Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Climatic warming is forcing species to shift their ranges poleward, which has been demonstrated for many taxa globally. Yet, the influence of habitat types on within- and among-species variations of distribution shifts has rarely been studied, especially during the non-breeding season. Here, we investigated habitat-specific shift distances of northern range margins and directions of the distribution center based on long-term data of overwintering birds in Finland. Specifically, we explored influences of habitat type, species’ snow depth tolerance, species’ climatic niche and habitat specialization on range shifts during the past 40 years in 81 bird species. Birds overwintering in arable land shifted more clearly toward north compared to birds of the same species in rural and forest habitats, while the northern range margin shift distances did not significantly differ among the habitat types. Range shifts were more linked with the species’ snow depth tolerance rather than species’ climatic niche. Snow depth tolerance of species was negatively associated with the eastward shift direction across all habitats, while we found habitat-specific patterns with snow depth for northward shift directions and northern margin shift distances. Species with stronger habitat specializations shifted more strongly toward north as compared to generalist species, whereas the climatic niche of bird species only marginally correlated with range shifts, so that cold-dwelling species shifted longer distances and more clearly eastward. Our study reveals habitat-specific patterns linked to snow conditions for overwintering boreal birds and highlights the importance of habitat availability and preference in climate driven range shifts. PubDate: 2022-06-29
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Alder (Alnus spp.) and Pacific salmon (Oncorhynchus spp.) provide key nutrient subsidies to freshwater systems. In southwestern Alaska, alder-derived nutrients (ADNs) are increasing as alder cover expands in response to climate warming, while climate change and habitat degradation are reducing marine-derived nutrients (MDNs) in salmon-spawning habitats. To assess the relative influences of ADN and MDN on aquatic microbial community structure and function, we analyzed lake chemistry, bacterial community structure, and microbial metabolism in 13 lakes with varying alder cover and salmon abundance in southwestern Alaska. We conducted bioassays to determine microbial nutrient limitation and physical factors modulating microbial response to nutrient inputs (+N, +P and +NP treatments). Seasonal shifts in bacterial community structure (F = 7.47, P < 0.01) coincided with changes in lake nitrogen (N) and phosphorus (P) concentrations (r2 = 0.19 and 0.16, both P < 0.05), and putrescine degradation (r2 = 0.13, P = 0.06), suggesting the influx and microbial use of MDN. Higher microbial metabolism occurred in summer than spring, coinciding with salmon runs. Increased microbial metabolism occurred in lakes where more salmon spawned. Microbial metabolic activity was unrelated to alder cover, likely because ADN provides less resource diversity than MDN. When nutrients were added to spring samples, there was greater substrate use by microbial communities from lakes with elevated Chl a concentrations and large relative catchment areas (β estimates for all treatments > 0.56, all P < 0.07). Thus, physical watershed and lake features mediate the effects of nutrient subsidies on aquatic microbial metabolic activity. PubDate: 2022-06-23
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged. PubDate: 2022-06-22
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure. Here, we find that food-supplemented birds expended less energy than control birds because they spent more time at the colony. However, foraging trips of food-supplemented birds were only slightly shorter than control birds, implying that food-supplemented birds were limited by food availability at sea similarly to control birds. Late breeders expended less energy, suggesting that low-quality individuals may not intake the energy necessary for sustaining high-energy output. Food-supplemented birds had more offspring than control birds, but offspring number did not influence energy expenditure, supporting the idea that the birds reached an energy ceiling. Males and lighter birds expended more energy, possibly compensating for relatively higher energy intake. Chick-rearing birds were working near their maximum, with highest levels of expenditure for early-laying (high-quality) individuals foraging at sea. Due to fluctuating marine environments, kittiwakes may be forced to change their foraging behaviors to maintain the balance between reproduction and survival. PubDate: 2022-06-18
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates (‘herbivory’) in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4–18.8 °C), multi-annual mean temperature (range 6.5–10.0 °C), local plant richness (species and family level, ranges 10–51 species, 5–25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2–3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature—except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses. PubDate: 2022-06-17
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Telomeres are specialized non-coding DNA sequences located at the end of chromosomes and that protect genetic information. Telomere loss over lifespan is generally viewed as a phenomenon associated with aging in animals. Recently, telomere elongation after hibernation has been described in several mammals. Whether this pattern is an adaptation to repair DNA damage caused during rewarming from torpor or if it coevolved as a mechanism to promote somatic maintenance in preparation for the upcoming reproductive effort remains unclear. In a longitudinal study measuring telomere length using buccal swabs, we tested if telomere elongation was related to reproductive success in wild adult female Columbian ground squirrels (Urocitellus columbianus) that were monitored from emergence from hibernation to the end of the reproductive season. We found three key results. First, female telomere length increased at the start of the breeding season, both in breeding and non-breeding individuals. Second, post-emergence telomere lengthening was unrelated to female future reproductive output. Third, telomere length decreased in breeding females during lactation, but remained stable in non-breeding females over a similar period. Within breeders, telomeres shortened more in females producing larger and heavier litters. We concluded that telomere lengthening after hibernation did not constrain immediate female reproductive capacities. It was more likely to be part of the body recovery process that takes place after hibernation. Telomere erosion that occurs after birth may constitute a physiological cost of female reproduction. PubDate: 2022-06-17
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The success of maternal foraging strategies during the rearing period can greatly impact the physiology and survival of dependent offspring. Surprisingly though, little is known on the fitness consequences of foraging strategies during the foetal period. In this study, we characterized variation in maternal foraging strategy throughout pregnancy in a marine top predator (South American fur seal, Arctocephalus australis), and asked if these shifts predicted neonatal health and postnatal survival. We found that during early pregnancy all pregnant females belonged to a single, homogenized foraging niche without evident clusters. Intriguingly though, during late pregnancy, individual fur seal mothers diverged into two distinct foraging niches characterized by a benthic-nearshore and a pelagic-offshore strategy. Females that shifted towards the benthic-nearshore strategy gave birth to pups with greater body mass, higher plasmatic levels of glucose and lower levels of blood urea nitrogen. The pups born to these benthic females were eight times more likely to survive compared to females using the pelagic-offshore foraging strategy during late pregnancy. These survival effects were mediated primarily by the impact of foraging strategies on neonatal glucose independent of protein metabolic profile and body mass. Benthic-nearshore foraging strategies during late pregnancy potentially allow for the greater maternal transfer of glucose to the foetus, leading to higher chances of neonatal survival. These results call for a deeper understanding of the balance between resource acquisition and allocation provided by distinct foraging polymorphisms during critical life-history periods, and how this trade-off may be adaptive under certain environmental conditions. PubDate: 2022-06-09
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Rainfall timing, frequency, and quantity is rapidly changing in dryland regions, altering dryland plant communities. Understanding dryland plant responses to future rainfall scenarios is crucial for implementing proactive management strategies, particularly in light of land cover changes concurrent with climate change. One such change is woody plant encroachment, an increasing abundance of woody plants in areas formerly dominated by grasslands or savannas. Continued woody plant encroachment will depend, in part, on seedling capacity to establish and thrive under future climate conditions. Seedling performance is primarily impacted by soil moisture conditions governed by precipitation amount (quantity) and frequency. We hypothesized that (H1) seedling performance would be enhanced by both greater soil moisture and pulse frequency, such that seedlings with similar mean soil moisture would perform best under high pulse frequency. Alternatively, (H2) mean soil moisture would have greater influence than pulse frequency, such that a given pulse frequency would have little influence on seedling performance. The hypotheses were tested with Prosopis velutina, a shrub native to the United States that has encroached throughout its range and is invasive in other continents. Seedlings were grown in a greenhouse under two soil moisture treatments, each which was maintained by two pulse frequency treatments. Contrary to H1, mean soil moisture had greater impact than pulse frequency on seedling growth, photosynthetic gas exchange, leaf chemistry, and biomass allocation. These results indicate that P. velutina seedlings may be more responsive to rainfall amount than frequency, at least within the conditions seedlings experienced in this experimental manipulation. PubDate: 2022-06-04
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Nutrient imbalances in zooplankton are caused by the differences in elemental content of producers and the demand for elements in consumers, which alter the life-history traits in consumers. Changes in life-history traits are mediated through metabolic pathways that affect gene expression and the metabolome. However, less is known about proteomic changes to elemental-limitation in zooplankton. Here, we grew Daphnia pulex under high food quantity and quality (HF), low food quantity (LF), and phosphorus (P)-limited (PL) diets for six days and measured growth, elemental composition, and the proteome. Daphnids in both LF and PL diets grew less. Animals in LF diets had less carbon (C), while daphnids in PL diets had less P compared to HF fed animals. In total, we identified 1719 proteins that were used in a partial least squares regression discriminant analysis (PLS-DA). Focusing on a subset of the proteome, the PLS-DA resulted in a clear separation between animals fed HF diets and PL and LF diets. Many proteome changes in nutrient-limited diets are associated with growth, reproduction, lipid metabolism, and nutrient assimilation. Regardless of the limiting nutrient, there were less hemoglobin and small subunit processome component proteins compared to HF fed animals. Daphnids fed LF diets had less vitellogenin fused superoxide dismutase and more lipid-droplet hydrolase, whereas Daphnia fed PL diets had higher abundances of cytochrome P450 and serine protease. Our proteome results compliment other “omic” studies that could be used to study Daphnia physiology in lakes. PubDate: 2022-06-04
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract For many organisms, early life stages experience significantly higher rates of mortality relative to adults. However, tracking early life stage individuals through time in natural settings is difficult, limiting our understanding of the duration of these ‘mortality bottlenecks’, and the time required for survivorship to match that of adults. Here, we track a cohort of juvenile corals (1–5 cm maximum diameter) from 12 taxa at a remote atoll in the Central Pacific from 2013 to 2017 and describe patterns of annual survivorship. Of the 537 juveniles initially detected, 219 (41%) were alive 4 years later, 163 (30%) died via complete loss of live tissue from the skeleton, and the remaining 155 (29%) died via dislodgement. The differing mortality patterns suggest that habitat characteristics, as well as species-specific features, may influence early life stage survival. Across most taxa, survival fit a logistic model, reaching > 90% annual survival within 4 years. These data suggest that mortality bottlenecks characteristic of ‘recruitment’ extend up to 5 years after individuals can be visually detected. Ultimately, replenishment of adult coral populations via sexual reproduction is needed to maintain both coral cover and genetic diversity. This study provides key insights into the dynamics and time scales that characterize these critical early life stages. PubDate: 2022-06-04
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Specialised natural enemies can locally suppress seeds and seedlings near conspecific adults more than far from them. Whilst this is thought to facilitate species coexistence, the relative contribution of multiple enemies to whether heterospecific seeds and seedlings rather than conspecifics perform better beneath a particular adult species remains less clear, especially in regions with spatially extensive monodominant stands. We designed a field exclusion experiment to separate the effects of fungi, insects and vertebrates on the seedling establishment and early survival of two temperate tree species, Fagus sylvatica and Picea abies, in the adult tree monocultures of these species. Our experiment demonstrates the key role of vertebrates in mediating the effects of adult trees on seeds and seedlings. Due to vertebrates and partly insects, Fagus sylvatica seedlings survived worse beneath conspecific than heterospecific adults and were also outperformed by Picea abies seedlings beneath their own adults. Picea abies seedling establishment was higher beneath conspecific than heterospecific adults, but Fagus sylvatica seedlings outperformed them beneath their own adults. The impact of enemies on Picea abies establishment beneath conspecific adults was less clear. Fungi did not influence seedling establishment and survival. Our findings highlight the need to compare enemy impacts on each seedling species beneath conspecific and heterospecific adults with their impacts on conspecific and heterospecific seedlings beneath a particular adult species. Such evaluations can shed more light on the role of enemies in tree communities by identifying the plant–enemy interactions that facilitate species coexistence and those that promote species monodominance. PubDate: 2022-06-04
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The width of a population's resource-use niche is determined by individual diet breadth (“within-individual component”) and the degree of niche partitioning between individuals (“between-individual component”). The balance between these two factors affects ecological stability and evolutionary trajectories, and may shift as ecological opportunity permits broader population niches. Lakes in California’s Sierra Nevada Mountains vary in resource diversity for introduced brook trout (Salvelinus fontinalis) due to elevation, lake morphometry, and watershed features. We compared the relative contributions of within- and between-individual niche components to two measures of the dietary niches of thirteen populations of brook trout: prey taxonomic composition and prey size distribution. For both taxonomic and size diversity of fish diets, population niche width was positively related to both the within- and between-individual components. For taxonomic diversity, the two components increased in parallel, while for size diversity, the between-individual component became more important relative to the within-individual component in populations with the greatest niche widths. Our results support the Niche Variation Hypothesis that populations with broader niches are more heterogeneous among individuals and show that individual niche width and individual specialization can operate in parallel to expand the population niche. PubDate: 2022-06-03
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The balance between costs and benefits is expected to drive associations between species. While these balances are well understood for strict associations, we have no insights to which extent they determine facultative associations between species. Here, we quantified the costs of living in a facultative association, by studying the effects of red wood ants on the facultatively associated isopod Porcellio scaber. Porcellio scaber frequently occurred in and near hostile red wood ant nests and might outnumber obligate nest associates. The facultative association involved different costs for the isopod. We found that the density of the isopod decreases near the nest with higher ant traffic. Individuals in and near the nest were smaller than individuals further away from the nest. Smaller individuals were also found at sites with higher ant traffic. A higher proportion of wounded individuals was found closer to the nest and with higher ant traffic. We recorded pregnant females and juveniles in the nest suggesting that the life cycle can be completed inside the nests. Lab experiments showed that females died sooner and invested less in reproduction in presence of red wood ants. Porcellio scaber rarely provoked an aggression response, but large numbers were carried as prey to the nest. These preyed isopods were mainly dried out corpses. Our results showed that the ant association incurred several costs for a facultative associate. Consequently, red wood ant nests and their surrounding territory act as an alternative habitat where demographic costs are offset by a stable resource provisioning and protection. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The way urbanization shapes the intraspecific variation of pollinator functional traits is little understood. However, this topic is relevant for investigating ecosystem services and pollinator health. Here, we studied how urbanization affects the functional traits of workers in two bumblebee species (Bombus terrestris and B. pascuorum) sampled in 37 sites along a gradient of urbanization in North Italy (an area of 1800 km2 including the metropolitan context of Milan and other surrounding capital districts). Namely, we investigated the effect of land use composition, configuration, air temperature, flower resource abundance, and air pollutants on the variation of traits related to flight performance and of stress during insect development (i.e., wing size, wing shape and size fluctuating asymmetry). The functional traits of the two bumblebees responded idiosyncratically to urbanization. Urban temperatures were associated with smaller wing sizes in B. pascuorum and with more accentuated fluctuating asymmetry of wing size in B. terrestris. Moreover, flower abundance correlated with bigger wings in B. terrestris and with less asymmetric wing size in B. pascuorum. Other traits did not vary significantly, and other urban variables played minor effects. These species-specific variation patterns highlight that environmental stressor linked to urbanization negatively impact the traits related to flight performance and development stability of these syntopic bumblebees, with possible consequences on the pollination service they provide. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Plants interact with a diversity of phytophagous insects above- and belowground. By inducing plant defence, one insect herbivore species can antagonize or facilitate other herbivore species feeding on the same plant, even when they are separated in space and time. Through systemic plant-mediated interactions, leaf-chewing herbivores may affect the preference and performance of root-feeding herbivores. We studied how six different leaf-chewing herbivore species of Brassica oleracea plants affected oviposition preference and larval performance of the root-feeding specialist Delia radicum. We expected that female D. radicum flies would oviposit where larval performance was highest, in accordance with the preference–performance hypothesis. We also assessed how the different leaf-chewing herbivore species affected defence-related gene expression in leaves and primary roots of B. oleracea, both before and after infestation with the root herbivore. Our results show that leaf-chewing herbivores can negatively affect the performance of root-feeding D. radicum larvae, although the effects were relatively weak. Surprisingly, we found that adult D. radicum females show a strong preference to oviposit on plants infested with a leaf-chewing herbivore. Defence-related genes in primary roots of B. oleracea plants were affected by the leaf-chewing herbivores, but these changes were largely overridden upon local induction by D. radicum. Infestation by leaf herbivores makes plants more attractive for oviposition by D. radicum females, while decreasing larval performance. Therefore, our findings challenge the preference–performance hypothesis in situations where other herbivore species are present. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Eutrophication through atmospheric nutrient deposition is threatening the biodiversity of semi-natural habitats characterized by low nutrient availability. Accordingly, local management measures aiming at open habitat conservation need to maintain habitat-specific nutrient conditions despite atmospheric inputs. Grazing by wild herbivores, such as red deer (Cervus elaphus), has been proposed as an alternative to mechanical or livestock-based measures for preserving open habitats. The role of red deer for nutrient dynamics in protected open habitat types, however, is yet unclear. Therefore, we collected data on vegetation productivity, forage removal, quantity of red deer dung and nutrient concentrations in vegetation and dung from permanent plots in heathlands and grasslands (eight plots à 225 m2 per habitat type) on a military training area inhabited by a large population of free-ranging red deer over one year. The annual nutrient export of nitrogen (N) and phosphorus (P) by red deer grazing was higher than the nutrient import through red deer excreta, resulting in an average net nutrient removal of 14 and 30 kg N ha−1 a−1 and 1.1 and 3.3 kg P ha−1 a−1 in heathlands and grasslands, respectively. Even when considering approximate local atmospheric deposition values, net nutrient depletion due to red deer grazing seemed very likely, notably in grasslands. Demonstrating that grazing by wild red deer can mitigate the effects of atmospheric nutrient deposition in semi-natural open habitats similarly to extensive livestock grazing, our results support the idea that red deer are suitable grazing animals for open habitat conservation. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Plant induced defenses may benefit plants by increasing cannibalism among insect herbivores. However, the general efficacy of plant defenses that promote cannibalism remains unclear. Using a generalist Lepidopteran herbivore (Helicoverpa zea), we examined whether plant induced defenses in Solanum lycopersicum increased cannibalism among H. zea and whether defense-mediated cannibalism benefits both the plant and the cannibal. In a separate experiment, we also examined whether defense-mediated cannibalism has effects on H. zea herbivory that are comparable to the effects of pathogenic virus of H. zea (HzSNPV) and whether defense-mediated cannibalism modified pathogen efficacy. We found that both plant defenses and cannibalism decreased herbivory: H. zea consumed less plant material if plants were induced, if dead conspecifics were provided, or both. Cannibalism increased cannibal growth rate: cannibals effectively overcome the costs of plant defenses by eating conspecifics. Inoculating half of H. zea with virus strongly reduced caterpillar survival. Cannibalism occurred sooner among virus-inoculated groups of H. zea, and all caterpillars in virus-inoculated treatments died before the end of the 7-day experiment. Although the rise in mortality caused by HzSNPV occurred more rapidly than the rise in mortality due to defense-mediated cannibalism, overall H. zea mortality at the end of the experiment was equal among virus-inoculated and induced-defense groups. Defense-mediated cannibalism and viral inoculation equally reduced herbivory on S. lycopersicum. Our results provide evidence that defense-mediated increases in cannibalism can be as effective as other forms of classic herbivore population regulation, and that both viral pathogens and defense-induced cannibalism can have significant benefits for plants. PubDate: 2022-06-01