Subjects -> ENGINEERING (Total: 2844 journals)
    - CHEMICAL ENGINEERING (259 journals)
    - CIVIL ENGINEERING (255 journals)
    - ELECTRICAL ENGINEERING (182 journals)
    - ENGINEERING (1420 journals)
    - ENGINEERING MECHANICS AND MATERIALS (454 journals)
    - HYDRAULIC ENGINEERING (60 journals)
    - INDUSTRIAL ENGINEERING (101 journals)
    - MECHANICAL ENGINEERING (113 journals)

ENGINEERING (1420 journals)                  1 2 3 4 5 6 7 8 | Last

Showing 1 - 200 of 1205 Journals sorted alphabetically
3 Biotech     Open Access   (Followers: 9)
3D Research     Hybrid Journal   (Followers: 22)
AAPG Bulletin     Hybrid Journal   (Followers: 11)
Abstract and Applied Analysis     Open Access   (Followers: 4)
Aceh International Journal of Science and Technology     Open Access   (Followers: 9)
ACS Nano     Hybrid Journal   (Followers: 452)
Acta Geotechnica     Hybrid Journal   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 10)
Acta Nova     Open Access   (Followers: 1)
Acta Polytechnica : Journal of Advanced Engineering     Open Access   (Followers: 4)
Acta Scientiarum. Technology     Open Access   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access   (Followers: 1)
Active and Passive Electronic Components     Open Access   (Followers: 8)
Adaptive Behavior     Hybrid Journal   (Followers: 9)
Adsorption     Hybrid Journal   (Followers: 5)
Advanced Energy and Sustainability Research     Open Access   (Followers: 8)
Advanced Engineering Forum     Full-text available via subscription   (Followers: 14)
Advanced Engineering Research     Open Access  
Advanced Journal of Graduate Research     Open Access   (Followers: 4)
Advanced Quantum Technologies     Hybrid Journal   (Followers: 1)
Advanced Science     Open Access   (Followers: 13)
Advanced Science Focus     Free   (Followers: 7)
Advanced Science Letters     Full-text available via subscription   (Followers: 13)
Advanced Science, Engineering and Medicine     Partially Free   (Followers: 11)
Advanced Synthesis & Catalysis     Hybrid Journal   (Followers: 20)
Advanced Theory and Simulations     Hybrid Journal   (Followers: 5)
Advances in Catalysis     Full-text available via subscription   (Followers: 8)
Advances in Complex Systems     Hybrid Journal   (Followers: 12)
Advances in Engineering Software     Hybrid Journal   (Followers: 31)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 20)
Advances in Fuzzy Systems     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 22)
Advances in Heat Transfer     Full-text available via subscription   (Followers: 30)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 27)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 10)
Advances in Natural Sciences : Nanoscience and Nanotechnology     Open Access   (Followers: 36)
Advances in Operations Research     Open Access   (Followers: 14)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances in Physics Theories and Applications     Open Access   (Followers: 21)
Advances in Polymer Science     Hybrid Journal   (Followers: 54)
Advances in Porous Media     Full-text available via subscription   (Followers: 6)
Advances in Remote Sensing     Open Access   (Followers: 58)
Advances in Science and Research (ASR)     Open Access   (Followers: 8)
Aerobiologia     Hybrid Journal   (Followers: 4)
Aerospace Systems     Hybrid Journal   (Followers: 10)
African Journal of Science, Technology, Innovation and Development     Hybrid Journal   (Followers: 8)
AIChE Journal     Hybrid Journal   (Followers: 38)
Ain Shams Engineering Journal     Open Access   (Followers: 7)
Al-Nahrain Journal for Engineering Sciences     Open Access  
Al-Qadisiya Journal for Engineering Sciences     Open Access   (Followers: 2)
AL-Rafdain Engineering Journal     Open Access   (Followers: 3)
Alexandria Engineering Journal     Open Access   (Followers: 3)
AMB Express     Open Access   (Followers: 1)
American Journal of Applied Sciences     Open Access   (Followers: 27)
American Journal of Engineering and Applied Sciences     Open Access   (Followers: 12)
American Journal of Engineering Education     Open Access   (Followers: 20)
American Journal of Environmental Engineering     Open Access   (Followers: 16)
American Journal of Industrial and Business Management     Open Access   (Followers: 31)
Annals of Civil and Environmental Engineering     Open Access   (Followers: 3)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Pure and Applied Logic     Open Access   (Followers: 6)
Annals of Regional Science     Hybrid Journal   (Followers: 10)
Annals of Science     Hybrid Journal   (Followers: 10)
Annual Journal of Technical University of Varna     Open Access   (Followers: 1)
Antarctic Science     Hybrid Journal   (Followers: 1)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 3)
Applicable Analysis: An International Journal     Hybrid Journal   (Followers: 2)
Applications in Energy and Combustion Science     Open Access   (Followers: 3)
Applications in Engineering Science     Open Access   (Followers: 1)
Applied Catalysis A: General     Hybrid Journal   (Followers: 8)
Applied Catalysis B: Environmental     Hybrid Journal   (Followers: 22)
Applied Clay Science     Hybrid Journal   (Followers: 6)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 16)
Applied Engineering Letters     Open Access   (Followers: 4)
Applied Magnetic Resonance     Hybrid Journal   (Followers: 4)
Applied Nanoscience     Open Access   (Followers: 11)
Applied Network Science     Open Access   (Followers: 3)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 6)
Applied Physics Research     Open Access   (Followers: 7)
Applied Sciences     Open Access   (Followers: 6)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 6)
Arab Journal of Basic and Applied Sciences     Open Access  
Arabian Journal for Science and Engineering     Hybrid Journal   (Followers: 5)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 6)
Archives of Thermodynamics     Open Access   (Followers: 13)
Arctic     Open Access   (Followers: 7)
Arid Zone Journal of Engineering, Technology and Environment     Open Access   (Followers: 2)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
ArtefaCToS : Revista de estudios sobre la ciencia y la tecnología     Open Access   (Followers: 1)
Asia-Pacific Journal of Science and Technology     Open Access  
Asian Engineering Review     Open Access  
Asian Journal of Applied Science and Engineering     Open Access   (Followers: 2)
Asian Journal of Applied Sciences     Open Access   (Followers: 2)
Asian Journal of Biotechnology     Open Access   (Followers: 9)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Technology Innovation     Hybrid Journal   (Followers: 7)
Assembly Automation     Hybrid Journal   (Followers: 2)
ATZagenda     Hybrid Journal  
ATZextra worldwide     Hybrid Journal  
AURUM : Mühendislik Sistemleri ve Mimarlık Dergisi = Aurum Journal of Engineering Systems and Architecture     Open Access   (Followers: 1)
Australasian Journal of Engineering Education     Hybrid Journal   (Followers: 3)
Australasian Physical & Engineering Sciences in Medicine     Hybrid Journal   (Followers: 1)
Australian Journal of Multi-Disciplinary Engineering     Hybrid Journal   (Followers: 2)
Autocracy : Jurnal Otomasi, Kendali, dan Aplikasi Industri     Open Access  
Automotive and Engine Technology     Hybrid Journal  
Automotive Experiences     Open Access  
Automotive Innovation     Hybrid Journal   (Followers: 1)
Avances en Ciencias e Ingenierías     Open Access  
Avances: Investigación en Ingeniería     Open Access   (Followers: 6)
Balkan Region Conference on Engineering and Business Education     Open Access   (Followers: 2)
Bangladesh Journal of Scientific and Industrial Research     Open Access  
Basin Research     Hybrid Journal   (Followers: 6)
Batteries     Open Access   (Followers: 11)
Batteries & Supercaps     Hybrid Journal   (Followers: 7)
Bautechnik     Hybrid Journal   (Followers: 3)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 29)
Beni-Suef University Journal of Basic and Applied Sciences     Open Access   (Followers: 3)
Beyond : Undergraduate Research Journal     Open Access  
Bhakti Persada : Jurnal Aplikasi IPTEKS     Open Access  
Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika (BVAAP)     Open Access   (Followers: 1)
Bilge International Journal of Science and Technology Research     Open Access   (Followers: 1)
Biointerphases     Open Access   (Followers: 1)
Biomaterials Science     Full-text available via subscription   (Followers: 14)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 14)
Biomedical Engineering Letters     Hybrid Journal   (Followers: 6)
Biomedical Engineering: Applications, Basis and Communications     Hybrid Journal   (Followers: 6)
Biomedical Microdevices     Hybrid Journal   (Followers: 9)
Biomedical Science and Engineering     Open Access   (Followers: 8)
Biomicrofluidics     Open Access   (Followers: 7)
Biotechnology Progress     Hybrid Journal   (Followers: 44)
Black Sea Journal of Engineering and Science     Open Access  
Botswana Journal of Technology     Full-text available via subscription   (Followers: 1)
Boundary Value Problems     Open Access   (Followers: 1)
Brazilian Journal of Science and Technology     Open Access   (Followers: 2)
Bulletin of Canadian Petroleum Geology     Full-text available via subscription   (Followers: 13)
Bulletin of Engineering Geology and the Environment     Hybrid Journal   (Followers: 15)
Bulletin of the Crimean Astrophysical Observatory     Hybrid Journal  
Cahiers Droit, Sciences & Technologies     Open Access   (Followers: 1)
Calphad     Hybrid Journal   (Followers: 2)
Canadian Geotechnical Journal     Hybrid Journal   (Followers: 30)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 50)
Carbon Resources Conversion     Open Access   (Followers: 3)
Carpathian Journal of Electronic and Computer Engineering     Open Access  
Case Studies in Engineering Failure Analysis     Open Access   (Followers: 6)
Case Studies in Thermal Engineering     Open Access   (Followers: 8)
Catalysis Communications     Hybrid Journal   (Followers: 7)
Catalysis Letters     Hybrid Journal   (Followers: 3)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 9)
Catalysis Science and Technology     Hybrid Journal   (Followers: 13)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 4)
Catalysis Today     Hybrid Journal   (Followers: 8)
CEAS Space Journal     Hybrid Journal   (Followers: 6)
Cell Reports Physical Science     Open Access  
Cellular and Molecular Neurobiology     Hybrid Journal   (Followers: 2)
Central European Journal of Engineering     Hybrid Journal  
Chaos : An Interdisciplinary Journal of Nonlinear Science     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chaos, Solitons & Fractals : X     Open Access   (Followers: 1)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 3)
Chinese Journal of Engineering     Open Access   (Followers: 2)
Chinese Journal of Population, Resources and Environment     Open Access  
Chinese Science Bulletin     Open Access   (Followers: 1)
Ciencia e Ingenieria Neogranadina     Open Access  
Ciencia en su PC     Open Access   (Followers: 1)
Ciencia y Tecnología     Open Access  
Ciencias Holguin     Open Access   (Followers: 2)
CienciaUAT     Open Access   (Followers: 1)
Cientifica     Open Access  
CIRP Annals - Manufacturing Technology     Hybrid Journal   (Followers: 11)
CIRP Journal of Manufacturing Science and Technology     Hybrid Journal   (Followers: 14)
City, Culture and Society     Hybrid Journal   (Followers: 27)
Clay Minerals     Hybrid Journal   (Followers: 9)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Coastal Engineering     Hybrid Journal   (Followers: 14)
Coastal Engineering Journal     Hybrid Journal   (Followers: 9)
Coastal Engineering Proceedings : Proceedings of the International Conference on Coastal Engineering     Open Access   (Followers: 2)
Coastal Management     Hybrid Journal   (Followers: 30)
Coatings     Open Access   (Followers: 4)
Cogent Engineering     Open Access   (Followers: 3)
Cognitive Computation     Hybrid Journal   (Followers: 3)
Color Research & Application     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 17)
Combustion, Explosion, and Shock Waves     Hybrid Journal   (Followers: 20)
Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering     Open Access  
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Components, Packaging and Manufacturing Technology, IEEE Transactions on     Hybrid Journal   (Followers: 28)
Composite Interfaces     Hybrid Journal   (Followers: 10)
Composite Structures     Hybrid Journal   (Followers: 334)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 277)
Composites Part B : Engineering     Hybrid Journal   (Followers: 311)
Composites Part C : Open Access     Open Access   (Followers: 3)
Composites Science and Technology     Hybrid Journal   (Followers: 246)
Comptes Rendus : Mécanique     Open Access   (Followers: 2)
Computation     Open Access   (Followers: 1)
Computational Geosciences     Hybrid Journal   (Followers: 20)
Computational Optimization and Applications     Hybrid Journal   (Followers: 11)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Science and Engineering     Open Access   (Followers: 21)

        1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
3 Biotech
Journal Prestige (SJR): 0.511
Citation Impact (citeScore): 2
Number of Followers: 9  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2190-572X - ISSN (Online) 2190-5738
Published by SpringerOpen Homepage  [260 journals]
  • Identification of cancer stemness related miRNA(s) using integrated
           bioinformatics analysis and in vitro validation

    • Abstract: Abstract The stemness property of cells allows them to sustain their lineage, differentiation, proliferation, and regeneration. MicroRNAs are small non-coding RNAs known to regulate the stemness property of cells by regulating the expression of stem cell signaling pathway proteins at mRNA level. Dysregulated miRNA expression and associated stem cell signaling pathways in normal stem cells give rise to cancer stem cells. Thus, the present study was aimed to identify the miRNAs involved in the regulation of major stem cell signaling pathways. The proteins (n = 36) involved in the signaling pathways viz., Notch, Wnt, JAK-STAT, and Hedgehog which is associated with the stemness property was taken into the consideration. The miRNAs, having binding sites for the targeted protein-encoding gene were predicted using an online tool (TargetScan) and the common miRNA among the test pathways were identified using Venn diagram analysis. A total of 22 common miRNAs (including 8 non-studied miRNAs) were identified which were subjected to target predictions, KEGG pathway, and gene ontology (GO) analysis to study their potential involvement in the stemness process. Further, we studied the clinical relevance of the non-studied miRNAs by performing the survival analysis and their expression levels in clinical breast cancer patients using the TCGA database. The identified miRNAs showed overall poor survival in breast cancer patients. The miR-6844 showed significantly high expression in various clinical subgroups of invasive breast cancer patients compared with the normal samples. The expression levels of identified miRNA(s) were validated in breast normal, luminal A, triple-negative, and stem cells in vitro models using qRT-PCR analysis. Further treatment with the phytochemical showed excellent down regulation of the lead miRNA. Overall the study first time reports the association of four miRNAs (miR-6791, miR-4419a, miR-4251 and miR-6844) with breast cancer stemness.
      PubDate: 2021-09-23
       
  • Cyanobacteria as biochemical energy source for the synthesis of inorganic
           nanoparticles, mechanism and potential applications: a review

    • Abstract: Abstract Green synthesis of nanoparticles (NPs) has gained great concern among researchers due to their unique properties, excellent applications and efficient route of synthesis. From the last decades, the number biologicals such as plants, fungus, bacteria, yeast, algae, and cyanobacteria and their products are using by various researchers for the synthesis of different NPs. However, the pillar of green chemistry keeps touching new heights to improve the performance. This review paper unveils almost recent cyanobacteria-assisted greener NP synthesis technique, characterization and application. The enormous potency of cyanobacteria in NP synthesis (silver, gold, copper, zinc, palladium, titanium, cadmium sulfide, and selenium) and significance of reducing enzymes were summarized. The extracellular and intracellular entity such as metabolites, enzyme, protein, pigments in cyanobacteria play a significant role in the conversion of metal ions to metal NPs with unique properties discussed briefly. The green synthesis of nanomaterials is valuable because of their cost-effective, nontoxic and eco-friendly prospects as well as the potential application metal NPs such as antibacterial, antifungal, anticancerous, catalytic, drug delivery, bioimaging, nanopesticide, nanofertilizer, sensing properties, etc. Therefore, in the present review, we have systematically discussed the mechanisms of synthesis and applications of cyanobacteria-assisted green synthesis of NPs.
      PubDate: 2021-09-23
       
  • A proteomic analysis of Pseudevernia furfuracea after exposure to Cr+6 by
           MALDI-TOF mass spectrometry

    • Abstract: Abstract The problem of heavy metal pollution in nature has increased rapidly in recent years. Hexavalent chromium (Cr+6) is one of the most toxic heavy metals that cause environmental pollution. Although many studies in the literature that illuminate the stress response mechanisms of biological organisms such as bacteria, algae, and plants against heavy metals, there is limited information about revealing the protein level changes of lichen species in response to heavy metal stress. Here, we used a MALDI-TOF-based proteomic assay to determine protein level changes in Pseudevernia furfuracea after exposure to Cr+6 heavy metal stress at 6, 18 and 24 h. It was determined that expression levels of 26, 149 and 66 proteins changed in P. furfuracea. 6, 18 and 24 h after Cr+6 application compared to the control sample, respectively. We identified 9 common proteins expressed at three different time levels (6, 18, 24 h) and evaluated their protein–protein interaction profiles with the STRING tool. According to the results of the study, it was determined that the expression level of six proteins was up-regulated (OP4, KIP3, BNI5, VSP64, HSP 60, BCK1) and three proteins were down-regulated (MNS1, ABZ2, ATG4) from the expression level of nine proteins in total with Cr+6 exposure. It was determined that nine proteins were also found to be effective in biological processes such as stress signaling, transcription regulation and cellular detoxification metabolisms. To confirm the protein expression level, we analyzed the HSP60 protein by western blot assay. It has been shown that exposure to Cr+6 exposure in P. furfuracea caused an increase in HSP60 protein level compared to the control sample (non-exposed Cr+6). In this study, new knowledge are presented for the use of P. furfuracea as a biosorption agent in the removal of industrial wastes in biotechnological applications.
      PubDate: 2021-09-22
       
  • Weighted gene co-expression network analysis unveils gene networks
           regulating folate biosynthesis in maize endosperm

    • Abstract: Abstract Folates are essential elements for human growth and development, and their deficiency can lead to serious disorders. Waxy maize is a rich source of folates; however, the regulatory mechanism underlying folate biosynthesis in the endosperm remains unclear. Here, we examined changes in the folate content of maize endosperm collected at 15, 18, 21, 24, and 27 days after pollination (DAP) using liquid chromatograph-mass spectrometry and identified genes related to folate biosynthesis using transcriptome sequencing data. The results showed that 5-methyl-tetrahydrofolate and 5,10-methylene tetrahydrofolate were the main storage forms of folates in the endosperm, and their contents were relatively high at 21–24 days. We also identified 569, 3183, 4365, and 5513 differentially expressed genes (DEGs) in different days around milk stage. Functional annotation revealed 518 transcription factors (TFs) belonging to 33 families exhibiting specific expression in at least one sampling time. The key hub genes involved in folate biosynthesis were identified by weighted gene co-expression network analysis. In total, 24,976 genes were used to construct a co-expression network with 29 co-expression modules, among which the brown and purple modules were highly related to folate biosynthesis. Further, 187 transcription factors in the brown and purple modules were considered potential transcription factors related to endosperm folate biosynthesis. These results may improve the understanding of the molecular mechanism underlying folate biosynthesis in waxy maize and lead to the development of nutritionally fortified varieties.
      PubDate: 2021-09-21
       
  • In vivo wound-healing and antioxidant activity of aqueous extract of
           Roylea elegans leaves against physically induced burn model in Wistar
           albino rats

    • Abstract: Abstract Roylea elegans Wall. ex Benth. is a lemon-scented hoary shrub belonging to the mint family (Lamiaceae). Traditionally, a local tribe of the Himalayan region uses leaves for scabs and skin infections. The aerial parts and leaves are widely used to cure various skin ailments. The plant is well known for two furanoid diterpenes, royeleganin and royelegafuran. The aqueous extract of Roylea elegans (AERE) leaves was investigated for wound-healing effects in rats using a physically induced burn model by assessing different parameters. Animals were divided into four groups (six rats in each group). Group I animals were considered as disease control and topically given base cream. Group II was considered as standard control and treated topically with Framycetin sulphate cream (1% w/w). Group III and IV animals were treated topically with creams containing 5 or 10% of AERE, respectively. Several parameters such as wound contraction rate, epithelialization period, and enzymatic and non-enzymatic antioxidant markers along with pro- and anti-inflammatory cytokines were studied followed by histopathological studies. The animals treated with AERE cream exhibited significant declination in the wound area and increased collagen content as compared to the disease control group. The results showed that the lower dose (5%) of AERE produced a significant decrease in the epithelialization period, wound contraction rate, and collagen content. Increased levels of cytokine production may be one of the mechanisms in accelerating the wound-healing process. The study established the traditional claim as an antioxidant and wound-healing potential of Roylea elegans by promoting the accelerated wound-healing activity against the physically induced burn model.
      PubDate: 2021-09-21
       
  • RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f.
           sp. lycopersici confers resistance against Fusarium wilt in tomato

    • Abstract: Abstract In the present study, we have explored the potential of the RNAi mediated silencing of genes encoding peroxisomal biogenesis factor and β-1,3-glucanosyltransferase in Fusarium oxysporum f. sp. lycopersici (Fol) to confer resistance to Fusarium wilt in transgenic tomato plants. The partial gene fragments from these genes were utilized independently to generate hairpin RNAi constructs in appropriate silencing vectors and used for Agrobacterium-mediated transformation of tomato. The presence of gene-specific siRNAs was confirmed by stem-loop RT-PCR analysis of selected transgenic tomato lines. Transgenic lines expressing gene-specific dsRNA displayed enhanced resistance to Fol with delayed development of disease symptoms. The survival rate of transgenic tomato lines after fungal infection was higher as compared to that of the untransformed tomato plants.
      PubDate: 2021-09-21
       
  • Effect of progressive drought stress on physio-biochemical responses and
           gene expression patterns in wheat

    • Abstract: Abstract The study aimed to decipher the impact of multiple drought stress on wheat. To that effect, Geumgangmil, PL 337 (1AL.1RS), PL 371 (1BL.1RS), and PL 257 (1DL.1RS) seedlings were subjected to four treatments: G1 (control), G2 (stressed thrice with rewatering), G3 (stressed twice with rewatering), and G4 (single stressful event). The findings provided a comprehensive framework of drought-hardening effect at physiological, biochemical, and gene expression levels of drought-stressed wheat genotypes. The treatments resulted in differentially higher levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), soluble sugar, and proline accumulation, and reduced relative water content (RWC) in wheat plants. Photosynthetic pigment (chlorophyll and carotenoid) levels, the membrane stability index (MSI), and shoot biomass decreased dramatically and differently across genotypes, particularly in G3 and G4 compared to G2. The activity of antioxidant enzymes [ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT)] increased with the duration and severity of drought treatment. Furthermore, the relative expression of DREB, LEA, HSP, P5CS, SOD1, CAT1, APX1, RBCL, and CCD1 genes was higher in G2 than in other treatments. Drought hardening increased drought tolerance and adaptability in plants under G2 by enhancing growth and activating defensive mechanisms at the physio-biochemical and molecular levels. The findings of the study indicated that early drought stress exposure-induced acclimation (hardening), which enhanced tolerance to subsequent drought stress in wheat seedlings. The findings of this study will be useful in initiating a breeding program to develop wheat cultivars with improved drought tolerance.
      PubDate: 2021-09-19
       
  • Productivity and morphometric parameters of the microalga Dunaliella
           salina IBSS-2 under pilot cultivation in continental mid-latitude climate
           in spring

    • Abstract: Abstract In this study, we aimed to investigate the taxonomy and various characteristics of Dunaliella salina IBSS-2 strain and describe its cultivation potential in mid-latitude climate during springtime. In addition, our analysis confirmed the essentiality of combining morphological, physiological, and other characteristics when identifying new species and strains of the genus Dunaliella, along with the molecular marker (internal transcribed spacer (ITS) of rDNA gene). The pilot cultivation of microalgae during the springtime in the south of Russia demonstrated that the climatic conditions of this region allow D. salina cultivation for biomass accumulation during this season, highlighting light and temperature conditions as the main factors determining the growth rate of D. salina. A two-fold increase in daily insolation and, consequently, in temperature in April resulted in a more than three-fold increase in productivity of D. salina culture. The maximum productivity of D. salina both in April and May was comparable and reached 2 g m−2 day−1, and the total yield for 8–10 days was about 14.5–16 g m−2. The additional CO2 supply into the D. salina culture did not show any significant effect on its growth rate; however, it contributed to maintaining the diversity of morphometric characteristics over a longer period of time. Changes in the morphological and morphometric characteristics of algal cells, including size reduction, were observed during the batch cultivation. Thus, the production potential of the green carotenogenic microalga D. salina was determined in the springtime, which allows expanding the seasonal interval of its cultivation in temperate latitudes.
      PubDate: 2021-09-18
       
  • Combined biostimulation and bioaugmentation for chlorpyrifos degradation
           in laboratory microcosms

    • Abstract: Abstract Chlorpyrifos (CP) is a persistent organophosphorus pesticide (OP) used in soil ecosystem for insect control. Bioremediation process has been proven promising in degrading these toxic molecules and restoring the physio-chemical properties of soil. This work reports a laboratory microcosm study in both non-sterile & sterile conditions, conducted over a period of 56 days to examine the combined effect of additional supplements like biostimulants (BSs) such as N, P, and K in the presence of suitable carrier materials (compost, wheat straw, and corncob) along with bioaugmentation by a Ochrobactrum sp. CPD-03 on CP degradation from the contaminated soil. CP degradation was thoroughly monitored at an interval of 7 days over a period of 56 days. Results showed biostimulation and bioaugmentation along with compost as carrier material had shown higher CP degradation efficiency of 76 ± 2.8 and 74 ± 1.6% in non-sterile and sterile microcosms over a period of 56 days. Moreover, bacterial community profiling (16s rRNA and opd gene) demonstrated increased microbial counts, corroborating the efficiency of the bioremediation process. The survival of CPD-03 at the end of the assay validated its ability of colonizing modified soils. By this integrated method with compost as carrier material, bioremediation process could be enhanced for restoration CP-contaminated soils.
      PubDate: 2021-09-18
       
  • A temporary immersion system for mass micropropagation of pitahaya
           (Hylocereus undatus)

    • Abstract: Abstract Scaling-up techniques in temporary immersion systems are an alternative for commercial micropropagation. In vitro propagation of pitahaya (Hylocereus undatus) using temporary immersion with liquid culture medium improves micropropagation efficiency compared to the conventional method in semisolid medium. The objective of this work was to evaluate the efficiency of traditional culture and temporary immersion during micropropagation of pitahaya to facilitate the rapid establishment of new commercial plantations of high genetic and phytosanitary quality. Semisolid culture, liquid media in partial immersion and temporary immersion in an Ebb-and-Flow bioreactor were evaluated. Also, in temporary immersion, different immersion frequencies (every 4, 8, 12, and 16 h) and culture densities (5, 10, 15 and 20 explants per bioreactor) were evaluated. For the multiplication stage, new shoots and length were recorded per explant at 45 d of in vitro culture and in the acclimatization stage, the survival percentage was determined at 30 d of greenhouse cultivation. A temporary immersion of 2 min every 4 h and 15 explants per bioreactor was the best culture system, obtaining on average 10.7 shoots per explant with a length of 1.9 cm. No significant differences were observed among treatments during acclimatization, obtaining survival percentages of 98%–100%. This study reports for the first time a protocol for scaling-up techniques in temporary immersion for commercial micropropagation of pitahaya (and for any species of the Cactaceae family) and its establishment in a productive plantation.
      PubDate: 2021-09-17
       
  • Majoon Chobchini attenuates arthritis disease severity and RANKL-mediated
           osteoclastogenesis in rheumatoid arthritis

    • Abstract: Abstract Majoon Chobchini, a polyherbal Unani compound, has been used holistically in India to treat rheumatoid arthritis. However, the potential mechanism underlying the antiarthritic efficacy of Majoon Chobchini has not been elucidated so far. This study was aimed to explore the underlying molecular mechanism and scientifically validate the therapeutic basis of Majoon Chobchini in rheumatoid arthritis (RA). The anti-arthritic efficacy of Majoon Chobchini was demonstrated in vivo using complete Freund's adjuvant-induced arthritic rat model and adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS). The expression of pro-inflammatory mediators and enzymes was evaluated in the serum and synovial tissues of adjuvant-induced arthritis (AIA) rats. In-vitro, AA-FLS, and bone marrow macrophages (BMMs) were co-cultured to evaluate the formation and activity of osteoclasts using TRAP staining analysis and pit formation assay, respectively. RANKL and OPG levels were detected using western blotting and qRT-PCR analysis. Furthermore, the involvement of JAK-STAT-3 signaling in the therapeutic efficacy of Majoon Chobchini was evaluated both in vivo and in vitro. Majoon Chobchini significantly reversed the physical symptoms in AIA rats with reduced expression of pro-inflammatory cytokines and enzymes. Notably, Majoon Chobchini alleviated cartilage degradation and bone erosion in AIA rats via inhibiting the activation of the JAK-STAT-3 signaling pathway in the AIA rats. Consistent with its effect in vivo, Majoon Chobchini decreased osteoclast inducing potential of AA-FLS and thus attenuated osteoclast formation and bone resorption in vitro. Taken together, our findings suggest that the JAK/STAT-3 signaling inhibition may underlie the mechanism through which Majoon Chobchini provides relief against RA symptoms.
      PubDate: 2021-09-17
       
  • Fungal and enzymatic bio-depolymerization of waste post-consumer
           poly(ethylene terephthalate) (PET) bottles using Penicillium species

    • Abstract: Abstract Poly(ethylene terephthalate) (PET) is a petroleum-based plastic that is massively produced and used worldwide. A promising PET recycling process to circumvent petroleum feedstock consumption and help to reduce environmental pollution is microbial or enzymatic biodegradation of post-consumer (PC) PET packages to its monomers—terephthalic acid (TPA) and ethylene glycol (EG)—or to key intermediates in PET synthesis—such as mono- and bis-(2-hydroxyethyl) terephthalate (MHET and BHET). Two species of filamentous fungi previously characterized as lipase producers (Penicillium restrictum and P. simplicissimum) were evaluated in submerged fermentation for induction of lipase production by two inducers (BHET and amorphous PET), and for biodegradation of two substrates (BHET and PC-PET). BHET induced lipase production in P. simplicissimum, achieving a peak of 606.4 U/L at 49 h (12.38 U/L.h), representing an almost twofold increase in comparison to the highest peak in the control (without inducers). Microbial biodegradation by P. simplicissimum after 28 days led to a 3.09% mass loss on PC-PET fragments. In contrast, enzymatic PC-PET depolymerization by cell-free filtrates from a P. simplicissimum culture resulted in low concentrations of BHET, MHET and TPA (up to 9.51 µmol/L), suggesting that there are mechanisms at the organism level that enhance biodegradation. Enzymatic BHET hydrolysis revealed that P. simplicissimum extracellular enzymes catalyze the release of MHET as the predominant product. Our results show that P. simplicissimum is a promising biodegrader of PC-PET that can be further explored for monomer recovery in the context of feedstock recycling processes.
      PubDate: 2021-09-16
       
  • Insights into the relevance between bacterial endophytic communities and
           

    • Abstract: Abstract Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc), impacts the production of rice. However, several rice cultivars displayed resistance to Xoc in the field, but scarce information is available about the role of endophytic microbiota in disease resistance. In the present study, the endophytic bacterial communities of resistant and susceptible rice cultivars “CG2” and “IR24”, respectively, were analyzed using high throughput 16S rRNA gene amplified sequencing and culture dependent method was further used for bacterial isolation. A total of 452,716 high-quality sequences representing 132 distinct OTUs (Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes) and 46 isolates of 16 genera were explored from rice leaves infected with Xoc. Community diversity of endophytic bacteria were higher in the leaves of the resistant cultivars compared to susceptible cultivars upon Xoc infection. Strikingly, this diversity might contribute to natural defense of the resistant cultivar against pathogen. Pantoea, which is pathogen antagonist, was frequently detected in two cultivars and higher abundance were recorded in resistant cultivars. Different abundance genus includes endophytic isolates with marked antagonistic activity to Xoc. The increased proportions of antagonistic bacteria, may contribute to resistance of rice cultivar against Xoc and the Pantoea genus was recruited by Xoc infection play a key role in suppressing the development of BLS disease in rice. Taken together, this work reveals the association between endophytic bacteria and BLS resistance in rice and identification of antagonism-Xoc bacterial communities in rice.
      PubDate: 2021-09-15
       
  • Long noncoding RNA LINC00968 inhibits proliferation, migration and
           invasion of lung adenocarcinoma through targeting miR-22-5p/CDC14A axis

    • Abstract: Abstract Lung adenocarcinoma (LUAD) is a high aggressive human cancer which usually diagnosed at advanced stages. Accumulating evidences indicate that long noncoding RNAs (lncRNAs) are crucial participants in LUAD progression. In the present study, we found that lncRNA LINC00968 was significantly down-regulated in LUAD tissues and cell lines. LINC00968 level was positively correlated to survival rate, and negatively correlated to tumor node metastasis (TNM) stage, tumor size and lymph node metastasis of LUAD patients. We over-expressed LINC00968 in LUAD cells using lentivirus, inhibited proliferation and cell cycle arrest at G1 phase were detected. LINC00968 over-expression also suppressed migration, invasion and epithelial mesenchymal transition. We further validated that LINC00968 localized in cytoplasm and acted as an upstream regulator of microRNA miR-22-5p, which was up-regulated in LUAD tissues and cell lines. Besides, elevated miR-22-5p expression abolished the effect of LINC00968 over-expression on LUAD progression including in vivo tumor growth. In addition, we first validated that cell division cycle 14A (CDC14A), which was down-regulated in LUAD tissues, was a downstream target of miR-22-5p. We over-expressed CDC14A in LUAD cells and miR-22-5p induced LUAD progression was partially reversed. In conclusion, our study demonstrated that LINC00968 inhibited proliferation, migration and invasion of LUAD by sponging miR-22-5p and further restoring CDC14A. This novel regulatory axis might provide us with promising diagnostic and therapeutic target in LUAD treatment.
      PubDate: 2021-09-14
       
  • High-solid enzymatic hydrolysis of sugarcane bagasse and ethanol
           production in repeated batch process using column reactors

    • Abstract: Abstract Alkaline sulfite pretreated sugarcane bagasse was enzymatically hydrolyzed in a packed-bed column reactor and a bubble column reactor was evaluated to produce ethanol from the hydrolysate. Initial solid loadings of 9–16% were used in column reactor in the hydrolysis step, and the use of lower value (9%) resulted in 41 g L−1 of glucose in the hydrolysate, corresponding to 87% of cellulose hydrolysis yield. This yield was reduced to 65% for a solid loading of 16%, corresponding to a glucose concentration of 54 g L−1. Subsequently, Saccharomyces cerevisiae and Scheffersomyces stipitis were used for ethanol production in medium based on hydrolysate previously obtained, using different aeration flowrates (0.3, 0.5 and 0.7 vvm). In simple batch fermentation using S. cerevisiae, higher ethanol yield (0.40 g.g−1) and productivity (1.58 g.L−1.h−1) were achieved using 0.5 vvm. When S. stipitis was used in simple batch co-fermentations, the maximum ethanol productivities were obtained using 0.5 and 0.7 vvm (0.64 and 0.63 g.L−1.h−1, respectively). Successive repeated batches resulted in average ethanol concentration of 38 g.L−1 and fermentation efficiency of 82%, when using S. cerevisiae. For S. stipitis, those values were, respectively, 36 g.L−1 and 50%, with volumetric productivity increased along the cycles. Thus, the potential of the bioreactors as simple systems for use in the biological steps of biorefineries was demonstrated.
      PubDate: 2021-09-12
       
  • Development of a real-time RT-PCR method for the detection of Citrus
           tristeza virus (CTV) and its implication in studying virus distribution in
           planta

    • Abstract: Abstract Tristeza is an economically important disease of the citrus caused by Citrus tristeza virus (CTV) of genus Closterovirus and family Closteroviridae. The disease has caused tremendous losses to citrus industry worldwide by killing millions of trees, reducing the productivity and total production. Enormous efforts have been made in many countries to prevent the viral spread and the losses caused by the disease. To understand the reason behind this scenario, studies on virus distribution and tropism in the citrus plants are needed. Different diagnostic methods are available for early CTV detection but none of them is employed for in planta virus distribution study. In this study, a TaqMan RT-PCR-based method to detect and quantify CTV in different tissues of infected Mosambi plants (Citrus sinensis) has been standardized. The assay was very sensitive with the pathogen detection limit of > 0.0595 fg of in vitro-transcribed CTV-RNA. The assay was implemented for virus distribution study and absolute CTV titer quantification in samples taken from Tristeza-infected trees. The highest virus load was observed in the midribs of the symptomatic leaf (4.1 × 107–1.4 × 108/100 mg) and the lowest in partial dead twigs (1 × 103–1.7 × 104/100 mg), and shoot tip (2.3 × 103–4.5 × 103/100 mg). Interestingly, during the peak summer months, the highest CTV load was observed in the feeder roots (3 × 107–1.1 × 108/100 mg) than in the midribs of symptomatic leaf. The viral titer was highest in symptomatic leaf midrib followed by asymptomatic leaf midrib, feeder roots, twig bark, symptomatic leaf lamella, and asymptomatic leaf lamella. Overall, high CTV titer was primarily observed in the phloem containing tissues and low CTV titer in the other tissues. The information would help in selecting tissues with higher virus titer in disease surveillance that have implication in Tristeza management in citrus.
      PubDate: 2021-09-11
       
  • Development of a new set of genic SSR markers in the genus Gentiana: in
           silico mining, characterization and validation

    • Abstract: Abstract Gentiana is an important genus of around 360 medicinally important species, majority of which are not well characterized. Despite its importance, very few genomic resources are available for Gentiana L. Till date, the number of informative and robust simple sequence repeat (SSR)-based markers is limited and very few efforts have been made for their development. A set of robust, freely accessible and informative SSR markers for Gentiana is a pre-requisite for any molecular systematic as well as improvement studies in this group of pharmacologically valuable plants. In view of the importance of these plants, Expressed Sequence Tag (EST) sequences of 18 Gentiana species were surveyed for the development of a large set of non-redundant SSR markers. A total of 5808 perfect SSR with an average length of 17 bp and relative abundance of 214 loci/Mb were identified in the analysed 47,487 EST sequences using Krait software. Mapping of the ESTs resulted in gene ontology annotations of 49.14% of the sequences. Based on these perfect SSRs, 2902 primer pairs were designed, and 60 markers were randomly selected and validated on a set of Gentiana kurroo Royle accessions. Among the screened markers, 39 (65%) were found to be cross-species transferable. This is the first report of the largest set of functional, novel genic SSR markers in Gentiana, which will be a valuable resource for future characterization, genotype identification, conservation and genomic studies in the various species of this group of important medicinal plants.
      PubDate: 2021-09-10
       
  • Management of microbial enzymes for biofuels and biogas production by
           using metagenomic and genome editing approaches

    • Abstract: Abstract Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced “omics” approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
      PubDate: 2021-09-08
       
  • Microbial proteases: ubiquitous enzymes with innumerable uses

    • Abstract: Abstract Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
      PubDate: 2021-09-08
       
  • Nanocarriers-based immobilization of enzymes for industrial application

    • Abstract: Abstract Nanocarriers-based immobilization strategies are a novel concept in the enhancement of enzyme stability, shelf life and efficiency. A wide range of natural and artificial supports have been assessed for their efficacy in enzyme immobilization. Nanomaterials epitomize unique and fascinating matrices for enzyme immobilization. These structures include carbon nanotubes, superparamagnetic nanoparticles and nanofibers. These nano-based supports offer stable attachment of enzymes, thus ensuring their reusability in diverse industrial applications. This review attempts to encompass recent developments in the critical role played by nanotechnology towards the improvement of the practical applicability of microbial enzymes. Nanoparticles are increasingly being used in combination with various polymers to facilitate enzyme immobilization. These endeavors are proving to be conducive for enzyme-catalyzed industrial operations. In recent years the diversity of nanomaterials has grown tremendously, thus offering endless opportunities in the form of novel combinations for various biotransformation experimentations. These nanocarriers are advantageous for both free enzymes and whole-cell immobilization, thus demonstrating to be relatively effective in several fermentation procedures.
      PubDate: 2021-09-07
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.236.191.104
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-