Hybrid journal (It can contain Open Access articles) ISSN (Print) 1096-6080 - ISSN (Online) 1096-0929 Published by Oxford University Press[425 journals]
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 213 - 227 Abstract: AbstractPer- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed “forever chemicals,” is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes. PubDate: Thu, 09 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae061 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 228 - 234 Abstract: AbstractArguably the most famous principle of toxicology is “The dose makes the poison” formulated by Paracelsus in the 16th century. Application of the Paracelsus’s principle to mechanistic toxicology may be challenging as one compound may affect many molecular pathways at different doses with different and often nonlinear dose-response relationships. As a result, many mechanistic studies of environmental and occupational compounds use high doses of xenobiotics motivated by the need to see a clear signal indicating disruption of a particular molecular pathway. This approach ignores the possibility that the same xenobiotic may affect different molecular mechanism(s) at much lower doses relevant to human exposures. To amend mechanistic toxicology with a simple and concise guiding principle, I suggest recontextualization of Paracelsus’s following its letter and spirit: “The dose disrupts the pathway”. Justification of this statement includes observations that many environmental and occupational xenobiotics affect a broad range of molecular cascades, that most molecular pathways are sensitive to chemical exposures, and that different molecular pathways are sensitive to different doses of a chemical compound. I suggest that this statement may become a useful guidance and educational tool in a range of toxicological applications, including experimental design, comparative analysis of mechanistic hypotheses, evaluation of the quality of toxicological studies, and risk assessment. PubDate: Tue, 07 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae059 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 235 - 240 Abstract: AbstractThe ubiquitous existence of microplastics and nanoplastics raises concerns about their potential impact on the human reproductive system. Limited data exists on microplastics within the human reproductive system and their potential consequences on sperm quality. Our objectives were to quantify and characterize the prevalence and composition of microplastics within both canine and human testes and investigate potential associations with the sperm count, and weights of testis and epididymis. Using advanced sensitive pyrolysis-gas chromatography/mass spectrometry, we quantified 12 types of microplastics within 47 canine and 23 human testes. Data on reproductive organ weights, and sperm count in dogs were collected. Statistical analyses, including descriptive analysis, correlational analysis, and multivariate linear regression analyses were applied to investigate the association of microplastics with reproductive functions. Our study revealed the presence of microplastics in all canine and human testes, with significant inter-individual variability. Mean total microplastic levels were 122.63 µg/g in dogs and 328.44 µg/g in humans. Both humans and canines exhibit relatively similar proportions of the major polymer types, with PE being dominant. Furthermore, a negative correlation between specific polymers such as PVC and PET and the normalized weight of the testis was observed. These findings highlight the pervasive presence of microplastics in the male reproductive system in both canine and human testes, with potential consequences on male fertility. PubDate: Wed, 15 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae060 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 241 - 264 Abstract: AbstractAddressing human anatomical and physiological variability is a crucial component of human health risk assessment of chemicals. Experts have recommended probabilistic chemical risk assessment paradigms in which distributional adjustment factors are used to account for various sources of uncertainty and variability, including variability in the pharmacokinetic behavior of a given substance in different humans. In practice, convenient assumptions about the distribution forms of adjustment factors and human equivalent doses (HEDs) are often used. Parameters such as tissue volumes and blood flows are likewise often assumed to be lognormally or normally distributed without evaluating empirical data for consistency with these forms. In this work, we performed dosimetric extrapolations using physiologically based pharmacokinetic (PBPK) models for dichloromethane (DCM) and chloroform that incorporate uncertainty and variability to determine if the HEDs associated with such extrapolations are approximately lognormal and how they depend on the underlying distribution shapes chosen to represent model parameters. We accounted for uncertainty and variability in PBPK model parameters by randomly drawing their values from a variety of distribution types. We then performed reverse dosimetry to calculate HEDs based on animal points of departure for each set of sampled parameters. Corresponding samples of HEDs were tested to determine the impact of input parameter distributions on their central tendencies, extreme percentiles, and degree of conformance to lognormality. This work demonstrates that the measurable attributes of human variability should be considered more carefully and that generalized assumptions about parameter distribution shapes may lead to inaccurate estimates of extreme percentiles of HEDs. PubDate: Sat, 25 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae067 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 265 - 276 Abstract: AbstractSince long-term effects of heated tobacco products (HTP) on the progression of chronic obstructive pulmonary disease (COPD) are unknown, we used COPD mice model to compare immune cell-dependent pathological changes in the lungs of animals which were exposed to HTP or combustible cigarettes (CCs). We also performed intracellular staining and flow cytometry analysis of immune cells which were present in the blood of CCs and HTP users who suffered from immune cell-driven chronic obstructive respiratory diseases. CCs enhanced NLRP3 inflammasome-dependent production of inflammatory cytokines in lung-infiltrated neutrophils and macrophages and increased influx of cytotoxic Th1, Th2, and Th17 lymphocytes in the lungs of COPD mice. Similarly, CCs promoted generation of inflammatory phenotype in circulating leukocytes of COPD patients. Opposite to CCs, HTP favored expansion of immunosuppressive, IL-10-producing, FoxP3-expressing T, NK, and NKT cells in inflamed lungs of COPD mice. Compared with CCs, HTP had weaker capacity to promote synthesis of inflammatory cytokines in lung-infiltrated immune cells. Significantly lower number of inflammatory neutrophils, monocytes, Th1, Th2, and Th17 lymphocytes were observed in the blood of patients who consumed HTP than in the blood of CCs users, indicating different effects of CCs and HTP on immune cells’ phenotype and function. PubDate: Fri, 24 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae068 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 277 - 286 Abstract: AbstractA SEND toxicology data transformation, harmonization, and analysis platform were created to improve the identification of unique findings related to the intended target, species, and duration of dosing using data from multiple studies. The lack of a standardized digital format for data analysis had impeded large-scale analysis of in vivo toxicology studies. The CDISC SEND standard enables the analysis of data from multiple studies performed by different laboratories. This work describes methods to analyze data and automate cross-study analysis of toxicology studies. Cross-study analysis can be used to understand a single compound’s toxicity profile across all studies performed and/or to evaluate on-target versus off-target toxicity for multiple compounds intended for the same pharmacological target. This work involved development of data harmonization/transformation strategies to enable cross-study analysis of both numerical and categorical SEND data. Four de-identified SEND datasets from the BioCelerate database were used for the analyses. Toxicity profiles for key organ systems were developed for liver, kidney, male reproductive tract, endocrine system, and hematopoietic system using SEND domains. A cross-study analysis dashboard with a built-in user-defined scoring system was created for custom analyses, including visualizations to evaluate data at the organ system level and drill down into individual animal data. This data analysis provides the tools for scientists to compare toxicity profiles across multiple studies using SEND. A cross-study analysis of 2 different compounds intended for the same pharmacological target is described and the analyses indicate potential on-target effects to liver, kidney, and hematopoietic systems. PubDate: Sat, 08 Jun 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae072 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 287 - 298 Abstract: AbstractMale fertility depends on normal pubertal development. Di-(2-ethylhexyl) phthalate (DEHP) is a potent antiandrogen chemical, and exposure to DEHP during peripuberty can damage the developing male reproductive system, especially the testis. However, the specific cellular targets and differentiation processes affected by DEHP, which lead to testicular toxicity, remain poorly defined. Herein, we presented the first single-cell transcriptomic profile of the pubertal mouse testis following DEHP exposure. To carry out the experiment, 2 groups (n = 8 each) of 3-week-old male mice were orally administered 0.5% carboxymethylcellulose sodium salt or 100 mg/kg body weight DEHP daily from postnatal day 21–48, respectively. Using single-cell RNA sequencing, a total of 31 distinct cell populations were identified, notably, Sertoli and Leydig cells emerged as important targets of DEHP. DEHP exposure significantly decreased the proportions of Sertoli cell clusters expressing mature Sertoli markers (Sox9 and Ar), and selectively reduced the expression of testosterone synthesis genes in fetal Leydig cells. Through cell–cell interaction analyses, we observed changed numbers of interactions in Sertoli cells 1 (SCs1), Leydig cells 1 (LCs1), and interstitial macrophages, and we also identified cell-specific ligand gene expressions in these clusters, such as Inha, Fyn, Vcam1, and Apoe. Complementary in vitro assays confirmed that DEHP directly reduced the expression of genes related to Sertoli cell adhesion and intercellular communication. In conclusion, peripubertal DEHP exposure reduced the number of mature Sertoli cells and may disrupt testicular steroidogenesis by affecting the testosterone synthesis genes in fetal Leydig cells rather than adult Leydig cells. PubDate: Fri, 10 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae064 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 299 - 311 Abstract: AbstractRecent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence. PubDate: Wed, 15 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae062 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 312 - 323 Abstract: AbstractCardiovascular diseases (CVDs) are one of the major causes of death globally. In addition to traditional risk factors such as unhealthy lifestyles (smoking, obesity, sedentary) and genetics, common environmental exposures, including persistent environmental contaminants, may also influence CVD risk. Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated chemicals used in household consumer and industrial products known to persist in our environment for years, causing health concerns that are now linked to endocrine disruptions and related outcomes in women, including interference of the cardiovascular and reproductive systems. In postmenopausal women, higher levels of PFAS are observed than in premenopausal women due to the cessation of menstruation, which is crucial for PFAS excretion. Because of these findings, we explored the association between perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutanesulfonic acid in postmenopausal women from our previously established CVD study. We used liquid chromatography with tandem mass spectrometry, supported by machine learning approaches, and the detection and quantification of serum metabolites and proteins. Here, we show that PFOS can be a good predictor of coronary artery disease, whereas PFOA can be an intermediate predictor of coronary microvascular disease. We also found that the PFAS levels in our study are significantly associated with inflammation-related proteins. Our findings may provide new insight into the potential mechanisms underlying the PFAS-induced risk of CVDs in this population.This study shows that exposure to PFOA and PFOS is associated with an increased risk of cardiovascular disease in postmenopausal women. PFOS and PFOA levels correlate with amino acids and proteins related to inflammation. These circulating biomarkers contribute to the etiology of CVD and potentially implicate a mechanistic relationship between PFAS exposure and increased risk of cardiovascular events in this population. PubDate: Fri, 17 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae065 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 324 - 345 Abstract: AbstractConstitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease. PubDate: Mon, 06 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae057 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 346 - 356 Abstract: AbstractNuclear receptors such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator-activated receptor-alpha (PPARα), and transcription factors with nuclear receptor type activity such as aryl hydrocarbon receptor (AhR) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for the function of these 4 major xenosensors. Wild-type (WT) and hepatocyte-specific Hnf4a null (HNF4α-KO) mice were treated with the mouse-specific activators of AhR (TCDD, 30 µg/kg), CAR (TCPOBOP, 2.5 µg/g), PXR, (PCN, 100 µg/g), and PPARα (WY-14643, 1 mg/kg). Blood and liver tissue samples were collected to study receptor activation. TCDD (AhR agonist) treatment did not affect the liver-to-body weight ratio (LW/BW) in either WT or HNF4α-KO mice. Further, TCDD activated AhR in both WT and HNF4α-KO mice, confirmed by increase in expression of AhR target genes. TCPOBOP (CAR agonist) significantly increased the LW/BW ratio and CAR target gene expression in WT mice, but not in HNF4α-KO mice. PCN (a mouse PXR agonist) significantly increased LW/BW ratio in both WT and HNF4α-KO mice however, failed to induce PXR target genes in HNF4α-KO mice. The treatment of WY-14643 (PPARα agonist) increased LW/BW ratio and PPARα target gene expression in WT mice but not in HNF4α-KO mice. Together, these data indicate that the function of CAR, PXR, and PPARα but not of AhR was disrupted in HNF4α-KO mice. These results demonstrate that HNF4α function is critical for the activation of hepatic xenosensors, which are critical for toxicological responses. PubDate: Wed, 29 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae069 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 357 - 368 Abstract: AbstractAlthough iron (Fe) is the most biologically abundant transition metal, it is highly toxic when it accumulates as Fe2+, forming a labile Fe pool and favoring the Fenton reaction. This oxidative scenario leads to a type of caspase-independent programmed cell death, referred to as ferroptosis, where following processes take place: (i) Fe2+ overload, (ii) glutathione peroxidase 4 inactivation, (iii) lipid peroxidation, and (iv) glutathione depletion. The present study sought to evaluate the consequences of Fe2+ administration on ferroptosis induction in Caenorhabditis elegans. We demonstrated higher mortality, increased lipid peroxidation, reduced glutathione peroxidase activity, and morphological damage in dopaminergic neurons upon Fe2+ overload. Pharmacological intervention at the level of lipid peroxidation with ferrostatin-1 (250 μM) mitigated the damage and returned the biochemical parameters to basal levels, revealing the potential of this therapeutical approach. Finally, to assess the relationship between ferroptosis and dopamine in a Parkinsonian background, we evaluated the UA44 worm strain which overexpresses the alpha-synuclein protein in cherry-labeled dopaminergic neurons. We demonstrated that Fe2+ administration reduced lethality associated with similar alterations in biochemical and dopaminergic morphological parameters in wild-type animals. These experiments provide mechanistic-based evidence on the efficacy of a pharmacological approach to mitigate the physiological, biochemical, and morphological consequences of Fe2+ overload. At the same time, they encourage further research on the impact of the combined effects resulting from the genetic background and dopamine signaling in a Parkinsonian phenotype. PubDate: Thu, 16 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae066 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 369 - 381 Abstract: AbstractDrug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition. PubDate: Sat, 27 Apr 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae055 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 382 - 393 Abstract: AbstractIdiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1−/− mice are more susceptible to drug-induced liver injury, but PD-1−/− mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1−/− mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs. PubDate: Wed, 15 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae058 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 394 - 403 Abstract: AbstractThe zebrafish (Danio rerio) is becoming a critical component of new approach methods (NAMs) in chemical risk assessment. As a whole organism in vitro NAM, the zebrafish model offers significant advantages over individual cell-line testing, including toxicokinetic and toxicodynamic competencies. A transcriptomic approach not only allows for insight into mechanism of action for both apical endpoints and unobservable adverse outcomes, but also changes in gene expression induced by lower, environmentally relevant concentrations. In this study, we used a larval zebrafish model to assess the behavioral and transcriptomic alterations caused by subphenotypic concentrations of 2 chemicals with the same structural backbone, the endocrine-disrupting chemicals bisphenol A and tetrabromobisphenol A. Following assessment of behavioral toxicity, we used a transcriptomic approach to identify molecular pathways associated with previously described phenotypes. We also determined the transcriptomic point of departure for each chemical by modeling gene expression changes as continuous systems which allows for the identification of a single concentration at which toxic effects can be predicted. This can then be investigated with confirmatory cell-based testing in an integrated approach to testing and assessment to determine risk to human health and the environment with greater confidence. This paper demonstrates the impact of using a multi-faceted approach for evaluating the physiological and neurotoxic effects of exposure to structurally related chemicals. By comparing phenotypic effects with transcriptomic outcomes, we were able to differentiate, characterize, and rank the toxicities of related bisphenols, which demonstrates methodological advantages unique to the larval zebrafish NAM. PubDate: Fri, 10 May 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae063 Issue No:Vol. 200, No. 2 (2024)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 404 - 413 Abstract: AbstractAbsolute (ALW) and relative (RLW) liver weight changes are sensitive endpoints in repeat-dose rodent toxicity studies, and their changes are often used for quantitative assessment of health effects induced by hepatotoxic chemicals using the benchmark dose-response modeling (BMD) approach. To find biologically relevant liver weight changes to chemical exposures, we evaluated all data available for liver weight changes and associated liver histopathologic findings from the Toxicity Reference Database (ToxRefDB). Our analysis of 389 subchronic mouse and rat studies for 273 chemicals found significant differences in treatment-related ALW and RLW changes between dose groups with and without liver histopathologic changes. In addition, we demonstrate that chemical treatment-induced ALW and RLW changes can predict the presence of histopathologic findings and inform the selection of biologically relevant liver weight changes for BMD modeling and derivation of toxicity values. PubDate: Wed, 24 Apr 2024 00:00:00 GMT DOI: 10.1093/toxsci/kfae056 Issue No:Vol. 200, No. 2 (2024)