Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Three-dimensional cell agglomerates are broadly useful in tissue engineering and drug testing. We report a well-free method to form large (1.4-mm) multicellular clusters using 100-MHz surface acoustic waves (SAW) without direct contact with the media or cells. A fluid couplant is used to transform the SAW into acoustic streaming in the cell-laden media held in a petri dish. The couplant transmits longitudinal sound waves, forming a Lamb wave in the petri dish that, in turn, produces longitudinal sound in the media. Due to recirculation, human embryonic kidney (HEK293) cells in the dish are carried to the center of the coupling location, forming a cluster in less than 10 min. A few minutes later, these clusters may then be translated and merged to form large agglomerations, and even repeatedly folded to produce a roughly spherical shape of over 1.4 mm in diameter for incubation—without damaging the existing intercellular bonds. Calcium ion signaling through these clusters and confocal images of multiprotein junctional complexes suggest a continuous tissue construct: intercellular communication. They may be formed at will, and the method is feasibly useful for formation of numerous agglomerates in a single petri dish. PubDate: 2022-05-21
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The standard of care for posterior segment disorders such as wet age-related macular degeneration, diabetic macular oedema and retinal vascular occlusions is pharmacotherapy by intravitreal drug delivery. Since the therapeutic effect of these drugs lasts only around 4 to 8 weeks, repeated intravitreal injections are required. Pain is experienced by the patients during injection as the needle courses through the sclera and choroid. The current work describes the design and development of a novel anodized titanium alloy implant that allows for intravitreal injections through the implant so that the needle transverses only the conjunctiva, thus minimizing discomfort to the patient. Both ex-vivo testing of the implant in enucleated goat’s eye as well as in-vivo validation in rabbit eyes was carried out. The implant was placed through pars plana via a minor surgical procedure and was sutured to the sclera and covered with conjunctiva. Subsequent intravitreal injections were administered under topical anaesthesia with a 30-gauge needle through the implant thus delivering the drug into the vitreous cavity. Repeated intravitreal injections were administered every 2 weeks via the implant for 3 months in 4 rabbits. Apart from cataract in 1 rabbit, no complications were observed. There was no evidence of intra-ocular inflammation or infection at final follow-up. Histopathological analysis did not reveal any inflammation or necrosis around the area of implant. The implants were subsequently removed at 5 months and scleral wound was closed with a single suture. The sclera and overlying conjunctiva healed well and no intraocular complications were observed after removal. PubDate: 2022-05-19
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract A surrogate-enabled multi-objective optimisation methodology for a continuous flow Polymerase Chain Reaction (CFPCR) systems is presented, which enables the effect of the applied PCR protocol and the channel width in the extension zone on four practical objectives of interest, to be explored. High fidelity, conjugate heat transfer (CHT) simulations are combined with Machine Learning to create accurate surrogate models of DNA amplification efficiency, total residence time, total substrate volume and pressure drop throughout the design space for a practical CFPCR device with sigmoid-shape microfluidic channels. A series of single objective optimisations are carried out which demonstrate that DNA concentration, pressure drop, total residence time and total substrate volume within a single unitcell can be improved by up to \(\sim\) 5.7%, \(\sim\) 80.5%, \(\sim\) 17.8% and \(\sim\) 43.2% respectively, for the practical cases considered. The methodology is then extended to a multi-objective problem, where a scientifically-rigorous procedure is needed to allow designers to strike appropriate compromises between the competing objectives. A series of multi-objective optimisation results are presented in the form of a Pareto surface, which show for example how manufacturing and operating cost reductions from device miniaturisation and reduced power consumption can be achieved with minimal impact on DNA amplification efficiency. DNA amplification has been found to be strongly related to the residence time in the extension zone, but not related to the residence times in denaturation and annealing zones. PubDate: 2022-03-22
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Keeping the oxygen concentration at the desired physiological limits is a challenging task in cellular microfluidic devices. A good knowledge of affecting parameters would be helpful to control the oxygen delivery to cells. This study aims to provide a fundamental understanding of oxygenation process within a hydrogel-based microfluidic device considering simultaneous mass transfer, medium flow, and cellular consumption. For this purpose, the role of geometrical and hydrodynamic properties was numerically investigated. The results are in good agreement with both numerical and experimental data in the literature. The obtained results reveal that increasing the microchannel height delays the oxygen depletion in the absence of media flow. We also observed that increasing the medium flow rate increases the oxygen concentration in the device; however, it leads to high maximum shear stress. A novel pulsatile medium flow injection pattern is introduced to reduce detrimental effect of the applied shear stress on the cells. PubDate: 2022-03-11 DOI: 10.1007/s10544-022-00615-1
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract As one of the three major chronic diseases, diabetes often causes many complications, which can affect various parts of the body and even threaten the life of the patients. At present, the situation of diabetes in the world is quite serious. Accurate detection of blood glucose is very important for the diagnosis, treatment and medication of diabetes as well as the self-management of diabetic patients. In this paper, an electrochemical glucose biosensor was developed based on screen-printed electrode (SPE) modified with composite material of graphene aerogel (GA) and Prussian blue (PB) (denoted as GA@PB), which was fabricated via chemical reduction using L-ascorbic acid as a reducing agent through a freeze-drying process. Glucose was specifically captured by glucose oxidase (GOx) which were immobilized into the GA@PB by chitosan. The structure and performance of the sensor were characterized by scanning electron microscopy (SEM), Raman spectroscopy measurements, Fourier transform infrared spectrometer (FTIR), cyclic voltammetry (CV) and amperometric detection. The sensor exhibited a linear range of 0.5–6.0 mmol·L−1 with limit of detection (LOD) of 0.15 mmol·L−1, indicating that the combination of graphene aerogel and Prussian blue possess well conductivity and catalytic performance. PubDate: 2022-02-26 DOI: 10.1007/s10544-022-00614-2
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract A biosensor is a compact device, which utilizes biological derived recognition component, immobilized on a transducer to analyze an analyte. Nanoparticles with their unique chemical and physical properties are versatile in their applications to develop as sensors. Different nanoparticles play different roles in the sensing systems like metal and metal oxide nanoparticles. The application of Gold, Silver and Copper nanoparticles will be discussed in brief. The nanoparticles typically function as substrates for immobilization of biomolecules, as catalytic agent, electron transfer agent between electrode surface and the biomolecules, and as reactants. Microfluidic deals with manipulating very small volumes of fluids (micro and nanoliters). This miniaturized platform enhances control of flow conditions and mixing rate of fluids. The microfluidics improves the sensitivity of the analysis, and reduces the volumes of sample and reagent in the analysis. The review specifically aims at representing microfluidics-based sensors and nanoparticle based sensors. This review will also focus on probable merger of these two fields to take advantage of both the fields and this will help in pushing the boundaries of these fields further more. PubDate: 2022-02-16 DOI: 10.1007/s10544-021-00598-5
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Isolation of exosome from culture medium in an effective way is desired for a less time consuming, cost saving technology in running the diagnostic test on cancer. In this study, we aim to develop an inertial microfluidic channel to separate the nano-size exosome from C666-1 cell culture medium as a selective sample. Simulation was carried out to obtain the optimum flow rate for determining the dimension of the channels for the exosome separation from the medium. The optimal dimension was then brought forward for the actual microfluidic channel fabrication, which consisted of the stages of mask printing, SU8 mould fabrication and ended with PDMS microchannel curing process. The prototype was then used to verify the optimum flow rate with polystyrene particles for its capabilities in actual task on particle separation as a control outcome. Next, the microchip was employed to separate the selected samples, exosome from the culture medium and compared the outcome from the conventional exosome extraction kit to study the level of effectiveness of the prototype. The exosome outcome from both the prototype and extraction kits were characterized through zetasizer, western blot and Transmission electron microscopy (TEM). The microfluidic chip designed in this study obtained a successful separation of exosome from the culture medium. Besides, the extra benefit from this microfluidic channels in particle separation brought an evenly distributed exosome upon collection while the exosomes separated through extraction kit was found clustered together. Therefore, this work has shown the microfluidic channel is suitable for continuous separation of exosome from the culture medium for a clinical study in the future. PubDate: 2022-01-26 DOI: 10.1007/s10544-022-00609-z
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Biofilms are microbial colonies encased in an extracellular polymer matrix self-secreted through bacterial proliferation and differentiation. Biofilms exist almost everywhere such as sewers, rivers and oceans. In the fluid environment, the formation of biofilms is closely related to the relevant parameters of the flow field, such as the shear stress, the secondary flow, and the Reynolds number. In this paper, we use microfluidic channels made of polydimethylsiloxane to study the channel-geometry effect on Bacillus subtilis biofilms formation, such as the biofilm adhesion and structure. Our study shows that both the shear stress and the secondary flow play roles in the biofilm adhesion at the initial stage, the shear stress decides whether the biofilm adheres, if yes, then the secondary flow determines the adhesion rate. Our study further shows that after the biofilm forms, its structure evolves from loose to dense, with a concomitant 20-times rise in adhesion. Our study provides new insights into the adhesion of biofilms in natural and industrial fluid environments and helps understand the growth of biofilms. PubDate: 2022-01-24 DOI: 10.1007/s10544-022-00612-4
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract To achieve cancer screening in any appointed position in 3D regions of the gastrointestinal (GI) tract such as esophagus, stomach and colon, a highly integrated dual hemisphere capsule robot (DHCR) with a novel three-layer nested structure is proposed. Based on tracking effect, in which the robotic axis is likely to be approximately coincident with the orientation of the space universal rotating magnetic field (SURMF) using the gyroscope dynamic balance, the dual hemisphere structure realizes the observation at a fixed-point in the passive mode and the rolling locomotion in the active mode by the dynamic posture control of the SURMF manipulation. The image acquisition module, wireless transmission module and driving actuator are tuned in a spherical structure, making the DHCR more compact and less invasive. To verify the maneuverability of the innovative DHCR both for observation at a fixed-point and navigation in curved intestine by aid of image, experiments are conducted in the simulated GI tract environment. The results show that the DHCR achieves effective conversion between posture adjustment and rolling locomotion, which lays a foundation for all-over inspection and medical operation inside 3D regions of the GI tract of human body. PubDate: 2022-01-19 DOI: 10.1007/s10544-022-00611-5
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The poses of robotic endoscopic capsules are indispensable for further follow-up examinations, potential targeted drug delivery, and closed-loop controlling of active locomotion. A novel tracking method using the multiple magnetic excitations with frequency division has been investigated. The multiple excitation coils can simultaneously work at different frequency to improve real-time tracking. A novel model between the magnetic flux density and the capsule’s pose has been derived, which shows a nonlinear equation group with multiple local extremum. Then, a Back-Propagation (BP) neural network algorithm combined with the mother wavelet is investigated to solve the pose. To reduce the volume and power consumption, the wireless magnetic sensing module uses digital signal processing as the core framework, which is beneficial to be miniaturized to integrate with the capsule. The functional prototype of the tracking system has been developed, which consists of a wireless magnetic sensing module mounted in the capsule, a magnetic excitation module with frequency division, a wireless receiver and data interface, an excitation coil array and a platform for pose solving. The experimental results show that the mean errors are 0.0098 m in x-component, 0.0122 m in y-component, 0.0077 m in z-component, 0.187 rad in α-component and 0.161 rad in β-component, respectively. The real-time performance of the tracking system is improved. PubDate: 2022-01-05 DOI: 10.1007/s10544-021-00600-0
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract While there are many chip models that simulate the air-tissue interface of the respiratory system, only a few represent the upper respiratory system. These chips are restricted to unidirectional flow patterns that are not comparable to the highly dynamic and variable flow patterns found in the native nasal cavity. Here we describe the development of a tunable nose-on-chip device that mimics the air-mucosa interface and is coupled to an air delivery system that simulates natural breathing patterns through the generation of bi-directional air flow. Additionally, we employ computational modeling to demonstrate how the device design can be tuned to replicate desired mechanical characteristics within specific regions of the human nasal cavity. We also demonstrate how to culture human nasal epithelial cell line RPMI 2650 within the lab-on-chip (LOC) device. Lastly, Alcian Blue histological staining was performed to label mucin proteins, which play important roles in mucous secretion. Our results revealed that dynamic flow conditions can increase mucous secretion for RPMI 2650 cells, when compared to no flow, or stationary, conditions. PubDate: 2022-01-04 DOI: 10.1007/s10544-021-00602-y
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Acoustofluidics inside the microchannel has already found its wide applications recently. Acoustic streaming and radiation force are two underlying mechanisms that determine the trajectory of microparticles and cells in the manipulation. Critical particle size of viscous effects is found to be about 1.6 µm in the conventional rectangular microchannel (W × H = 380 m × 160 m) at the frequency of 2 MHz, below which the acoustic streaming dominants, and is independent of the driving voltage. In order to effectively adjust such a critical size, a approach is proposed and evaluated numerically to enhance the acoustic streaming by adding some protrusions (i.e., in the shape of a wedge, rod, half-ellipse) to the middle of the top or bottom wall. It is found that the resonant frequency and acoustic pressure will decrease and the acoustic streaming velocity will increase significantly, respectively, with the increase of protrusion height (up to 30 µm while keeping the width the same as 8 µm). Subsequently, trajectory motion patterns of microparticles have apparent changes in comparison to those inside the rectangular microchannel, and acoustic streaming can even dominate the motion of large microparticles (i.e., 10 µm). As a result, the critical particle size could be increased up to 72.5 µm. Furthermore, different protrusion shapes (i.e., wedge, rod, half-ellipse) on the top wall were compared. The sharpness of protrusion at its tip seems to determine the acoustic streaming velocity. The wedge attached to the bottom wall had higher resonant frequency and lower acoustic streaming velocity compared with the top wedge in the same dimension. The patterns of acoustic streaming and microparticle trajectory motion in the microchannel with dual wedges on the top and bottom walls are not the superposition of those of the top and bottom wedge individually. In summary, the geometry of the microchannel has a significant effect on the induced acoustofluidics by the bulk acoustic waves. A much larger acoustic streaming velocity is produced at the tip of the protrusion to change the critical size of microparticles between acoustic streaming and radiation force. It suggests that more applications of acoustofluidics (i.e., mixing and sonoporation) to microparticles and cells in various sizes are feasible by designing an appropriate geometry of the microchannel. PubDate: 2021-12-29 DOI: 10.1007/s10544-021-00608-6
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Microneedle (MN) technology plays an important role in biomedical engineering for their less intrusive access to the skin due to minimally or painless penetration, enhancement of drug permeability, improvement of detectability of biomolecules in the epidermal and dermal layers with therapeutic efficacy and safety. Furthermore, MNs possess some major disadvantages like difficulty in scale-up technique, variation in drug delivery pattern with respect to external environment of skin, blockage of arrays due to dermal tissues, induction of inflammation or allergy at the site of administration and restriction of dosing range based on the size of active. Additionally, microneedle acts as a transdermal theranostic device for monitoring the physiological parameters in clinical studies. The investigation of drug transfer mechanisms through microneedles includes coat and poke, poke and flow, poke and patch and poke and release method. This review article discusses different categories of microneedles with fabrication methods such as photolithography, laser cutting, 3D printing, etc. in therapeutic applications for treating cancer, diabetes, arthritis, obesity, neurological disorders, and glaucoma. Biosensing devices based on microneedles may detect target analytes directly in the interstitial fluid by penetrating the stratum corneum of the skin and thus microneedles-based devices can be considered as a single tool in diagnostic sensing and therapeutic administration of drugs inside the body. Moreover, the clinical status and commercial availability of microneedle devices are discussed in this review article to offer new insights to researchers and scientists. Continuous monitoring particularly for the determination of blood glucose concentration is one of the most important requirements for the development of next-generation healthcare devices. The aim of this review article focuses mainly on the theranostic applications of microneedles in various medical conditions such as malaria, glaucoma, cancer, etc. Graphical abstract PubDate: 2021-12-08 DOI: 10.1007/s10544-021-00604-w
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Neurocognition is a severe, neurological challenge caused due to sevoflurane application for induction of anaesthesia. The plan of this study is to investigate the effect of fingolimod loaded niosomes on the cognitive impairment induced by sevoflurane. Span 40 and cholesterol were used in reverse phase evaporation techniques for the preparation of fingolimod -loaded niosomes. The positively charged niosomes were obtained by using chloride salts of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The Fingolimod loaded niosomes has average particle size of 223.5 nm and the surface charge measured as + 8.7 ± 1.2 mV in presence of DOTAP. The Fingolimod loaded niosomes formulation shows higher entrapment efficiency. Fingolimod loaded positively charged niosomes were efficiently retained drug and increase the sustain release property. Fingolimod niosomes increases the spontaneous alternation in Y maze and reduces the escape latency in the Morris water maze test, which leads to significant (p < 0.01) improvement in spatial short-term and long-term memory. The neuronal death in the hippocampus due to the sevoflurane exposure was attenuated by fingolimod loaded niosomes, which was proved by histopathological study. It could be defined that fingolimod loaded niosomes attenuates the sevoflurane induced cognitive impairment. PubDate: 2021-12-08 DOI: 10.1007/s10544-021-00603-x
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Heating plays a vital role in science, engineering, mining, and space, where heating can be achieved via electrical, induction, infrared, or microwave radiation. For fast switching and continuous applications, hotplate or Peltier elements can be employed. However, due to bulkiness, they are ineffective for portable applications or operation at remote locations. Miniaturization of heaters reduces power consumption and bulkiness, enhances the thermal response, and integrates with several sensors or microfluidic chips. The microheater has a thickness of ~ 100 nm to ~ 100 μm and offers a temperature range up to 1900℃ with precise control. In recent years, due to the escalating demand for flexible electronics, thin-film microheaters have emerged as an imperative research area. This review provides an overview of recent advancements in microheater as well as analyses different microheater designs, materials, fabrication, and temperature control. In addition, the applications of microheaters in gas sensing, biological, and electrical and mechanical sectors are emphasized. Moreover, the maximum temperature, voltage, power consumption, response time, and heating rate of each microheater are tabulated. Finally, we addressed the specific key considerations for designing and fabricating a microheater as well as the importance of microheater integration in COVID-19 diagnostic kits. This review thereby provides general guidelines to researchers to integrate microheater in micro-electromechanical systems (MEMS), which may pave the way for developing rapid and large-scale SARS-CoV-2 diagnostic kits in resource-constrained clinical or home-based environments. Graphical abstract PubDate: 2021-12-03 DOI: 10.1007/s10544-021-00595-8
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (μPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain. PubDate: 2021-11-18 DOI: 10.1007/s10544-021-00588-7
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs. PubDate: 2021-11-11 DOI: 10.1007/s10544-021-00596-7
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Non-invasive collection of biological sample such as sweat, urine, saliva, hairs and, stool and onsite detection of anlaytes in those samples is an interesting and viable approach for rapid screening of various toxicants in body. Environmental exposure/presence of lead (82Pb) and its rapid detection provide one such opportunity. A chemical spot based colorimetric method and a transdermal patch device based on this spot test, is developed for rapid and qualitative assessment of inorganic lead (Pb2+) in non-coloured biological or environmental liquid samples. The transdermal patch system contains two important parts, a chemical spot prepared on a thin glass sheet and, an absorbent paper (11 µm pore size). A one step colour development reaction is able to identify the presence or absence of Pb2+. In-vitro evaluation for sensitivity and cut-off value determination, within run and between run precision testing, specificity testing were done. In-vivo evaluation of the developed patch system was performed in occupationally lead-exposed subjects and in control volunteers. In-vivo field testing results were further validated with gold standard test for lead detection. Blood lead levels and patch lead levels were found to be positively correlated (r = 0.57, P < 0.0001). In addition, the sensitivity and specificity of device in identification of Pb2+ was found to be 75.93% (95% CI = 62.36%—86.51%) and 95.24% (95% CI = 76.18%—99.88%). The developed system appears as a reliable, non-invasive rapid test with minimum step involve for identification of Pb2+ in a given system. PubDate: 2021-10-27 DOI: 10.1007/s10544-021-00599-4