Abstract: Abstract ANPR cameras allow the automatic detection of vehicle license plates and are increasingly used for law enforcement. However, also statistical data generated by ANPR cameras are a potential source of urban insights. In order for this data to reach its full potential for policy-making, we research how this data can be shared in digital twins, with researchers, for a diverse set of machine learning models, and even Open Data portals. This article’s key objective is to find a way to anonymize and aggregate ANPR data in a way that it still can provide useful visualizations for local decision making. We introduce an approach to aggregate the data with geotemporal binning and publish it by combining nine existing data specifications. We implemented the approach for the city of Kortrijk (Belgium) with 43 ANPR cameras, developed the ANPR Metrics tool to generate the statistical data and dashboards on top of the data, and tested whether mobility experts from the city could deduct valuable insights. We present a couple of insights that were found as a result, as a proof that anonymized ANPR data complements their currently used traffic analysis tools, providing a valuable source for data-driven policy-making. PubDate: 2022-04-24
Abstract: Abstract Weather has a substantial influence on people’s travel behavior. In this study we analyze if meteorological variables can improve predictions of hourly traffic counts at 1400 stations on federal roads and highways in Germany. Motorbikes, cars, vans and trucks are distinguished. It is evaluated in how far the mean squared error of Poisson regression models for hourly traffic counts is reduced by using precipitation, temperature, cloud cover and wind speed data. It is shown that in particular motorbike counts are strongly weather-dependent. On federal roads the mean squared error is reduced by up to 60% in models with meteorological predictor variables, when compared to models without meteorological variables. A detailed analysis of the models for motorbike counts reveals non-linear relationships between the meteorological variables and motorbike counts. Car counts are shown to be specifically sensitive to weather in touristic regions like seaside resorts and nature parks. The findings allow for several potential applications like improvements of route planning in navigation systems, implementations in traffic management systems, day-ahead planning of visitor numbers in touristic areas or the usage in road crash modelling. PubDate: 2022-04-22
Abstract: Abstract According to the economic theory assumption, travelers tend to monetize travel time based on factors related to their individual and trip characteristics. In the literature, a limited number of studies evaluating onboard activities on traveler’s utility in the presence of the autonomous vehicle (AV) are found. In the current research, traveler preferences on board of three transport modes: individual-ride autonomous vehicle (IR-AV), shared-ride autonomous vehicle (SAV), and public transport (PT) are studied. The focus of this paper is the examination of travelers in urban areas, where traveling is relatively short, and the study of the travelers’ main trip purposes. The impact of travel time, travel cost, and main onboard activity is estimated based on a discrete choice experiment (DCE). The in-vehicle onboard activities are divided into six onboard activities, where active and passive activities are considered. An experimental design and a stated preference (SP) survey are carried out. The result of the SP survey is analyzed, where a Mixed Logit (ML) model, which includes various explanatory variables, is applied. The developed model contains such variables as trip time, trip cost, main onboard activity, frequent transport mode, job, age, and car ownership. These variables show various effects on the probability of choosing a transport mode. The impact of change in travel time, travel cost, and each of the six onboard activities on traveler preferences is highlighted. As a result, variations on the impact of time, cost, and onboard activities are demonstrated. Furthermore, it is presented that people prefer using IR-AV over SAV and PT, while the probability of choosing SAV is the lowest. Besides, reading and using social media affect the utility of travelers positively (i.e., higher probability) to a greater extent than other activities, while writing alone demonstrates negative utility. PubDate: 2022-04-18
Abstract: Background Despite emerging research on novel mobility solutions in urban areas, there have been few attempts to explore the relevance and sustainability of these solutions in rural contexts. Furthermore, existing research addressing rural mobility solutions typically focuses on a specific user group, such as local residents, second-home owners, or tourists. In this paper, we study the social inclusivity, economic viability, and environmental impacts of novel mobility solutions in rural contexts based on published scholarly literature. When doing so, we bring both permanent and temporary residents of rural areas under one research framework. Methods We used grey literature to identify and categorise novel mobility solutions, which have been applied in European rural areas and are suitable for travelling longer distances. By using six service flexibility variables, we reached four categories of novel mobility solutions: semi-flexible demand-responsive transport, flexible door-to-door demand-responsive transport, car-sharing, and ride-sharing. We analysed the social inclusivity, economic viability, and environmental impacts of those categories based on criteria and evidence identified from scholarly literature by including the perspectives of both permanent and temporary residents of rural areas. Conclusion: Integration of the needs of various user groups is essential when aiming to achieve the provision of environmentally, socially, and economically sustainable mobility solutions in rural areas. Results Our findings revealed that while single novel mobility solutions are seldom applicable for all rural travellers, strong spatial and temporal synergies exist when combining different solutions. The need for a connected and flexible set of mobility solutions sensitive to the temporal and spatial patterns of mobility needs is inevitable. Accessible and easily understandable information on routing, booking, and ticketing systems, as well as cooperation, shared values, and trust between various parties, are key success factors for sustainable rural mobility. Conclusion Integration of the needs of various user groups is essential when aiming to achieve the provision of environmentally, socially, and economically sustainable mobility solutions in rural areas. PubDate: 2022-04-06
Abstract: Background The imminent emergence of connected and autonomous vehicles (CAVs) highlights the need for preparing the road infrastructure for traffic flows mixed with CAVs and human-driven vehicles. A dedicated lane (DL) for CAVs is one of the practical and potential ways to upgrade the road infrastructure for the mixed traffic. Methods This paper proposes a theoretical method to discuss the influence of implementing a CAV DL policy on the freeway traffic efficiency. In detail, the impact was measured by capacity and throughput. The calculation methods of these efficiency measurements under different CAV DL policies were proposed. Experiments Numerical experiments were conducted under various compositions of CAV DL policies and traffic conditions. More specifically, the relationship between the traffic conditions (i.e., traffic demand, market penetration rate (MPR) of CAVs, platoon intensity of CAVs, willingness of CAVs using the CAV DL) and the CAV DL policies (i.e., lane configuration, DL access control policy) were discussed. Results and Conclusion The results have led to some interesting findings, including the critical values of MPR that are valuable to guide an appropriate implementation of a CAV DL policy under a specific traffic condition. PubDate: 2022-04-04
Abstract: Objective This study aims to investigate the degree of concentration and the competitive positions of the Baltic cruise port network. Methods A set of 29 Baltic ports are analysed, market concentration is evaluated using the analytical technique of the Herfindahl–Hirschman index, and competitive positions are determined through portfolio analysis based on the Boston Consulting Group matrix from 2000 to 2019. Results The Herfindahl–Hirschman index indicates that the Baltic cruise port system is unconcentrated with an average score of 0.11 for the analysed period, suggesting that eight of the twenty-nine ports are the dominant ports in the Baltic. Portfolio analysis results suggest that the hierarchy picture of competitive positions is dynamic and has changed over time. The Baltic cruise port system has a wide range of competitive positions. Kiel and Rostock becoming mature leaders is one of the most relevant changes in competitive positions. Implications of the research This study contributes to the literature not only by investigating the competitive positions of the second most important European operational area for cruise ships but also by filling the gap in research on the concentration and competitive strategic positions of Baltic cruise ports. This research allows seaport operators to visualise the position and progress of selected ports and predict the possible future seaport developments. PubDate: 2022-04-01
Abstract: Context Cycling is a climate-friendly means of transport that enables people to reduce their use of motorized transport and makes human settlements more inclusive and resilient. In Italy, the development of cycling has recently been boosted by the approval of Law no. 2/2018, which makes it compulsory for all Italian regions to draw up a regional cycling mobility plan. Objective To meet this regulatory provision, the Region of Sardinia approved the Regional Plan for Cycling Mobility in December 2018. Drawn up by the Sardinian Regional Transport Agency and the transportation research group of the University of Cagliari, the plan aims to lay out a regional cycle network to promote the use of the bicycle as a means of transport for both every day and tourist–recreational needs. One of the main objectives of the plan is to make the inland areas of the island more accessible, as the development of such areas tends to have been neglected compared to the coastal areas linked to seaside tourism. Hence, the plan intends to contribute to the increase of tourist flows into rural areas, which can be a strategic segment of local development. Results By analysing the methodology adopted to lay out Sardinia’s regional cycle network, the aim of the current paper is to show how the planning of an integrated cycle network in an island context can improve sustainable mobility and accessibility in the rural areas through which it passes. Furthermore, our analysis indicates that many rural settlements along the routes of the planned cycle network are sufficiently near each other for people to travel between them by bicycle. Conclusions Therefore, the cycling infrastructure could prompt a sustainable increase in the accessibility and connectivity of inland areas and stimulate the formation of clusters of small, interconnected towns and villages. PubDate: 2022-03-31
Abstract: Background The accelerated development of automated driving technology has raised the expectation that commercially available automated vehicles will be increasingly become ubiquitous. It has been claimed that automated vehicles are safer than conventional manual vehicles, leading to the expectation of fewer accidents. However, people expect not only better but also near-perfect machines. Given that accidents involving automated vehicle do occur and are highlighted by the media, negative reactions toward automated vehicles have increased. For this reason, it is critical to research human–machine interaction to develop suitable levels of trust between human users and newly introduced automated vehicle systems. Method We start this study by defining user distrust toward automated vehicles in terms of four types of trustthreatening factors (TTFs) along with trust-threatening situations. Next, with 30 volunteer participants, we conduct a survey and a humanin-the-loop experiment involving riding in a simulated automated vehicle and experiencing 21 distrust scenarios. Result In terms of the information configuration type suitable for alleviating the TTFs, the participants preferred to receive information on external object recognition for all TTFs in general with an average necessity level score of 24.2, which was 8.0 points higher on average than the scores of the other information configuration types. The haptic modality-based method was the least preferred compared to the other information configuration methods, namely visual and auditory. Conclusion In this study, we focused on participants’ subjective responses and complementary quantitative studies, and the results of these studies put together are expected to serve as a foundation for designing a user interface that can induce trust toward automated vehicle among users. PubDate: 2022-03-31
Abstract: Abstract A shortage of empty containers has become a global crisis with more devastating effects than during previous periods when combined with various problems arising from the COVID-19, such as an increase in an imbalance of global trade between supply and demand, a decrease in the workforce, and restrictions by countries or regional quarantine practices. The absence of empty containers in regions where they are needed slows down industrial activities and locks the global supply networks, necessitating the use of alternative methods that are inefficient. Although this shortage causes many disruptions in global trade, solutions to the issue have not been studied in detail. Therefore, the aim of this study was to determine the issues caused by the shortage of empty containers and to rank the appropriate solutions. Four main criteria and sixteen subcategories used to define the issues, as well as a multi criteria decision model comprising five criteria for the solutions, were proposed based on information from the literature, sectorial publications, and expert opinions. The issues’ weighted order of importance in our proposed model was calculated using the SWARA (Step-wise Weight Assessment Ratio Analysis) method; solutions were ranked using the ARAS (Additive Ratio Assessment) method. The results of the study revealed that the issues were ranked in importance as cost increases, uncertainty in the supply chain, volume loss, and increases in blank sailing announcements. Appropriate solutions were ranked as booking guarantee applications and information communication technologies, using shipper-owned containers, inducement calls, and E2E (end to end) delivery services. PubDate: 2022-03-21
Abstract: Abstract For Europe's urban agglomerations to be economically competitive, it is vital that international destinations be easily accessible. Although much has been invested in the construction of European rail infrastructure over the past century, passenger transport by rail has not grown as fast as transport by road and air. So why do people not use international trains more, even though they have an extensive international rail network at their disposal' Based on a series of in-depth interviews with relevant public and private stakeholders and two expert meetings, we identify the main bottlenecks and constraints. In order to understand the complexity of international rail transport, we have divided the existing bottlenecks into four groups corresponding to four layers of the rail transport system: mobility services, transport services, traffic services, and the physical and digital infrastructure. We formulate concrete policy recommendations for improvements to be made in the various components of the rail transport system. PubDate: 2022-03-18
Abstract: Abstract With the rapid growth of electric vehicles (EVs) in the past decade, many new traffic safety challenges are also emerging. With the crash data of Norway from 2011 to 2018, this study gives an overview of the status quo of EV crashes. In the survey period, the proportion of EV crashes in total traffic crashes had risen from zero to 3.11% in Norway. However, in terms of severity, EV crashes do not show statistically significant differences from the Internal Combustion Engine Vehicle (ICEV) crashes. Compared to ICEV crashes, the occurrence of EV crashes features on weekday peak hours, urban areas, roadway junctions, low-speed roadways, and good visibility scenarios, which can be attributed to the fact that EVs are mainly used for urban local commuting travels in Norway. Besides, EVs are confirmed to be much more likely to collide with cyclists and pedestrians, probably due to their low-noise engines. Then, the separate logistic regression models are built to identify important factors influencing the severity of ICEV and EV crashes, respectively. Many factors show very different effects on ICEV and EV crashes, which implies the necessity of re-evaluating many current traffic safety strategies in the face of the EV era. Although the Norway data is analyzed here, the findings are expected to provide new insights to other countries also in the process of the complete automotive electrification. PubDate: 2022-03-14
Abstract: Introduction To reduce pollution from motorized private cars, a modal shift toward more sustainable modes, such as public transport, is desired. A first step to achieving this is the subscription to a public transport ticket. It was investigated if an extended version of the theory of planned behavior is suited to predict subscription to a public transport ticket, and if environmental concern—the channel through which many sustainable transport modes are advertised—plays a significant role. It was further examined if nudging serves as an effective measure in convincing employees to subscribe to the offered ticket. Nudges encourage desired behaviors by changing the information set that individuals face when taking decisions; in this paper, this includes favorable defaults and the manipulation of the social norm. Since nudges lack a coherent theory, it was tested if these nudges can be integrated into the aforementioned theory. Method By means of an online experiment, participants (N = 373) were randomly assigned to different nudging conditions or a control condition. The questionnaire mimicked a working contract, including the decision for or against a subscription to the ticket. Results Results of structural equation modeling revealed that the theory predicted the purchase decision well, yet the impact of environmental concern was surprisingly low. Most tickets were purchased in the default condition, but no nudge reached statistical significance. Discussion and Conclusion The limitations of nudging in the transport sector are discussed, along with the effectiveness of advertising public transport through an environmental lens. PubDate: 2022-03-02
Abstract: Objective This study investigates the implementation of the waterborne platooning transport concept in two of the largest European inland navigation corridors, the Rhine and the Danube region. Each region has different geo-economic and environmental features. These features are compared, and their effects on implementing a waterborne platooning transport concept are studied. The waterborne platooning concept, referred to as the Vessel Train, aims to reduce crew cost by automating the navigation tasks and moving the navigational responsibility to the leading vessel of the platoon, which is fully manned. Methods The implementation of the Vessel Train is assessed by making use of a developed model, which allows the assessment of the concept's viability by comparing the annual cost per transported ton of a reference vessel that sails individually to a vessel that sails as a part of a VT on the same route. Results The results conclude that the application of waterborne platooning on the Rhine is more promising than on the Danube. The low wages hamper the implementation of the concept on the Danube in the region, the low traffic density on the waterway, and the common use of large push tows instead of self-propelled vessels. Implications for research As determined in the analysis for the Rhine case, a reduction in transport cost would make waterborne transport more attractive. However, other factors, such as the further integration of the VT in the overall supply chain, play a role in the successful implementation of this IWT transport concept. Applying the VT concept in the Danube case requires more potential cargo flows, which can be obtained by adding push convoys into the vessel train. This way of transport is more numerous on the Danube than self-propelled vessels. Both of these aspects should be studied further. PubDate: 2022-02-25
Abstract: Structured abstract Introduction Prospective and retrospective performance assessment of Advanced Driver Assistance Systems (ADASs) is fundamental to pilot future enhancements for active safety devices. In critical road scenarios between two vehicles where ADAS activation enables collision mitigation only, currently available assessment methodologies rely on the reconstruction of the impact phase consequent to the specific intervention on braking and steering: the velocity change sustained by the vehicle in the collision ( \(\Delta V\) ) is retrieved, so that IR decrease for the vehicle occupants can be obtained by appropriate Injury Risk (IR) models. However, information regarding the ADAS performance is available only after the impact phase reconstruction and not just as when the criticality occurs in the pre-impact phase: the best braking and steering alternative cannot be immediately envisaged, since a direct correlation lacks between the braking/steering intervention and IR. Method This work highlights an ADAS performance assessment method based on the disaggregation of \(\Delta V\) in the two pre-impact parameters closing velocity at collision ( \(V_r\) ) and impact eccentricity, represented by the Crash Momentum Index (CMI). Such a disaggregation leads to the determination of IR based solely on impact configuration between the vehicles, without directly considering the impact phase. The performance of diverse ADASs in terms of intervention logic are directly comparable based on the resulting impact configuration, associated with a single coordinate in the CMI- \(V_r\) plane and a sole IR value as a consequence. Results The CMI- \(V_r\) approach is employable for both purposes of prospective and retrospective performance assessment of ADAS devices. To illustrate the advantages of the methodology, a solution for prospective assessment based on the CMI- \(V_r\) plane is initially proposed and applied to case studies: this provides direct suggestions regarding the most appropriate interventions on braking and steering for IR minimization, fundamental in the tuning or development phase of an ADAS. A method for retrospective assessment is ultimately contextualized in the EuroNCAP “Car-to-Car Rear moving” test for an Inter-Urban Autonomous Emergency Braking system, a device implemented on a significant portion of the circulating fleet. Conclusions Based on the evidenced highlights, it is demonstrated that the approach provides complementary information compared to well-established performance assessment methodologies in all stages of an ADAS life cycle, by suggesting a direct physical connection in the pre-impact phase between the possible ADAS interventions and the foreseeable injury outcomes. PubDate: 2022-02-21
Abstract: Abstract The option of decarbonizing urban freight transport using battery electric vehicle (BEV) seems promising. However, there is currently a strong debate whether fuel cell electric vehicle (FCEV) might be the better solution. The question arises as to how a fleet of FCEV influences the operating cost, the greenhouse gas (GHG) emissions and primary energy demand in comparison to BEVs and to Internal Combustion Engine Vehicle (ICEV). To investigate this, we simulate the urban food retailing as a representative share of urban freight transport using a multi-agent transport simulation software. Synthetic routes as well as fleet size and composition are determined by solving a vehicle routing problem. We compute the operating costs using a total cost of ownership analysis and the use phase emissions as well as primary energy demand using the well to wheel approach. While a change to BEV results in 17–23% higher costs compared to ICEV, using FCEVs leads to 22–57% higher costs. Assuming today’s electricity mix, we show a GHG emission reduction of 25% compared to the ICEV base case when using BEV. Current hydrogen production leads to a GHG reduction of 33% when using FCEV which however cannot be scaled to larger fleets. Using current electricity in electrolysis will increase GHG emission by 60% compared to the base case. Assuming 100% renewable electricity for charging and hydrogen production, the reduction from FCEVs rises to 73% and from BEV to 92%. The primary energy requirement for BEV is in all cases lower and for higher compared to the base case. We conclude that while FCEV have a slightly higher GHG savings potential with current hydrogen, BEV are the favored technology for urban freight transport from an economic and ecological point of view, considering the increasing shares of renewable energies in the grid mix. PubDate: 2022-02-04
Abstract: Abstract Transport infrastructure such as railways, motorways and arterial roads increases regional accessibility for motorised transport but simultaneously can create barriers in local street networks that can decrease accessibility for pedestrians and cyclists. Although several tools for an objective assessment of these barrier effects have been developed, their use in practice is limited; impact assessments are instead based on subjective descriptions. This article reviews the literature on barrier effects of the last 60 years and aims to offer guidance for the use of objective methods of assessment of barrier effects. The first contribution is a conceptual model for the barrier effects of transport infrastructure and their determinants. The second contribution is an overview of tools for the assessment of barrier effects. We conclude that a multi-disciplinary approach is required, supported by the conceptual model and the overview of assessment tools. Investments in transport infrastructure can then be based on broader decision support involving not only the benefits of increasing regional accessibility but also the cost of reducing local accessibility. PubDate: 2022-01-18
Abstract: Objective We aimed to quantify, through simulations using real crash data, the number of potentially avoided crashes following different replacement levels of light vehicles by level-5 automated light vehicles (AVs). Methods Since level-5 AVs are not on the road yet, or are too rare, we simulated their introduction into traffic using a national database of all fatal crashes and 5% of injury crashes observed in France in 2011. We fictitiously replaced a certain proportion of light vehicles (LVs) involved in crashes by level-5 AVs, and applied crash avoidance probabilities estimated by a number of experts regarding the capabilities of AVs depending on specific configurations. Estimates of the percentage of avoided crashes per user configuration and according to three selected (10%, 50%, 100%) replacement levels were made, as well as estimates taking into account the relative weight of these crash configurations, and considering fatal and injury crashes separately. Results Our simulation suggests that a reduction of almost half of fatal crashes (56%) and injury crashes (46%) could be expected by replacing all LVs on the road with level-5 AVs. The introduction of AVs would be the least effective for crashes involving a vulnerable road user, especially motorcyclists. Conclusion This result represents encouraging prospects for the introduction of automated vehicles into traffic, while making it clear that, even with all light vehicles replaced with level 5-AVs, all issues would not be solved, especially for crashes involving motorcyclists, cyclists and pedestrians. PubDate: 2021-12-20
Abstract: Abstract Worldwide cities are establishing efforts to collect urban traffic data from various modes and sources. Integrating traffic data, together with their situational context, offers more comprehensive views on the ongoing mobility changes and supports enhanced management decisions accordingly. Hence, cities are becoming sensorized and heterogeneous sources of urban data are being consolidated with the aim of monitoring multimodal traffic patterns, encompassing all major transport modes—road, railway, inland waterway—, and active transport modes such as walking and cycling. The research reported in this paper aims at bridging the existing literature gap on the integrative analysis of multimodal traffic data and its situational urban context. The reported work is anchored on the major findings and contributions from the research and innovation project Integrative Learning from Urban Data and Situational Context for City Mobility Optimization (ILU), a multi-disciplinary project on the field of artificial intelligence applied to urban mobility, joining the Lisbon city Council, public carriers, and national research institutes. The manuscript is focused on the context-aware analysis of multimodal traffic data with a focus on public transportation, offering four major contributions. First, it provides a structured view on the scientific and technical challenges and opportunities for data-centric multimodal mobility decisions. Second, rooted on existing literature and empirical evidence, we outline principles for the context-aware discovery of multimodal patterns from heterogeneous sources of urban data. Third, Lisbon is introduced as a case study to show how these principles can be enacted in practice, together with some essential findings. Finally, we instantiate some principles by conducting a spatiotemporal analysis of multimodality indices in the city against available context. Concluding, this work offers a structured view on the opportunities offered by cross-modal and context-enriched analysis of traffic data, motivating the role of Big Data to support more transparent and inclusive mobility planning decisions, promote coordination among public transport operators, and dynamically align transport supply with the emerging urban traffic dynamics. PubDate: 2021-12-20
Abstract: Abstract Although the pedestrian deaths have been declining in recent years, the pedestrian-vehicle death rate in Croatia is still pretty high. This study intended to explore the injury severity of pedestrian-vehicle crashes with panel mixed ordered probit model and identify the influencing factors at intersections. To achieve this objective, the data were collected from Ministry of the Interior, Republic of Croatia from 2015 to 2018. Compared to the equivalent random-effects and random parameter ordered probit models, the proposed model showed better performance on goodness-of-fit, while capturing the impact of exogenous variables to vary among the intersections, as well as accommodating the heterogeneity issue due to unobserved effects. Results revealed that the proposed model can be considered as an alternative to deal with the heterogeneity issue and to decide the factor determinants. The results may provide beneficial insight for reducing the injury severity of pedestrian-vehicle crashes. PubDate: 2021-12-11