Abstract: We consider convergence acceleration of the modified Fourier expansions by rational trigonometric corrections which lead to modified-trigonometric-rational approximations. The rational corrections contain some unknown parameters and determination of their optimal values for improved pointwise convergence is the main goal of this paper. The goal was accomplished by deriving the exact constants of the asymptotic errors of the approximations with further elimination of the corresponding main terms by appropriate selection of those parameters. Numerical experiments outline the convergence improvement of the optimal rational approximations compared to the expansions by the modified Fourier basis. PubDate: Sun, 01 Apr 2018 00:00:00 +000
Abstract: For each and , we obtain some existence theorems of periodic solutions to the two-point boundary value problem in with when is a Caratheodory function which grows linearly in as , and may satisfy a generalized Landesman-Lazer condition for all . Here denotes the subspace of spanned by and ,, , and . PubDate: Sun, 01 Apr 2018 00:00:00 +000
Abstract: Air pollutant levels in Bangkok are generally high in street tunnels. They are particularly elevated in almost closed street tunnels such as an area under the Bangkok sky train platform with high traffic volume where dispersion is limited. There are no air quality measurement stations in the vicinity, while the human population is high. In this research, the numerical simulation is used to measure the air pollutant levels. The three-dimensional air pollution measurement model in a heavy traffic area under the Bangkok sky train platform is proposed. The finite difference techniques are employed to approximate the modelled solutions. The vehicle air pollutant emission due to the high traffic volume is mathematically assumed by the pollutant sources term. The simulation is also considered in averaged and moving pollutant sources due to manner vehicle emission. The proposed approximated air pollutant concentration indicators can be replaced by user required gaseous pollutants indices such as NOx, SO2, CO, and PM2.5. PubDate: Mon, 05 Mar 2018 00:00:00 +000
Abstract: In 2016, some inequalities of the Ostrowski type for functions (of two variables) differentiable on the coordinates were established. In this paper, we extend these results to an arbitrary time scale by means of a parameter . The aforementioned results are regained for the case when the time scale . Besides extension, our results are employed to the continuous and discrete calculus to get some new inequalities in this direction. PubDate: Mon, 05 Mar 2018 00:00:00 +000
Abstract: This paper is devoted to studying the existence and stability of implicit Volterra difference equations in Banach spaces. The proofs of our results are carried out by using an appropriate extension of the freezing method to Volterra difference equations in Banach spaces. Besides, sharp explicit stability conditions are derived. PubDate: Thu, 01 Mar 2018 00:00:00 +000
Abstract: We obtain in this article a solution of sequential differential equation involving the Hadamard fractional derivative and focusing the orders in the intervals and . Firstly, we obtain the solution of the linear equations using variation of parameter technique, and next we investigate the existence theorems of the corresponding nonlinear types using some fixed-point theorems. Finally, some examples are given to explain the theorems. PubDate: Mon, 26 Feb 2018 00:00:00 +000
Abstract: We define new stochastic orders in higher dimensions called weak correlation orders. It is shown that weak correlation orders imply stop-loss order of sums of multivariate dependent risks with the same marginals. Moreover, some properties and relations of stochastic orders are discussed. PubDate: Thu, 01 Feb 2018 00:00:00 +000
Abstract: The one-dimensional advection-diffusion-reaction equation is a mathematical model describing transport and diffusion problems such as pollutants and suspended matter in a stream or canal. If the pollutant concentration at the discharge point is not uniform, then numerical methods and data analysis techniques were introduced. In this research, a numerical simulation of the one-dimensional water-quality model in a stream is proposed. The governing equation is advection-diffusion-reaction equation with nonuniform boundary condition functions. The approximated pollutant concentrations are obtained by a Saulyev finite difference technique. The boundary condition functions due to nonuniform pollutant concentrations at the discharge point are defined by the quadratic interpolation technique. The approximated solutions to the model are verified by a comparison with the analytical solution. The proposed numerical technique worked very well to give dependable and accurate solutions to these kinds of several real-world applications. PubDate: Thu, 01 Feb 2018 00:00:00 +000
Abstract: We characterize the existence of (weak) Pareto optimal solutions to the classical multiobjective optimization problem by referring to the naturally associated preorders and their finite (Richter-Peleg) multiutility representation. The case of a compact design space is appropriately considered by using results concerning the existence of maximal elements of preorders. The possibility of reformulating the multiobjective optimization problem for determining the weak Pareto optimal solutions by means of a scalarization procedure is finally characterized. PubDate: Sun, 28 Jan 2018 00:00:00 +000
Abstract: The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear) multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications. PubDate: Mon, 22 Jan 2018 00:00:00 +000
Abstract: Optimality conditions are studied for set-valued maps with set optimization. Necessary conditions are given in terms of -derivative and contingent derivative. Sufficient conditions for the existence of solutions are shown for set-valued maps under generalized quasiconvexity assumptions. PubDate: Mon, 01 Jan 2018 00:00:00 +000
Abstract: In this paper, the coupled Schrödinger-Boussinesq equations (SBE) will be solved by the sech, tanh, csch, and the modified simplest equation method (MSEM). We obtain exact solutions of the nonlinear for bright, dark, and singular 1-soliton solution. Kerr law nonlinearity media are studied. Results have proven that modified simple equation method does not produce the soliton solution in general case. Solutions may find practical applications and will be important for the conservation laws for dispersive optical solitons. PubDate: Mon, 01 Jan 2018 00:00:00 +000
Abstract: We establish a convergence theorem and explore fixed point sets of certain continuous quasi-nonexpansive mean-type mappings in general normed linear spaces. We not only extend previous works by Matkowski to general normed linear spaces, but also obtain a new result on the structure of fixed point sets of quasi-nonexpansive mappings in a nonstrictly convex setting. PubDate: Sun, 31 Dec 2017 00:00:00 +000
Abstract: Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS-) based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP) solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions. PubDate: Sun, 24 Dec 2017 00:00:00 +000
Abstract: We investigate the probability of the first hitting time of some discrete Markov chain that converges weakly to the Bessel process. Both the probability that the chain will hit a given boundary before the other and the average number of transitions are computed explicitly. Furthermore, we show that the quantities that we obtained tend (with the Euclidian metric) to the corresponding ones for the Bessel process. PubDate: Sun, 03 Dec 2017 00:00:00 +000
Abstract: We study the -analogue of Euler-Maclaurin formula and by introducing a new -operator we drive to this form. Moreover, approximation properties of -Bernoulli polynomials are discussed. We estimate the suitable functions as a combination of truncated series of -Bernoulli polynomials and the error is calculated. This paper can be helpful in two different branches: first we solve the differential equations by estimating functions and second we may apply these techniques for operator theory. PubDate: Sun, 03 Dec 2017 00:00:00 +000
Abstract: Necessary and sufficient conditions for output reachability and null output controllability of positive linear discrete systems with delays in state, input, and output are established. It is also shown that output reachability and null output controllability together imply output controllability. PubDate: Thu, 23 Nov 2017 00:00:00 +000
Abstract: We introduce a generalized sigmoidal transformation on a given interval with a threshold at . Using , we develop a weighted averaging method in order to improve Fourier partial sum approximation for a function having a jump-discontinuity. The method is based on the decomposition of the target function into the left-hand and the right-hand part extensions. The resultant approximate function is composed of the Fourier partial sums of each part extension. The pointwise convergence of the presented method and its availability for resolving Gibbs phenomenon are proved. The efficiency of the method is shown by some numerical examples. PubDate: Wed, 22 Nov 2017 00:00:00 +000
Abstract: We consider applications of the -Drazin inverse to some classes of abstract Cauchy problems, namely, the heat equation with operator coefficient and delay differential equations in Banach space. PubDate: Wed, 01 Nov 2017 10:01:50 +000
Abstract: Three different methods are applied to construct new types of solutions of nonlinear evolution equations. First, the Csch method is used to carry out the solutions; then the Extended Tanh-Coth method and the modified simple equation method are used to obtain the soliton solutions. The effectiveness of these methods is demonstrated by applications to the RKL model, the generalized derivative NLS equation. The solitary wave solutions and trigonometric function solutions are obtained. The obtained solutions are very useful in the nonlinear pulse propagation through optical fibers. PubDate: Wed, 18 Oct 2017 00:00:00 +000
Abstract: In this paper, we analyze the role of the jump size distribution in the US natural gas prices when valuing natural gas futures traded at New York Mercantile Exchange (NYMEX) and we observe that a jump-diffusion model always provides lower errors than a diffusion model. Moreover, we also show that although the Normal distribution offers lower errors for short maturities, the Exponential distribution is quite accurate for long maturities. We also price natural gas options and we see that, in general, the model with the Normal jump size distribution underprices these options with respect to the Exponential distribution. Finally, we obtain the futures risk premia in both cases and we observe that for long maturities the term structure of the risk premia is negative. Moreover, the Exponential distribution provides the highest premia in absolute value. PubDate: Wed, 18 Oct 2017 00:00:00 +000
Abstract: We study a singularly perturbed PDE with quadratic nonlinearity depending on a complex perturbation parameter . The problem involves an irregular singularity in time, as in a recent work of the author and A. Lastra, but possesses also, as a new feature, a turning point at the origin in . We construct a family of sectorial meromorphic solutions obtained as a small perturbation in of a slow curve of the equation in some time scale. We show that the nonsingular parts of these solutions share common formal power series (that generally diverge) in as Gevrey asymptotic expansion of some order depending on data arising both from the turning point and from the irregular singular point of the main problem. PubDate: Wed, 13 Sep 2017 00:00:00 +000
Abstract: Let be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space . Let be maximal monotone, be bounded and of type and be compact with such that lies in (i.e., there exist and such that for all ). A new topological degree theory is developed for operators of the type . The theory is essential because no degree theory and/or existence result is available to address solvability of operator inclusions involving operators of the type , where is not defined everywhere. Consequently, new existence theorems are provided. The existence theorem due to Asfaw and Kartsatos is improved. The theory is applied to prove existence of weak solution (s) for a nonlinear parabolic problem in appropriate Sobolev spaces. PubDate: Tue, 12 Sep 2017 09:06:02 +000
Abstract: We investigate global dynamics of the following systems of difference equations , , , where the parameters , , , , , and are positive numbers and the initial conditions and are arbitrary nonnegative numbers. This system is a version of the Leslie-Gower competition model for two species. We show that this system has rich dynamics which depends on the part of parametric space. PubDate: Wed, 02 Aug 2017 06:27:23 +000
Abstract: The purpose of this paper is to establish a weighted Montgomery identity for points and then use this identity to prove a new weighted Ostrowski type inequality. Our results boil down to the results of Liu and Ngô if we take the weight function to be the identity map. In addition, we also generalize an inequality of Ostrowski-Grüss type on time scales for points. For we recapture a result of Tuna and Daghan. Finally, we apply our results to the continuous, discrete, and quantum calculus to obtain more results in this direction. PubDate: Sun, 30 Jul 2017 07:57:07 +000
Abstract: We introduce the Szász and Chlodowsky operators based on Gould-Hopper polynomials and study the statistical convergence of these operators in a weighted space of functions on a positive semiaxis. Further, a Voronovskaja type result is obtained for the operators containing Gould-Hopper polynomials. Finally, some graphical examples for the convergence of this type of operator are given. PubDate: Wed, 26 Jul 2017 00:00:00 +000
Abstract: We establish some generalized Hölder’s and Minkowski’s inequalities for Jackson’s -integral. As applications, we derive some inequalities involving the incomplete -Gamma function. PubDate: Sun, 16 Jul 2017 08:30:14 +000
Abstract: A novel class of --contraction for a pair of mappings is introduced in the setting of -metric spaces. Existence and uniqueness of coincidence and common fixed points for such kind of mappings are investigated. Results are supported with relevant examples. At the end, results are applied to find the solution of an integral equation. PubDate: Sun, 11 Jun 2017 00:00:00 +000