors. The most critical among the drivers, principally, soil fertility, entails the biological and chemical through which nutrients are released lude, and physical soil fertility which enhances low bulk density, porosity, and water retention for free yam tuber expansion. Soil fertility was the most cited driver, which explains why yam is often the first crop in the cropland cultivation cycle in the yam belt. Data show that yam yields decline with time under native fertility and mineral fertilizer application due to the voracious nutrient extraction by tubers. Conversely, yields increase chronologically under organic fertilizer application due to the additive effects of the latter on soil properties. Thus, a yam fertilizer program to develop specific yam fertilizer formulations and the adoption of the Terra Preta Model are proposed to sustain future yam production.
      PubDate: Fri, 04 Jun 2021 05:35:01 +000
       
  • Increasing the Efficiency of Detailed Soil Resource Mapping on
           Transitional Volcanic Landforms Using a Geomorphometric Approach

    • Abstract: For developing countries, detailed soil resource data and maps are essential in land-use planning. Unfortunately, obtaining detailed soil data for mapping is expensive. Detailed soil studies and mapping in developing countries often use the grid method. In addition to being time-consuming, the grid method needs a lot of sample points and surveyors. Geomorphometry can be a less expensive alternative for detailed soil mapping. Geomorphometry uses computationally measured terrain characteristics to describe other hard-to-measure terrain and soil properties. In our study, landform arrangements and slopes were analyzed together to create a map of soil pH. Bompon watershed, Indonesia, was used as a case study. Soil mapping units with potentially similar soil pH were created based on a classification system of the two geomorphometric parameters. Soil samples were taken from each of the units. The samples' soil pH was measured and compared to the geomorphometric predicted result. Regression tests were performed to see the significance of geomorphometric parameters on soil pH conditions. Regression tests show that the results of value of the four soil layers are 0.046, 0.019, 0.037, and 0.047, respectively, on a 5% confidence level. According to the test result, landform arrangements and slopes can indicate soil pH conditions in Bompon. Our estimate suggests that our geomorphometric method is cheaper than the grid method by a factor of seven. The ability to use geomorphometric parameters to describe other soil properties could enable a cheap and fast production of detailed soil maps for developing countries.
      PubDate: Mon, 31 May 2021 05:20:00 +000
       
  • Investigating Peat Soil Stratigraphy and Marine Clay Formation Using the
           Geophysical Method in Padas Valley, Northern Borneo

    • Abstract: A geophysical survey including electrical resistivity tomography (ERT), induced polarization (IP), and seismic refraction (SR) was carried out to estimate peatland thickness in Beaufort District, Eastern Malaysia. Peatlands are important natural carbon storage and play a key role in the global carbon cycle. The ERT and IP studies were performed along three profiles over different peat thicknesses using Schlumberger configuration. The SR survey was carried out using vertical geophones along the same profiles. The peat soil material was characterized by low seismic velocity and high resistivity. Our results show that ERT and IP methods were able to clearly detect the interface between the peat soil and marine clay underneath. These layers differ greatly in geoelectrical characteristics showing clear contrast, thus enabling the delineation of peat soil stratigraphy, while the SR image obtained was not able to determine the base of the peat soil layer as the stiffness difference on the transition layer was very small. Overall, it was concluded that the ERT and IP method offer a useful alternative in delineating the peat soil stratigraphy. The combined application of ERT and IP method with the conventional boring method meets the demand for large volume peat stratigraphy mapping, which, moreover, has various ecological conditions and undulating strata.
      PubDate: Thu, 20 May 2021 12:05:01 +000
       
  • Role of Local Biofertilizer in Enhancing the Oxidative Stress Defence
           Systems of Date Palm Seedling (Phoenix dactylifera) against Abiotic Stress
           

    • Abstract: Among the abiotic stresses, drought is the first environmental stress responsible for a decrease in agricultural production worldwide; it affects plants in various ways, including slowing down plant growth and disrupting its general physiology. Arbuscular mycorrhizal symbiosis and plant growth-promoting rhizobacteria (PGPR) are considered to be the bioameliorators of the plant’s resistance to water stress. The present study investigated the effects of inoculation with arbuscular mycorrhizal fungi (AMF) and PGPR on the water status and antioxidant enzyme activities of date palm seedlings grown under water stress conditions. The parameters related to the plant’s water status were significantly () higher in the plants treated with mycorrhizae and mycorrhizae + bacteria compared with their respective controls, especially under water stress conditions. The maximum proline content was obtained in plants inoculated with the AMF species and PGPR (combined) under severe water stress conditions reaching a value of 2.588 ± 0.034 in 25% field capacity, compared with 0.978 ± 0.024 for the control. In addition, the inoculated seedlings showed notably lower activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST) in response to severe water stress compared with nonmycorrhizal seedling. Overall, the arbuscular mycorrhizal symbiosis and PGPR bacteria inoculation could be promising methods to enhance date palm resistance against oxidative stress.
      PubDate: Tue, 18 May 2021 10:20:00 +000
       
  • Microbial Surface Treatment of Sand with Sporosarcina pasteurii to Improve
           the Wind Erosion Resistance in Urmia Lake

    • Abstract: Background. In this research, the potential of the microbially induced carbonate precipitation method for the surface treatment of sand samples of Jabal Kandi dunes, located in the adjacency of Urmia Lake in the northwest of Iran, was considered. Methods. Sporosarcina pasteurii was used as ureolytic bacteria for the preparation of the microbial solution. Corn steep liquor containing urea was used as an inexpensive growth media. The effects of the concentration of cementation solution and the number of treatment cycles were considered. Because of the presence of some hydrolyzed urea in the prepared microbial suspension, two methods of treatment, i.e., the mixed and separate addition of microbial solution and cementation solution to the sand surface, were investigated. Penetration and erosion resistance of the microbial treated sand (sand crust) were measured using a handheld penetrometer and a wind tunnel system. Results. The results showed that the penetration and erosion resistance of the treated sand samples via microbial-induced carbonate precipitation method were improved significantly. In the method with the separate addition of microbial and cementation solutions to the sand surface, a stable sand crust was created on top of the sand. Discussion. This study tried to optimize the microbial application of Sporosarcina pasteurii for surface treatment of sand via microbial-induced carbonate precipitation. Significant and results showed that this method can be used on the field scale for the stabilization of sand dunes. The advanced biotechnology application of this bacterium can be used as an environmentally friendly and safe method instead of other methods.
      PubDate: Wed, 05 May 2021 05:50:02 +000
       
  • Physicochemical Characterization of Regional Clay: Application to Phenol
           Adsorption

    • Abstract: Phenol is one of the most toxic pollutants found in industrial waste. This work focuses on the removal of phenol using clay from the Sale region. Adsorbent was characterized by X-ray fluorescence spectroscopy, X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. The chemical analysis of this clay shows that the percentage of silicon and aluminium is quite high, and the percentage of calcium and iron is relatively high, so this material is rich in muscovite, quartz, and calcite. In addition to the presence of titanium dioxide (TiO2), which can give it a property of degradation of organic compounds under ultraviolet light, the pHPZC zero point of our material is 7.4. The results showed that the adsorption of phenol was well fitted by the pseudo-second-order kinetic model and the Langmuir and Freundlich isotherms and that the best retention is obtained at a pH between 3 and 8.
      PubDate: Tue, 04 May 2021 06:05:01 +000
       
  • Biodegradation of Weathered Petroleum Hydrocarbons Using Organic Waste
           Amendments

    • Abstract: Extraction, transport, and processing of petroleum products have resulted in inadvertent contamination of soil. Various technologies have been proposed for removal of petroleum hydrocarbon contaminants, including biological techniques. Treatment of aged (weathered) petroleum compounds is challenging, as these wastes tend to be enriched with recalcitrant hydrocarbons. The purpose of the reported study was to investigate remediation of weathered petroleum via simulated landfarming using selected soil amendments. Soil contaminated by aged crude petroleum from well fields in the southern Zagros region in Iran was treated in combination with plant compost, papermill sludge, activated carbon, and molasses. Over 15 weeks, the greatest percentage removal (40%) of total petroleum hydrocarbons (TPH) occurred in the molasses treatment, followed by a 29% reduction in the plant compost treatment. The degradation constant (k), produced by a kinetic model, demonstrated the performance of the molasses over the other treatments applied; experimental data adequately fitted into first-order kinetics (k = 0.005 d−1, t½ = 71 d). Benzene decomposition was greatest (77 and 74%) in the molasses and activated carbon treatments, respectively, and was lowest in the papermill sludge treatment (41%). FTIR analysis revealed loss of benzene in all treatments. Bacterial counts were highest (4.9 × 106 CFU/g) in the plant compost treatment and lowest (1 × 105 CFU/g) in the untreated oil-contaminated soil. Based on the findings of the current study, it is possible to successfully conduct landfarming of aged petroleum deposits; however, it is recommended that common and inexpensive amendments such as molasses and plant compost be used when feasible.
      PubDate: Mon, 03 May 2021 09:50:01 +000
       
  • Effectiveness of Community-Based Soil and Water Conservation in Improving
           Soil Property in Damota Area, Southern Ethiopia

    • Abstract: Soil and water conservation (SWC) is being advocated as an integral part of agricultural land management as it not only controls/minimizes soil erosion but also restores/rehabilitates the degraded lands. The purpose of this study was to evaluate the impact of soil and water conservation practices in improving soil fertility in the agricultural landscapes of the Damota area, southern Ethiopia. Forty-eight soil samples (both disturbed and core samples) were collected from the conserved and adjacent nonconserved plots. The significance analysis test was performed using analysis of variance. The result of the study showed that higher mean values of soil physicochemical properties were observed in the conserved plot than its nonconserved counterpart. The mean differences of organic carbon, total nitrogen, cation exchange capacity, and exchangeable K+ and Ca2+ between conserved and nonconserved plots were statistically significant at the level. Besides, available phosphorous and bulk density were significant at , but the effect of SWC practices was not found significant on soil texture, soil pH, and exchangeable Na+ and Mg2+ content of the soil in the Damota area. Community-based soil and water conservation practices have improved the soil fertility in agricultural landscapes, although significant results have been observed in some fertility indicators. Therefore, strengthening the implementation of conservation measures by participating in all stakeholders is recommended. Supporting physical structures by agronomic and vegetative measures and continued maintenance can bring better results.
      PubDate: Thu, 22 Apr 2021 11:05:01 +000
       
  • Effects of Shade and Biochar Application on the Quercetin Content of
           Longevity Spinach in Inceptisol

    • Abstract: Traditional medicines have been used in both developed and developing countries for a long time, one of which is longevity spinach (Gynura procumbens). Its plants are one type of plant that is used by the community to treat various diseases with their flavonoid content. This plant produces various flavonoids, such as quercetin, which can be optimized by providing shade and increasing nitrogen nutrients by giving biochar and fertilizing. This study aimed to determine the effects of biochar, shade, and fertilizer on the growth and quercetin content of Gynura procumbens plants. This research was arranged in a randomized complete block design (RCBD) with two factors. The first factor was the administration of biochar at four doses, consisting of B0 (without biochar), B10 (biochar 10 tons/ha), B15 (biochar 15 tons/ha), and B20 (biochar 20 tons/ha). Meanwhile, the second factor was the intensity of the shade with three levels of treatment, namely, I0 (without shade), I50 (50%), and I70 (70%). The results showed that the addition of 15 ton/ha of biochar with 70% shade increased the quercetin content by 0.51%.
      PubDate: Thu, 15 Apr 2021 05:35:01 +000
       
  • Changes in the Heavy Metal Levels in Highway Landscaping and Protective
           Effect of Vegetative Materials

    • Abstract: Anthropogenic activities due to increasing population and traffic density are responsible for a great portion of highway pollution. The heavy metal accumulation in highway routes poses a risk both for agricultural areas and residential areas. The study investigated the changes in heavy metal accumulation along a 200 km long portion of the D300 highway passing through Elazığ, Bingöl, and Muş, cities located in the Eastern Anatolia region of Turkey. The heavy metal accumulation in 46 soil samples collected in 2018 and 2019 from 5 different land classes was analyzed using the ICP-MS device in an accredited laboratory. The analysis results were explained using different statistical methods depending on the standard, annual change, land class, and vegetation. Although the majority of the soil samples were within acceptable levels, the chromium (Cr) and nickel (Ni) levels of certain samples were above the standard levels. Considering the land classes, compared with other areas, residential areas (RA) contained higher levels of zinc (Zn); agricultural areas (AA) contained higher levels of chromium (Cr), cobalt (Co), nickel (Ni), zinc (Zn), cadmium (Cd), and lead (Pb); and unqualified areas (UA) contained higher levels of copper (Cu). Considering vegetation, the tree- and bush-covered soil samples contained lower amounts of Cr, Co, Ni, Cu, and Cd but higher levels of Zn and Pb compared with herbaceous or bare soil samples. A similar case also applies to the soil samples that were covered with Quercus sp., a natural plant cover on the route. The results and other similar studies have shown that there should be at least 15 m long ecological corridors (pollution-resistant tree-bush vegetation) between highway routes and both agricultural and residential areas.
      PubDate: Wed, 14 Apr 2021 12:50:01 +000
       
  • Evaluation of Different Machine Learning Models for Predicting Soil
           Erosion in Tropical Sloping Lands of Northeast Vietnam

    • Abstract: Soil erosion induced by rainfall under prevailing conditions is a prominent problem to farmers in tropical sloping lands of Northeast Vietnam. This study evaluates possibility of predicting erosion status by machine learning models, including fuzzy k-nearest neighbor (FKNN), artificial neural network (ANN), support vector machine (SVM), least squares support vector machine (LSSVM), and relevance vector machine (RVM). Model evaluation employed a historical dataset consisting of ten explanatory variables and soil erosion featured four different land use managements on hillslopes in Northwest Vietnam. All 236 data samples representing soil erosion/nonerosion events were randomly prepared (80% for training and 20% for testing) to assess the robustness of the five models. This subsampling process was repeatedly carried out by 30 rounds to eliminate the issue of randomness in data selection. Classification accuracy rate (CAR) and area under receiver operating characteristic (AUC) were used to evaluate performance of the five models. Significant difference between different algorithms was verified by the Wilcoxon test. Results of the study showed that RVM model achieves the best outcomes in both training (CAR = 92.22% and AUC = 0.98) and testing phases (CAR = 91.94% and AUC = 0.97). Four other learning algorithms also demonstrated good performance as indicated by their CAR values surpassing 80% and AUC values greater than 0.9. Hence, these results strongly confirm the efficacy of applying machine learning models for soil erosion prediction.
      PubDate: Mon, 05 Apr 2021 13:20:01 +000
       
  • Statistical Modeling of Farmers’ Preference for Adaptation Strategies
           for Climate Change: The Case of Dera District, Oromia, Ethiopia

    • Abstract: Climate change is primarily detrimental to the agriculture sector and the influence of climate change is decreased by using appropriate adaptation strategies. Studies on climate change adaptation recognize the importance of specific area-based research for designing policies to respond to climate change. This study, therefore, was applied at the district level to examine farmers’ preference for climate change adaptation strategies and the factors determining their preference. The objective of this study is to identify and model factors that influence farmers’ preference of adaptation strategies to counter the impacts of climate change in the case of Dera District, North Shoa, Oromia, Ethiopia. Cross-sectional study design was used with the questionnaire being administered on a multistage sample of 460 households from selected kebeles in the district. Descriptive statistics, multinomial logit, and count regression analysis were used to analyze the collected data. The study revealed that the farmers perceived that temperature had been increasing and rainfall had been decreasing over the last 10 years. The results also indicated that planting trees was the most preferred and frequently applied adaptation strategy to climate change while changing planting dates was the least. The results from the multinomial logit, Poisson regression, and negative binomial analysis showed that age, source of information, household size, education level of household head, distance to output market, distance to input market, agroecological locations of the farm, tropical livestock unit, size of the farm, tenure, grade of the farm, distance of the farm, formal extension service, farmer-to-farmer extension, credit service, rainfall expectation, and temperature expectations were significant factors in determining the adaptation strategies preferred by the farmers.
      PubDate: Sat, 20 Mar 2021 05:35:01 +000
       
  • Soil Water Characteristics of Gleysols in the Bamenda (Cameroon) Wetlands
           and Implications for Agricultural Management Strategies

    • Abstract: Water budgeting in agriculture requires local soil moisture information as crops depend mainly on moisture available at root level. The present paper aims to evaluate the soil moisture characteristics of Gleysols in the Bamenda (Cameroon) wetlands and to evaluate the link between soil moisture content and selected soil characteristics affecting crop production. The work was conducted in the field and laboratory, and data were analyzed by simple descriptive statistics. The main results showed that the soils had a silty clayey to clayey texture, high bulk density, high soil organic carbon content, and high soil organic carbon stocks. The big difference between moisture contents at wilting point and at field capacity testified to very high plant-available water content. Also, the soils displayed very high contents of readily available water and water storage contents. The soil moisture characteristics give sigmoid curves and enabled noting that the Gleysols attain their full water saturation at a range of 57.68 to 91.70% of dry soil. Clay and SOC contents show a significant positive correlation with most of the soil moisture characteristics, indicating that these soil properties are important for soil water retention. Particle density, coarse fragments, and sand contents correlated negatively with the soil moisture characteristics, suggesting that they decrease soil water-holding capacity. The principal component analysis (PCA) enabled reducing 17 variables described to only three principal components (PCs) explaining 73.73% of the total variance; the first PC alone expressed 45.12% of the total variance, associating clay, SOC, and six soil moisture characteristics, thus portraying a deep correlation between these eight variables. Construction of contoured ditches, deep tillage, and raised ridges management techniques during the rainy season while channeling water from nearby water bodies into the farmland, opportunity cropping, and usage of water cans and other irrigation strategies are used during the dry season to combat water constraints.
      PubDate: Sat, 13 Mar 2021 06:20:02 +000
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.54.67
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-