Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization. PubDate: 2023-06-08
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Host–parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host–parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection. PubDate: 2023-06-07
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Plant–plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Correspondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions. PubDate: 2023-06-06
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Forests canopy gaps play an important role in forest ecology by driving the forest mosaic cycle and creating conditions for rapid plant reproduction and growth. The availability of young plants, which represent resources for herbivores, and modified environmental conditions with greater availability of light and higher temperatures, promote the colonization of animals. Remarkably, the role of gaps on insect communities has received little attention and the source of insects colonizing gaps has not been studied comprehensively. Using a replicated full-factorial forest experiment (treatments: Gap; Gap + Deadwood; Deadwood; Control), we show that following gap creation, there is a rapid change in the true bug (Heteroptera) community structure, with an increase in species that are mainly recruited from open lands. Compared with closed-canopy treatments (Deadwood and Control), open canopy treatments (Gap and Gap + Deadwood) promoted an overall increase in species (+ 59.4%, estimated as number of species per plot) and individuals (+ 76.3%) of true bugs, mainly herbivores and species associated to herbaceous vegetation. Community composition also differed among treatments, and all 17 significant indicator species (out of 117 species in total) were associated with the open canopy treatments. Based on insect data collected in grasslands and forests over an 11-year period, we found that the species colonizing experimental gaps had greater body size and a greater preference for open vegetation. Our results indicate that animal communities that assemble following gap creation contain a high proportion of habitat generalists that not occurred in closed forests, contributing significantly to overall diversity in forest mosaics. PubDate: 2023-06-04
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night. PubDate: 2023-06-03
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Bryophytes play important role in forest ecosystem functioning and their distribution and diversity are driven by numerous environmental factors. The aim of the present study was to bring new insights in deeper understanding of terrestrial bryophytes diversity in temperate forests, as well as to determine the environmental factors which have predominant influence on ground-floor bryophytes. The survey was conducted in Fruška Gora Mountain (Serbia) across seven forest sites where ground-bryophytes were sampled. Soil moisture, temperature, and pH were measured as soil characteristics, while herbaceous cover, litter cover, stream distance, number of trees and shrubs were used as characteristics of stand structure. Species richness, Shannon diversity index, and evenness index were used as diversity measures. Generalised linear model and canonical correspondence analysis (CCA) were used to test the influence of environmental variables on bryophyte diversity. Litter cover was the most important explanatory variable, followed by soil moisture, stream distance and tree number, respectively. Overall, the stand structure was found to have a greater impact on ground-floor bryophyte diversity compared to soil characteristics. Identification of the most significant ecological factors affecting the diversity and distribution of bryophytes in forest ecosystems is of great importance in forest ecology with the aim of defining adequate management methods to preserve the biodiversity of forests, with particular emphasis on endangered and rare bryophyte species. PubDate: 2023-06-02
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Both abiotic and biotic conditions may be important for biodiversity. However, their relative importance may vary among different diversity dimensions as well as across spatial scales. Spiders (Araneae) offer an ecologically relevant system for evaluating variation in the relative strength abiotic and biotic biodiversity regulation. We quantified the relative importance of abiotic and biotic conditions for three diversity dimensions of spider communities quantified across two spatial scales. Spiders were surveyed along elevation gradients in northern Sweden. We focused our analysis on geomorphological and climatic conditions as well as vegetation characteristics, and quantified the relative importance of these conditions for the taxonomic, phylogenetic, and functional diversity of spider communities sampled across one intermediate (500 m) and one local (25 m) scale. There were stronger relationships among diversity dimensions at the local than the intermediate scale. There were also variation in the relative influence of abiotic and biotic conditions among diversity dimensions, but this variation was not consistent across spatial scales. Across both spatial scales, vegetation was related to all diversity dimensions whereas climate was important for phylogenetic and functional diversity. Our study does not fully support stronger abiotic regulation at coarser scales, and conversely stronger abiotic regulation at more local scales. Instead, our results indicate that community assembly is shaped by interactions between abiotic constrains in species distributions and biotic conditions, and that such interactions may be both scale and context dependent. PubDate: 2023-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The community stability is the main ability to resist and be resilient to climate changes. In a world of climate warming and melting glaciers, alpine gravel encroachment was occurring universally and threatening hillside grassland ecosystem. Gravel encroachment caused by climate warming and glacial melting may alter community structure and community stability in alpine meadow. Yet, the effects of climate warming-induced gravel encroachment on grassland communities are unknown. Here, a 1-year short-term field experiment was conducted to explore the early stage drive process of gravel encroachment on community structure and stability at four different gravel encroachment levels 0%, 30%, 60%, and 90% gravel coverage at an alpine meadow on the Qinghai Tibetan Plateau, by analyzing the changes of dominant species stability and species asynchrony to the simulated gravel encroachment processes. Gravel encroachment rapidly changed the species composition and species ranking of alpine meadow plant community in a short period of time. Specifically, community stability of alpine meadow decreased by 61.78–79.48%, which may be due to the reduced dominant species stability and species asynchrony. Species asynchrony and dominant species stability were reduced by 2.65–17.39% and 46.51–67.97%, respectively. The results of this study demonstrate that gravel encroachment presents a severe negative impact on community structure and stability of alpine meadow in the short term, the longer term and comprehensive study should be conducted to accurate prediction of global warming-induced indirect effects on alpine grassland ecosystems. PubDate: 2023-05-31
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The general assumption that the survival patterns of tropical and southern temperate birds are similar lacks empirical data from higher latitudes. Regional comparisons of New World species are rare, and this assumption has been based on data from African studies. Here, we estimate the survival rates of 88 tropical and southern temperate bird populations (69 species) from eight localities in South America to evaluate the hypothesis that the survival of these populations is homogeneous at the regional scale. We estimated survival based on the Cormack-Jolly-Seber model and compared values from different environments. The survival estimates ranged from 0.30 to 0.80 (0.56 ± 0.12). Apparent survival did not differ significantly between low-latitude tropical environments (03°S) and the other sites from high-latitudes (between 22° and 34°S). Despite a predicted positive trend, body size was not significantly related to survival among passerines. On the other hand, phylogenetic relationships explained more than a third of the variation in bird survival. Based on the largest available database on South American bird species, our findings support the hypothesis that bird survival is homogeneous, at the regional scale, along the southern hemisphere. In particular, we reinforce the hypothesis that climatic variation has a limited influence on bird survival in the southern hemisphere. PubDate: 2023-05-30
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Plant secondary metabolites (PSMs) defend plants against abiotic stresses, including those caused by climate change and against biotic stresses, such as herbivory and competition. There is a trade-off between allocating available carbon to growth and defence in stressful environments. However, our knowledge about trade-off is limited, especially when abiotic and biotic stresses co-occur. We aimed to understand the combined effect of increasing precipitation and humidity, the tree's competitive status, and canopy position on leaf secondary metabolites (LSMs) and fine root secondary metabolites (RSMs) in Betula pendula. We sampled 8-year-old B. pendula trees growing in the free air humidity manipulation (FAHM) experimental site, where treatments included elevated relative air humidity and elevated soil moisture. A high-performance liquid chromatography–quadrupole-time of flight mass spectrometer (HPLC–qTOF-MS) was used to analyse secondary metabolites. Our results showed accumulation of LSM depends on the canopy position and competitive status. Flavonoids (FLA), dihydroxybenzoic acids (HBA), jasmonates (JA) and terpene glucosides (TG) were higher in the upper canopy, and FLA, monoaryl compounds (MAR) and sesquiterpenoids (ST) were higher in dominant trees. The FAHM treatments had a more distinct effect on RSM than on LSM. The RSMs were lower in elevated air humidity and soil moisture conditions than in control conditions. The RSM content depended on the competitive status and was higher in suppressed trees. Our study suggests that young B. pendula will allocate similar amounts of carbon to constitutive chemical leaf defence, but a lower amount to root defence (per fine root biomass) under higher humidity. PubDate: 2023-05-29
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The measurement of naturally occurring stable isotope ratios of the light elements (C, N, H, O, S) in animal tissues and associated organic and inorganic fractions of associated environments holds immense potential as a means of addressing effects of global change on animals. This paper provides a brief review of studies that have used the isotope approach to evaluate changes in diet, isotopic niche, contaminant burden, reproductive and nutritional investment, invasive species and shifts in migration origin or destination with clear links to evaluating effects of global change. This field has now reached a level of maturity that is impressive but generally underappreciated and involves technical as well as statistical advances and access to freely available R-based packages. There is a need for animal ecologists and conservationists to design tissue collection networks that will best answer current and anticipated questions related to the global change and the biodiversity crisis. These developments will move the field of stable isotope ecology toward a more hypothesis driven discipline related to rapidly changing global events. PubDate: 2023-05-26
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree, Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level. PubDate: 2023-05-12
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The snowshoe hare (Lepus americanus) possesses a broad suite of adaptations to winter, including a seasonal coat color molt. Recently, climate change has been implicated in the range contraction of snowshoe hares along the southern range boundary. With shortening snow season duration, snowshoe hares are experiencing increased camouflage mismatch with their environment reducing survival. Phenological variation of hare molt at regional scales could facilitate local adaptation in the face of climate change, but the level of variation, especially along the southern range boundary, is unknown. Using a network of trail cameras and historical museum specimens, we (1) developed contemporary and historical molt phenology curves in the Upper Great Lakes region, USA, (2) calculated molt rate and variability in and among populations, and (3) quantified the relationship of molt characteristics to environmental conditions for snowshoe hares across North America. We found that snowshoe hares across the region exhibited similar fall and spring molt phenologies, rates and variation. Yet, an insular island population of hares on Isle Royale National Park, MI, completed their molt a week earlier in the fall and initiated molt almost 2 weeks later in the spring as well as exhibited slower rates of molting in the fall season compared to the mainland. Over the last 100 years, snowshoe hares across the region have not shifted in fall molt timing; though contemporary spring molt appears to have advanced by 17 days (~ 4 days per decade) compared to historical molt phenology. Our research indicates that some variation in molt phenology exists for snowshoe hares in the Upper Great Lakes region, but whether this variation is enough to offset the consequences of climate change remains to be seen. PubDate: 2023-05-11
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Mating behaviors are sensitive to novel or stressful thermal conditions, particularly for ectothermic organisms. An organism’s sensitivity to temperature, which may manifest in altered mating outcomes, can be shaped in part by temperatures experienced during development. Here, we tested how developmental temperature shapes the expression of adult mating-related behaviors across different ambient conditions, with a focus on courtship behavior, mating rates, and mating signals and preferences. To do so, we reared treehoppers under two temperature regimes and then tested the expression of male and female mating behaviors across a range of ambient temperatures. We found that developmental temperature affects the thermal sensitivity of courtship behavior and mating signals for males. However, developmental temperature did not affect the thermal sensitivity of courtship or mate preferences in females. This sex-specific plasticity did not alter the likelihood of mating across ambient temperatures, but it did disrupt how closely mating signals and preferences matched each other at higher ambient temperatures. As a result, developmental temperature could alter sexual selection through signal–preference de-coupling. We further discuss how adult age may drive sex-specific results, and the potential for mismatches between developmental and mating thermal environments under future climate change predictions. PubDate: 2023-05-11
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Invasive species are sometimes less susceptible to natural enemies compared to native species, but the mechanism is often unclear. Here we tested two potential mechanisms for lower parasitism of invasive species: density-dependent parasitism and preference for human-dominated habitats. We investigated how variation in host density and habitat type affect egg sac parasitism in two widow spider species (family Theridiidae). We compared parasitism on the egg sac of the brown widow, Latrodectus geometricus, an urban invasive species, and the white widow, Latrodectus pallidus, a species native to Israel. To investigate variation in host and parasitoid density, we measured nearest-neighbor distance between spider webs and parasitism rates in 16 sites, and in a single site monthly throughout a year. In L. pallidus, denser sites were more heavily parasitized (up to 55%) and parasitism rate increased with population density throughout the season. Extremely dense L. geometricus populations, however, had very low rates of parasitism (0–5%). We then conducted an egg sac transplant experiment in human-dominated and natural habitats. We found no parasitism of either species in the human-dominated habitat, compared to 30% parasitism of both species in the natural habitat. In addition, we found evidence for higher predation of L. pallidus than of L. geometricus egg sacs, particularly in the natural habitat. These combined results suggest that the human-dominated habitats inhabited by L. geometricus have a lower abundance of predators and parasites. We conclude that lower parasitism and predation in human-dominated habitats could contribute to the invasion success of L. geometricus. PubDate: 2023-05-09
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Prenatal resource allocation to offspring can be influenced by maternal environment and offspring value, and affect offspring survival. An important pathway for flexible maternal allocation is via egg components such as nutrients and hormones. In cooperative breeders, females with helpers may increase resource allocation to eggs—‘differential allocation’—or reduce it—‘load-lightening’. Yet, helper effects on egg composition have been poorly studied. Moreover, it is unknown how helpers’ presence modulates laying order effects on egg content and survival. Here, we investigated how maternal allocation varied with group size and laying order in the cooperatively breeding sociable weaver (Philetairus socius). We estimated interactive effects of helpers and laying order on allocation to egg mass, yolk nutrients—yolk mass, proteins, lipids, carotenoids, vitamin A and vitamin E—and hormones—testosterone, androstenedione, and corticosterone. Results concurred with the ‘differential allocation’ predictions. Females with more helpers produced later-laid eggs with heavier yolks and more lipids, and laid eggs overall richer in lipids. Proteins, antioxidants, and hormones were not found to vary with helper number. We then analyzed how helper number modulated laying order effects on survival. Females with more helpers did not specifically produce later-laid eggs with higher survival, but eggs laid by females with more helpers were overall more likely to fledge. These findings show that some egg components (yolk mass, lipids) can positively vary according to females’ breeding group size, which may improve offspring fitness. PubDate: 2023-05-06
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Drought and nutrient input are two main global change drivers that threaten ecosystem function and services. Resolving the interactive effects of human-induced stressors on individual species is necessary to improve our understanding of community and ecosystem responses. This study comparatively assessed how different nutrient conditions affect whole-plant drought responses across 13 common temperate grassland species. We conducted a fully factorial drought-fertilization experiment to examine the effect of nutrient addition [nitrogen (N), phosphorus (P), and combined NP] on species' drought survival, and on drought resistance of growth as well as drought legacy effects. Drought had an overall negative effect on survival and growth, and the adverse drought effects extended into the next growing season. Neither drought resistance nor legacy effects exhibited an overall effect of nutrients. Instead, both the size and the direction of the effects differed strongly among species and between nutrient conditions. Consistently, species performance ranking under drought changed with nitrogen availability. The idiosyncratic responses of species to drought under different nutrient conditions may underlie the seemingly contradicting effects of drought in studies on grassland composition and productivity along nutrient and land-use gradients—ranging from amplifying to dampening. Differential species’ responses to combinations of nutrients and drought, as observed in our study, complicate predictions of community and ecosystem responses to climate and land-use changes. Moreover, they highlight the urgent need for an improved understanding of the mechanisms that render species more or less vulnerable to drought under different nutrients. PubDate: 2023-05-05
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Chytridiomycosis is affecting hundreds of amphibian species worldwide, but while in tropical areas, adult individuals have been the focus of most investigations, the exact role played by infection intensity of breeding adults is not well understood in temperate areas. We conducted mark–recapture–capture surveys during spiny common toad breeding seasons from 2006 to 2018 at the site of the first recorded outbreak of chytridiomycosis in Europe, the Peñalara Massif (Sierra de Guadarrama National Park, central Spain), and collected infection samples and several variables related to the reproductive effort of male individuals. We used general linear mixed models to evaluate the contribution of study variables on the infection loads of adult male toads exhibited at their capturing date. We also analysed the differences on several male characteristics between the pond with the largest breeding population against the rest of the ponds. We found that the duration of time spent in the waterbody and the condition of the host predicted infection loads. Animals of good physical condition, that spent longer in water, have higher infection levels than individuals with the opposite set of traits. The pond supporting the largest breeding population housed smaller male toads and in poorer condition. Our results are consistent with a shift in reproductive strategy in response to infection and potentially a strategy of tolerance, rather than resistance to infection. These findings have applications for disease mitigation and theoretical implications related to the trade-offs made and the evolution of traits in response to the disease. PubDate: 2023-05-05
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Based on hypotheses related to environmental filtering vs. stochastic community assembly, we tested taxon-specific predictions regarding the relationships of alpha diversity, beta diversity and species composition of epiphytic macrolichens and bryophytes with elevation and the lateral gradient on trees (the different sides of the tree bole related to aspect and trunk inclination) at Parc national du Mont-Mégantic in Southeastern Québec, Canada. For lichens on firs, increasing elevation was associated with increasing alpha diversity, and a marked shift in community composition, at the scale of whole trees. In contrast, for bryophytes on maples, tree inclination and the lateral gradient had the strongest effects: more inclined trees had greater whole-tree alpha diversity and stronger within-tree contrasts in composition between the upper and lower bole surfaces. For lichens on maples, whole-tree alpha diversity showed a weak, negative relationship with inclination, and beta diversity increased slightly with elevation. Our results are consistent with theories predicting greater alpha diversity in more favorable environments (for lichens: high elevation with high relative air humidity and lower temperatures; for bryophytes: upper surfaces of tree boles with liquid water available), but support was weak for the prediction of greater beta diversity in more favorable environments. Overall, the important predictors of epiphytic cryptogam diversity vary more among the species of tree host (maple vs. fir) than focal taxa (lichens vs. bryophytes), with patterns likely related to different effects of water, temperature, and competition between lichens and bryophytes. PubDate: 2023-04-20
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Avian reproductive strategies vary widely, and many studies of life-history variation have focused on the incubation and hatching stages of nesting. Birds make proximate decisions regarding reproductive investment during the laying stage, and these decisions likely constrain and tradeoff with other traits and subsequent behaviors. However, we know relatively little about egg-laying stage behaviors given the difficulty of locating and monitoring nest sites from the onset of laying. We used non-invasive continuous video recording to quantify variation in the egg-laying behaviors of burrowing owls (Athene cunicularia) along a 1400-km latitudinal gradient in western North America. Burrowing owls laid eggs disproportionately in the morning hours, and that tendency was strongest among first eggs in a clutch. However, selection appeared to act more strongly on laying intervals (the time between laying of consecutive eggs) than on the diel time of laying, and laying intervals varied widely among and within clutches. Laying intervals declined seasonally and with increasing clutch size but increased with increasing burrow temperature and as a function of laying stage nest attentiveness, which may be a strategy to preserve egg viability. Laying interval was positively correlated with the duration of hatching intervals, suggesting that laying interval duration is one mechanism (along with timing of incubation onset) that generates variation in hatching asynchrony. Our results lend support to two general hypotheses to explain laying schedules; selection favors laying eggs in the morning, but other selective pressures may override that pattern. These conclusions indicate that allocation decisions during laying are an important part of avian life-history strategies which are subject to energetic constraints and tradeoffs with other traits. PubDate: 2023-04-17