Subjects -> ENERGY (Total: 414 journals)
    - ELECTRICAL ENERGY (12 journals)
    - ENERGY (252 journals)
    - ENERGY: GENERAL (7 journals)
    - NUCLEAR ENERGY (40 journals)
    - PETROLEUM AND GAS (58 journals)
    - RENEWABLE ENERGY (45 journals)

PETROLEUM AND GAS (58 journals)

Showing 1 - 55 of 55 Journals sorted alphabetically
Advances in Petroleum Exploration and Development     Open Access  
Applied Energy     Partially Free   (Followers: 30)
Applied Petrochemical Research     Open Access   (Followers: 2)
Biofuels, Bioproducts and Biorefining     Hybrid Journal   (Followers: 3)
Chemical and Petroleum Engineering     Hybrid Journal   (Followers: 8)
Chemistry and Technology of Fuels and Oils     Hybrid Journal   (Followers: 1)
Egyptian Journal of Petroleum     Open Access  
Energy & Fuels     Hybrid Journal   (Followers: 29)
Energy Geoscience     Open Access  
Energy Policy     Partially Free   (Followers: 77)
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects     Hybrid Journal   (Followers: 1)
Energy Sources, Part B: Economics, Planning, and Policy     Hybrid Journal   (Followers: 8)
Extractive Industries and Society     Hybrid Journal   (Followers: 2)
Fuel     Hybrid Journal   (Followers: 9)
Fuel Communications     Open Access   (Followers: 6)
Fuel Processing Technology     Hybrid Journal   (Followers: 4)
Gases     Open Access   (Followers: 3)
International Journal of Mining, Reclamation and Environment     Hybrid Journal   (Followers: 4)
International Journal of Oil, Gas and Coal Technology     Hybrid Journal   (Followers: 6)
International Journal of Petroleum Engineering     Hybrid Journal   (Followers: 1)
Journal of Petroleum & Environmental Biotechnology     Open Access   (Followers: 1)
Journal of Natural Gas Geoscience     Open Access  
Journal of Natural Resources Policy Research     Hybrid Journal   (Followers: 10)
Journal of Petroleum Engineering & Technology     Full-text available via subscription  
Journal of Petroleum Exploration and Production Technology     Open Access   (Followers: 2)
Journal of Petroleum Geology     Hybrid Journal   (Followers: 12)
Journal of Petroleum Science and Engineering     Hybrid Journal   (Followers: 3)
Journal of Petroleum Science and Technology     Open Access  
Journal of Synthetic Lubrication     Hybrid Journal  
Journal of the Energy Institute     Hybrid Journal  
Journal of Tribology     Full-text available via subscription   (Followers: 41)
Lubrication Science     Hybrid Journal   (Followers: 2)
Marine and Petroleum Geology     Hybrid Journal   (Followers: 20)
Natural Gas & Electricity     Full-text available via subscription  
Natural Gas Industry B     Open Access  
Natural Resources Research     Hybrid Journal   (Followers: 7)
OGEL Oil, Gas and Energy Law     Full-text available via subscription   (Followers: 6)
Oil and Energy Trends     Hybrid Journal   (Followers: 3)
Oil and Energy Trends : Annual Statistical Review     Full-text available via subscription  
Oil and Gas Journal     Full-text available via subscription   (Followers: 12)
OPEC Energy Review     Hybrid Journal   (Followers: 2)
Open Petroleum Engineering Journal     Open Access  
Petroleum     Open Access  
Petroleum Chemistry     Full-text available via subscription   (Followers: 1)
Petroleum Exploration and Development     Open Access   (Followers: 1)
Petroleum Research     Open Access  
Petroleum Science     Open Access  
Petroleum Science and Technology     Hybrid Journal   (Followers: 1)
Petrology     Full-text available via subscription   (Followers: 6)
Pipeline & Gas Journal     Partially Free  
Regional Maritime University Journal     Full-text available via subscription  
Rudarsko-geološko-naftni Zbornik     Open Access  
Scientific Drilling     Open Access  
Upstream Oil and Gas Technology     Open Access   (Followers: 1)
World Oil Trade     Hybrid Journal   (Followers: 2)
Similar Journals
Journal Cover
Petrology
Journal Prestige (SJR): 0.847
Citation Impact (citeScore): 1
Number of Followers: 6  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 0869-5911 - ISSN (Online) 1556-2085
Published by Springer-Verlag Homepage  [2467 journals]
  • The Kulikovs: A Family of Geologists. Vyacheslav Stepanovich Kulikov,
           Viktoria Vladimirovna Kulikova, and Yana Vyacheslavovna Bychkova
           (Kulikova)

    • Free pre-print version: Loading...

      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060108
       
  • The Great Dyke of the Kola Peninsula as a Marker of an Archean
           Cratonization in the Northern Fennoscandian Shield

    • Free pre-print version: Loading...

      Abstract: Abstract The results of geochronological and petrological studies of the largest mafic dyke in the northern part of the Fennoscandian Shield, called the Great Dyke of the Kola Peninsula (GDK), are presented. According to U-Pb D-TIMS baddeleyite dating, the GDK crystallization age is 2680 ± 6 Ma. The age of host granites is 2.75–2.72 Ga (U-Pb, zircon, SHRIMP-II). The dyke has a simple internal structure with no signs of multistage melt injection. It comprises equigranular and plagioclase-porphyritic dolerites and gabbro that are amphibolitized to varying degrees. All rocks are low-Mg (Mg# less than 0.37) with low concentrations of Cr and Ni, and were derived through differentiation of more primitive melts. The analysis of geochemical and Sr-Nd isotopic data suggests that GDK melts could be formed by mixing of two types of mantle melts: depleted asthenospheric melt and enriched melt formed via melting of a lithospheric mantle. The weakly fractionated HREE patterns indicate that primary GDK melts originated at shallow (<60 km) depths outside the garnet stability field. The generation and injection of melts of the Neoarchean GDK occurred immediately after large-scale granitic magmatism and main crustal growth event in the Murmansk Craton and marked the cratonization of the continental lithosphere in the northeastern part of the Fennoscandian Shield.
      PubDate: 2022-12-01
      DOI: 10.1134/S086959112206008X
       
  • The Effect of CO2 Reduction in Low-Water Melts at Low Hydrogen Fugacity:
           Experiment at 500 MPa and Thermodynamic Model

    • Free pre-print version: Loading...

      Abstract: Abstract Formation of graphite was observed in experiments on synthesis of dry carbon-bearing albite glasses in platinum capsules in an Internally Heated Pressure Vessel at 500 MPa and Т = 1200–1250°С. A thermodynamic model is proposed that explains the achievement of low oxygen fugacity near QFM-2 in the melt at low fugacity of hydrogen formed due to the decomposition of trace amounts of water in a compression medium (Ar gas). The unexpectedly low fugacity of oxygen is explained by the shift of equilibrium between the gases dissolved in the melt CO2 + H2 = H2O + CO to the right due to the low activity of molecular water at a low total content of H2O ~ 0.1–0.5 wt %. The high local СО concentrations in the melt lead to the platinum dissolution in form of carbonyl, corrosion of capsule walls, and redeposition of the metal at the contact with melt. With increase of water concentration in the melt (>1 wt %), the effect of reduction disappears.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060078
       
  • Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb
           Diffusion Coefficients

    • Free pre-print version: Loading...

      Abstract: The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at T = 650–850°C and P = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al2O3-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at T = 750°C and P = 100 MPa are ~10–10 cm2/s, and those of Fe and Mn are ~10–8.5 cm2/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060030
       
  • Eocene Calc-Alkaline Volcanic Rocks from Central Iran (Southeast of Khur,
           Isfahan Province); an Evidence of Neotethys Syn-Subduction Magmatism

    • Free pre-print version: Loading...

      Abstract: Eocene volcanic rocks with basaltic-trachyandesite and trachybasalt composition which cross-cut the Cretaceous sedimentary rocks, are exposed in the northwestern part of the Central-East Iranian Microcontient (CEIM) (SE of Khur, Isfahan Province, Iran). The rock-forming minerals of these volcanic rocks are olivine (chrysolite and hyalosiderite, Mg# = 0.69–0.71), clinopyroxene (augite with Mg# = 0.74–0.84), orthopyroxene (enstatite with Mg# = 0.61–0.62) and plagioclase (andesine and labradorite with An48.3-65.1). Phenocrysts set in a fine-grained matrix of the same minerals plus sanidine (Or59.1Ab36.6An4.3) with minor amounts of opaque minerals (magnetite and ilmenite). Secondary minerals are chlorite and calcite. The main textures of these volcanic rocks are porphyritic, microlitic porphyritic, poikilitic, and glomeroporphyritic. The Eocene volcanic rocks of the Khur area are characterized by SiO2 content of 51.8 to 54.9 wt %, Al2O3 amounts of 14.35 to 16.47 wt %, and TiO2 values of 0.88 to 0.92 wt %. They exhibit strong enrichment in light rare earth elements (LREE) relative to heavy REE (HREE) (La/Lu ratio up to 102.35), enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSE), and present negative anomaly in Eu (Eu/Eu* = 0.72–0.87). Chemical characteristics and homogeneity of these volcanic rocks reveal their calc-alkaline nature and suggest that they were derived from a same parental magma and underwent a similar melt extraction. Major and trace elements geochemical features of the analyzed samples indicate that the parental magma was possibly derived from relatively low degrees of partial melting of a mantle wedge spinel lherzolite which was previously enriched by fluids/melts released from the Neo-Tethyan subducted slab.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060042
       
  • Comparative Characteristics of the Layering of Mafic–Ultramafic
           Intrusions of the Oulanka Group, Northern Karelia

    • Free pre-print version: Loading...

      Abstract: The Oulanka group is a compact group of three peridotite–gabbronorite intrusions that is convenient for testing various petrogenetic concepts. The three intrusions are similar in age and occur not far from one another but differ in the composition of their original magmas, are characterized by different sets of cumulus mineral assemblages, and are different in inner structure and rhythmic layering. We applied cluster analysis of the contents of major elements to reproduce the cumulus mineral assemblages of the isochemically altered rocks of the Tsipringa and Lukkulaisvaara massifs. Although the parental magmas of the Kivakka and Tsipringa massifs were of different composition and their crystallization sequences were also different, the vertical sections of these massifs can be clearly subdivided into zones according to their cumulus mineral assemblages, with the limited development of rhythmic interbedding (with individual rhythms ranging from a few to a few dozen meters in thickness). Conversely, the Lukkulaisvaara intrusion does not possess any clearly distinguishable cumulus zones, and large-scale rhythmic layering is traceable throughout the entire thickness of the massif (with rhythms ranging from a few dozen to a few hundred meters in thickness). The different character of the rhythmic layering of the three intrusions may provide an insight into the different scenarios of magma convection in the chambers.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060091
       
  • Re-Os Isotope and HSE Abundance Systematics of the 2.9 Ga Komatiites and
           Basalts from the Sumozero-Kenozero Greenstone Belt, SE Fennoscandian
           Shield: Implications for the Mixing Rates of the Mantle

    • Free pre-print version: Loading...

      Abstract: Rhenium-Os isotope and highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) abundance systematics of Archean komatiites can be used to estimate the stirring rates of the mantle for the HSE and the timing of homogenization of late accreted materials within the mantle. In this study, we report Re-Os isotope and HSE abundance data for ~2.9 Ga komatiites and basalts from the Sumozero-Kenozero greenstone belt in the SE Fennoscandian Shield. The lavas are characterized by excellent preservation of the primary textural, chemical, and Re-Os isotope characteristics. The Re-Os isotopic data for spinifex-textured and cumulate komatiite and massive basalt samples from the lowermost sequences define a precise 10-point isochron (MSWD = 2.6) with an age of 2904 ± 18 Ma and an initial 187Os/188Os = 0.10758 ± 18 (γ187Os(2904) = +0.45 ± 0.17). This is the first direct age determination for the Sumozero-Kenozero lower komatiite-basalt sequences. Our modeling indicates that the mantle source of the komatiites and basalts evolved with a time-integrated 187Re/188Os = 0.418 ± 6. This ratio is well within the uncertainty of the bulk chondritic average 187Re/188Os = 0.410 ± 51 (2SD), also consistent with the chondritic evolution of the majority of komatiite mantle sources observed globally. The mantle source of the Sumozero-Kenozero komatiites has been calculated to contain the total HSE abundances of 58 ± 7% of those in the estimates for modern Bulk Silicate Earth (BSE). This estimate is in the middle of the range for other late Archean and Proterozoic komatiite systems. Using the estimated HSE abundances in the sources of komatiite systems as a function of their ages and ISOPLOT regression analysis, we calculated the average time in the past by which late accreted materials have been completely homogenized within the mantle to be 2.48 ± 0.23 Ga. These data require that the residence times of the late accreted planetesimals within the mantle, before complete homogenization, were on average 1.92 ± 0.23 Ga. This estimate represents a constraint on the average mixing rates of the mantle in terms of the HSE abundances in the Hadean and the Archean.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060054
       
  • Eastern Margin of the Neoarchean Tunguska Superterrane: Data from
           Boreholes in the Central Part of the Siberian Platform

    • Free pre-print version: Loading...

      Abstract: The paper presents data on granites and gneisses recovered by Kulindinskaya-1 hole drilled in the central part of the Siberian Craton. The biotite granites retain a porphyritic texture, correspond to I-type according to their compositional features, are enriched in LREE and moderately depleted in HREE, and have negative Eu, Sr, and Nb and positive Zr anomalies. The U−Pb zircon age of the granites is Neoarchean (2525 ± 10 Ma), with single cores of zircon grains dated at about 2.6 Ga, which likely suggests a crustal source of the granitic magmas. The model age TNd(DM) = 2.77 Ga of the granite shows that the crust from which the initial melts were derived had been formed shortly before the melting episode. In terms of age and all characteristics, the granites are close to those of the Yurubchen massif, which was drilled through in the western part of the Tunguska superterrane. The biotite gneiss was apparently derived from sedimentary rocks and was heavily reworked when the granites were emplaced. The enrichment of the gneiss in Cr and Ni is probably inherited from the sedimentary protolith, whereas the REE, HFSE, and LILE concentrations and distribution in the gneiss are similar to those of the granite. The concordant (D < 1%) U−Pb zircon ages (according to LA-ICP-MS data) broadly vary from 3284 to 2620 Ma, with two major peaks at 2717 and 2678 Ma. The model age of the gneiss TNd(DM) = 2.91 Ga confirms a contribution of the ancient crustal component to the sedimentary protolith of the rock. The minimum age of the detrital zircon, 2.62 Ga, determines the maximum age limit for sedimentation, and the minimum age limit is set by the age of the granite intrusions at 2.53 Ga. According to our data, the Archean gneisses and granites recovered by the Kulindinskaya-1 drillhole probably compose the eastern part of the Neoarchean Tunguska superterrane. Ereminskaya-101 drillhole, which was drilled 20 km northeast of Kulindinskaya-1, recovered gneisses with model ages TNd(DM) from 2.30 to 2.37 Ga, which belong to the adjacent Taimyr−Baikal suture zone with widespread Paleoproterozoic rocks. The contrasting crustal history of the adjacent complexes provides grounds to suggest that they were tectonically combined, which is an additional reason to consider the Taimyr−Baikal suture zone as a Paleoproterozoic collisional orogen.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122050058
       
  • А History of Coronitic Metagabbronorites in the Belomorian Province,
           Fennoscandian Shield: U-Pb (CA-ID-TIMS) Dating of Zircon–Baddeleyite
           Aggregates

    • Free pre-print version: Loading...

      Abstract: Abstract The estimation of crystallization and metamorphic reworking ages of mafic rocks in the polycyclic Precambrian areas is a difficult problem. Magmatic baddeleyite can be partially or completely replaced by polycrystalline zircon within a wide range of temperature and pressures, from greenschist to granulite facies. Evaluation of the age of each phase of the zircon–baddeleyite aggregates can provide information on both the age of the magmatic crystallization and metamorphism. U-Th-Pb (SHRIMP-II) and U-Pb (ID-TIMS) geochronological studies were carried out for single baddeleyite grains and zircon–baddeleyite aggregates from gabbronorites (“drusites”) of the Ambarnsky massif (Belomorian Province, Fennoscandian Shield). The petrological studies indicate the simultaneous growth of coronas at the olivine–plagioclase boundary and zircon rims around baddeleyite. U-Pb (ID-TIMS) dating of single baddeleyite grains yielded 2411 ± 6 Ma crystallization age of gabbronorites of the Ambarnsky massif. U-Pb (ID-TIMS) dating coupled with the discrete chemical abrasion give an age of 1911 ± 35 Ma for metamorphic zircon rims. The obtained results indicate that coronitic textures in the gabbronorites were formed 500 million years later than the magmatic crystallization of rocks as a result of the granulite-facies metamorphism that was probably related to the Lapland-Kola orogeny.
      PubDate: 2022-12-01
      DOI: 10.1134/S0869591122060066
       
  • Mineralogical, Geochemical, and Nd-Sr Isotope Characteristics of
           Amphibolites from the Alag-Khadny High-Pressure Complex (SW Mongolia):
           Intracontinental Rifting as a Precursor of Continental-Margin Subduction

    • Free pre-print version: Loading...

      Abstract: Abstract Within subduction-accretion complexes, high-pressure rocks (blueschists, eclogites) are commonly juxtaposed with lower-grade rocks, which represent their retrograded counterparts or were involved into accretionary event at later stages, and thus characterize distinct stages of evolution of accretionary belts. In SW Mongolia, the Central Asian Orogenic Belt includes Neoproterozoic–Early Paleozoic paleosubduction complexes represented by eclogites and associated rocks of the Alag-Khadny accretionary complex. This paper reports the results of mineralogical, geochemical and isotopic studies of amphibolites from this complex, the geochemical nature and relationships of which with eclogites have been yet uncertain. The texture of the studied rocks varies from fine- and medium-grained granoblastic and nematoblastic amphibole–plagioclase–epidote rocks to medium-grained nematoblastic amphibole–epidote–albite–titanite amphibolites, which experienced intense recrystallization as a response to late deformations. Primary assemblages include pargasite and Mg-hornblende ([B]Na = 0.07–0.16, IVAl = 0.79–1.69, [A](Na + K + 2Ca) = 0.14–0.64, [C](Al+ Ti + Fe3+) = 0.58–1.29, Fe2+/(Fe2+ + Mg) = 0.18–0.46 at Fe3+/(Fe3++Al) = 0.18–0.77), low-to-medium-Ca plagioclase (An24–36), and epidote–clinozoisite (0.08 < \({{X}_{{{\text{F}}{{{\text{e}}}^{{{\text{3 + }}}}}}}}\) < 0.16), whereas the retrograde assemblage is represented by albite and Mg-hornblende. Calculations using amphibole composition and amphibole/amphibole–plagioclase thermobarometry revealed peak P-T conditions up to 570–630°С and 7–9 kbar ascribed to the high-T epidote-amphibolite facies with subsequent greenschist-facies retrogression. The major-element composition of the amphibolites corresponds to low-alkali moderate-Ti tholeiites, although their trace-element composition varies significantly from N-MORB to E-MORB-type basalts, which are variably enriched in LREE, Nb, Ta, Th, U, and show negative Eu and Ti anomalies due to fractionation of parental melts for precursor rocks. Isotopic composition of Nd (εNd(550) from +5.1 to –9.1) and Sr ((87Sr/86Sr)550 = 0.7057–0.7097) indicates distinct mainly moderately-depleted nature of mantle sources for the mafic rocks, but also highlights the involvement of “anomalous” mantle domains with unradiogenic Nd composition. The data supports that the precursor rocks of the amphibolites were formed during intracontinental extension of a continental margin, which was likely linked to opening of a limited Neoproterozoic oceanic basin with a subsequent Late Vendian–Early Cambrian convergence. The medium- to high-pressure metamorphism of amphibolites had similar P-T conditions to that of retrograde metamorphism of eclogites and associated metasediments and was directly related to the Early Paleozoic subduction-accretion metamorphism (~550–540 Ma), or results from the final accretion during the formation of a tectonic mélange zone between the Lake zone and Dzabkhan terrane (~515–490 Ma or younger).
      PubDate: 2022-10-01
      DOI: 10.1134/S0869591122040051
       
  • Pauzhetka Caldera (South Kamchatka): Еxploring Temporal Evolution and
           Origin of Voluminous Silicic Magmatism

    • Free pre-print version: Loading...

      Abstract: Abstract The Pauzhetka Caldera (27 × 18 km) was formed in the South Kamchatka during the Golygin Ignimbrite eruption (420–440 ka), the largest known eruption in the region in the past 1 Myr. The eruption was preceded by the 3 Ma-old mafic and intermediate volcanism. After the caldera-forming eruption, a variety of products, from basalt to rhyolite, were ejected within the caldera. For understanding the origin of voluminous silicic magmatism in thin mafic South Kamchatka crust, we used geochemical and isotope data. Our research has characterized the major and trace element composition of Golygin ignimbrite, intra-caldera hydrothermally altered deposits, pre-caldera (Mt. Orlinoe Krylo, Mt. Klyuchevskaya) and post-caldera (Kambalny Ridge, Chernye Skaly) eruptive centers. The Sr–Nd isotope composition of the Golygin ignimbrite and some eruptive post-caldera products was investigated. The isotope variations indicate that parental magmas for all rocks of the Pauzhetka area were obtained from a weakly evolved source derived through fluid-assisted melting of a subducted slab. Geochemical data support that the formation of most magmas of the Pauzhetka caldera was mainly controlled by fractional crystallization in the lower to middle crust. MELTS-modelling agrees with geochemical data. The fractional crystallization of Kambalny basalt with 2 wt % H2O at 6 kbar provides the best fit to the observed composition of the Golygin dacite.
      PubDate: 2022-10-01
      DOI: 10.1134/S0869591122050022
       
  • Composition and Isotope Parameters of Metabasalts and Gabbroids of the
           Onot Granite–Greenstone Block, Southwestern Siberian Platform, as
           Indicators of Lithospheric Mantle Evolution from the Archean to
           Paleoproterozoic

    • Free pre-print version: Loading...

      Abstract: The paper summarizes major and trace-element compositions and Sm–Nd isotope data on metabasites (amphibolites) and gabbroids of the Onot granite–greenstone block in the Sharyzhalgai basement uplift, southwestern Siberian craton. The Onot block consists of tectonically combined nappes of the Paleoarchean tonalite–trondhjemite–granodiorite (TTG) complex and the metasedimentary-volcanic complex of the greenstone belt (GB). The Mezoarchean (∼2.88 Ga) metabasalts of the greenstone belt and Paleoproterozoic (∼1.86 Ga) gabbronorites and vein gabbros were formed at rifting and postcollisional extension, respectively. The Archean metabasites of the greenstone belt and enclaves in the TTG complex compositionally correspond to low-Ti tholeiitic basalts and basaltic andesites. The basaltic rocks are characterized by flat REE patterns [(La/Sm)n = 0.9–1.9], depletion in Nb relative to Th and La (Nb/Nb* = 0.4–1.1), and a wide range of mostly positive εNd(T) values (from +5.2 to –1.0). The enrichment of the basaltic andesite in incompatible elements, its Eu minimum, and negative εNd(T) values resulted from contamination by Paleoarchean TTG gneisses, that form the basement of GB. The Paleoproterozoic gabbronorites have high Mg# and extremely low concentrations of Ti and incompatible elements. The rocks are characterized by low (Nb/Y)PМ (0.8–1.0), negative εNd(T) values (from 0 to –1.4), and weak enrichment in Th and LREE relative to Nb. The vein gabbros have low (La/Sm)n, positive εNd(T) values of +2.8 and +0.3, and a negative Nb anomaly (Nb/Nb* = 0.3–0.4). The trace element-composition of the amphibolites, gabbronorites, and gabbros and the results of geochemical modeling indicate that the parental melts were derived mainly from weakly depleted mantle sources. The Nd isotope composition of the Paleoproterozoic gabbroids resulted from the evolution of the heterogeneous Archean lithospheric mantle. Variations in the isotope and trace-element composition of the amphibolites reflect the initially depleted nature of the Mezoarchean mantle and its metasomatic alteration by fluids/melts, which occurred before its melting at ∼2.88 Ga. The geochemical and Nd isotopic characteristics of gabbronorites and gabbros indicate that the lithospheric mantle had become progressively more heterogeneous by the Paleoproterozoic due to preceding Archean processes. The variable depletion of both the Archean and the Paleoproterozoic mafic rocks in Nb relative to Th and La may be explained by mantle metasomatism and does not reflect the geodynamic settings of the mafic magmatism.
      PubDate: 2022-10-01
      DOI: 10.1134/S0869591122040063
       
  • Evolution of the Magmatic Sources of the Eastern Mongolian Volcanic Area:
           Evidence from Geochemical and Sr–Nd–Pb Isotope Data

    • Free pre-print version: Loading...

      Abstract: The Eastern Mongolian Volcanic Area (EMVA) is part of the Late Mesozoic–Early Cenozoic volcanic and plutonic belt in Northeastern Asia. The EMVA evolved in three stages, with volcanic rocks of different composition produced during each of the stages and with the parental melts of the rocks derived from different sources and formed by different mechanisms. The rocks of the Early Cretaceous stage (135–100 Ma), which form the volcanic flow complex of the EMVA, are predominantly differentiated alkali basaltoids. Data on isotopic features of these rocks, particularly their Pb isotope composition, allowed us to identify the nature of their sources: peridotites of the Continental Metasomatized Lithospheric Mantle (CMLM) and lower continental crustal eclogitic rocks. The alkali basaltoids of the extrusive complex of the Uldza-gol volcanic field were formed during the next evolution stage of the EMVA at 104–90 Ma. According to their geochemical and isotope features, the melts of these rocks were derived from the same sources as those of the volcanics of the previous Early Cretaceous stage, except only that eclogite material played a more significant role in forming of the Uldza-gol basaltoid melts. During the concluding stage of the EMVA evolution in the Late Cretaceous–Early Cenozoic (87–51 Ma), OIB-like rocks of the basanite–trachybasalt association were formed in the Central Gobi in the southwestern flank of the EMVA. Asthenospheric and recycled pyroxenite components, together with not so much CMLM peridotites, were involved in forming of these rocks. The various sources of the EMVA volcanic rocks reflect two mechanisms of their formation. In the Early to Late Cretaceous, magmatism was triggered by the ascent of the asthenospheric mantle and delamination of the lithospheric mantle, whereas the Early Cenozoic magmatism was induced by the activity of a mantle plume.
      PubDate: 2022-10-01
      DOI: 10.1134/S0869591122050034
       
  • Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from
           the V. Grib Kimberlite, Arkhangelsk Province

    • Free pre-print version: Loading...

      Abstract: Abstract We investigated mantle eclogite and garnet pyroxenite xenoliths from the V. Grib kimberlite located in the Arkhangelsk diamond province. The eclogites in the lithospheric mantle beneath the Arkhangelsk province were strongly modified by metasomatic processes, which totally obliterated the primary features of protolith. Detailed studies of the xenoliths allowed us to distinguish the following metasomatic events: (1) early mantle metasomatism and (2) interaction with kimberlite melt. During the multiple early mantle metasomatism, primary clinopyroxene and garnet were replaced by metasomatic clinopyroxene, garnet, amphibole, calcite, and phlogopite under the influence of carbonated ultramafic melts. The impact of kimberlite melt caused the dissolution and recrystallisation of solid-phase inclusions and formation of melt pockets consisting of serpentine, chlorite, carbonate, spinel, perovskite, amphibole, recrystallized garnet, and clinopyroxene. En route to the surface in kimberlite melt, the xenoliths were disintegrated and primary garnet and clinopyroxene were metasomatized with increasing Ti and Cr contents, up to formation of high-Cr megacrysts. The garnet pyroxenites are represented by high-Ca, low-Mg and low-Ca, high-Mg types. It is shown that the high-Ca, low-Mg garnet pyroxenites can be the final products of the eclogite xenolith metasomatism by carbonated ultramafic melts. The low-Ca, high-Mg pyroxenites were derived through the interaction of a partial eclogite melt with depleted peridotites.
      PubDate: 2022-10-01
      DOI: 10.1134/S0869591122050046
       
  • Erratum to: Experimental Study of the Crystallization Conditions of
           Ongonites of the Ary-Bulak Massif (Eastern Transbaikalia)

    • Free pre-print version: Loading...

      Abstract: An Erratum to this paper has been published: https://doi.org/10.1134/S0869591122330013
      PubDate: 2022-08-01
      DOI: 10.1134/S0869591122330013
       
  • Rhodium Solubility in Silicate Melts

    • Free pre-print version: Loading...

      Abstract: All published experimental data on Rh solubility in silicate melts were combined to derive an equation relating Rh solubility to temperature, oxygen fugacity, and a melt composition. It is demonstrated that Rh is dissolved in a melt dominantly as Rh2+ in the entire experimental fO2 range, from pure oxygen to QFM + 2 (QFM is the quartz–magnetite–fayalite buffer). The temperature dependence of Rh solubility is anomalous. Similar to the solubilities of other noble metals, Rh solubility at a constant fO2 increases with increasing temperature. The Rh metal/silicate partition coefficient was calculated ( \(D_{{{\text{Me/Sil}}}}^{{{\text{Rh}}}}\) ≈ 3.5 × 107) for the expected conditions of Earth differentiation into a core and mantle. It is demonstrated that the late chondritic veneer model is able to best explain high Rh contents in upper mantle rocks. The suggested equation makes it possible to discard experimental glasses contaminated with metallic Rh micronuggets and thus to get rid of at least the most gross errors in the determination of Rh partition coefficients between rock-forming minerals and melt.
      PubDate: 2022-08-01
      DOI: 10.1134/S0869591122030031
       
  • Age, Composition, and Tectonic Setting of the Formation of Late
           Neoproterozoic (Late Baikalian) Complexes in the Kichera Zone,
           Baikal-Vitim Belt, Northern Baikal Area: Geological, Geochronological, and
           Nd Isotope Data

    • Free pre-print version: Loading...

      Abstract: The paper presents data on the geological structure of the Kichera zone of the Baikal–Vitim belt (BVB) at the boundary between the marginal part of the Siberian craton and the Barguzin–Vitim superterrane of the Central Asian Orogenic Belt. Early Neoproterozoic (Early Baikalian) and Late Neoproterozoic (Late Baikalian) structures and complexes are identified and characterized in the Kichera zone of the BVB. Data are presented on the geochemistry of the rocks and on their U–Pb isotope age (zircon, SIMS and ID-TIMS) and on the Nd isotope characteristics of rocks from various parts of the Kichera zone, including representative rock association of the Nyurundukan migmatite–tonalite–metabasite complex with MORB-type tholeiites and tholeiites with intraplate geochemical features. It is shown that the sources of the Early Neoproterozoic complexes of the Kichera zone, which were metamorphosed at 0.76–0.74 Ga as a result of accretion events in the marginal part of the craton, were dominated by Early Precambrian recycled crustal material. The Late Neoproterozoic complexes typomorphic of the Kichera zone were formed in the Cryogenian–Ediacaran (720–545 Ma) from prevailing juvenile sources. Our data suggest that the metabasites of the Nyurundukan complex were formed in an environment of segmented troughs of the pull-apart paleorift system of the Kichera zone and can be compared with a reduced complex of continental-margin ophiolites transformed at 630 ± 7 to 615 ± 3 Ma. The destruction of the ancient continental crust of the craton ended with the formation and exhumation of deep rocks in the Late Ediacaran, the emplacement of adakite granites of the postcollisional geochemical type, and the formation of grabens filled with a terrigenous complex. The juvenile and riftogenic crust produced during the Late Neoproterozoic tectonic evolution of the Kichera rift zone does not show any features of mature continental-type crust.
      PubDate: 2022-08-01
      DOI: 10.1134/S0869591122040026
       
  • Experimental Study of the Solubility of Fluorides in Fluid-Saturated
           Potassic Syenite Melt

    • Free pre-print version: Loading...

      Abstract: The paper presents experimental results on the solubility of fluorides in fluid-saturated melt of alkaline ultrapotassic syenite-porphyry from the Gross gold ore deposit in southern Yakutia at T = 600–800°C, P = 150–260 MPa. The experiments were carried out to confirm the assumption of high solubility of fluorine in ultrapotassic syenite melt, which could contribute to the formation of specific and low-viscosity melts that were emplaced in the form of a syenite porphyry sill. The solid products after the experiments contained aluminosilicate glass, potassium feldspar, fluorite, quartz, and two fluoride phases differing in composition (potassium and aluminum fluoride and potassium and magnesium fluoride). The experimental results led us to determine a high maximum solubility of fluorine in the melt: up to 4.2–4.6 wt %, with the maximum F content found in the lowest temperature melt at 625°C. The solidus and liquidus temperatures of the syenite melt were estimated at 600–625 and 650–800°C, respectively. The aqueous fluoride fluid coexisting in equilibrium with the melt was determined to be alkaline. Potassium feldspar was the first to crystallize from the melt in the experiments, which is consistent with what is observed in samples of the naturally occurring rocks.
      PubDate: 2022-08-01
      DOI: 10.1134/S086959112204004X
       
  • Riphean–Vendian–Cambrian Magmatism of the Mankhambo Block (Subpolar
           Urals): Geochemical Typification, Correction of Geodynamic Concepts, and
           the Role of Plume–Lithosphere Interaction

    • Free pre-print version: Loading...

      Abstract: Abstract The geochemical typification of magmatic rocks of the Mankhambo block (southern part of the Lyapinsky anticlinorium), which is confined to the junction zone of the Ural orogen with the Timanide–Cadomide belt relics, was performed based on the generalization of abundant isotope-geochemical data, application of modified discriminant diagrams, and analysis of Y/Nb ratio. The magmatic rocks mark two stages of the geodynamic evolution of this structure. The first stage (RF2–3) is characterized by the tholeiitic magmatism (subvolcanic basic rocks of the Shchokuryinsky and Moroinsky complexes). According to composition and source type (Y/Nb = 3–5, E-MORB), these rocks can be correlated with riftogenic plume-related series of the East European passive margin. Magmatism of the second stage (650–500 Ma) was related to the evolution of divergent transform continental margin. This stage involved the subsequent formation of calc-alkaline magmatic series (653–608 Ma) (Sys’insky and Parnuksky complexes) and bimodal basalt–rhyolite association (569–554 Ma) (Sablegorsky and Laptopaisky complexes), which vary from tholeiitic to calc-alkaline rocks. High values of the Y/Nb ratio (5–8) in the basic rocks of the Sablegorsky complex suggest that their generation was related with intensification of transform movements, when plume-related basic magma (E-MORB-type source) interacted with more depleted slab-derived component. The rhyolites of the Sablegorsky complex mark the incipient generation of the A-type rhyolite–granite association (Y/Nb = 0.2–1), which was continued (522–490 Ma) by the granites of the Mankhambo and Ilya-Iz massifs. Their genesis may be related to the differentiation of magmas from two possible sources. A-granites with Y/Nb = 2.0 (phase I of the Mankhambo massif) were generated from E-MORB-type source. Granites of phase II (Y/Nb = 0.2–1) were derived from heterogeneous sources with the participation of OIB-type component. In general, the rocks of the Vendian–Cambrian stage, in comparison with older rocks, are characterized by the highest degree of plume-lithosphere interaction, with contribution of subduction-modified lithospheric mantle. The role of crustal contamination increases from the rhyolites of the Sablegorsky and Laptopaisky complexes to the granites of the Mankhambo massif. The presence of relict zircons and the “crustal” Sr and Hf isotope signatures indicate the contribution of ancient crustal material in their protolith. The genesis of the rhyolite–granite association may be associated with the emplacement of the “Mankhambo” plume. The plume role in the magma generation of rocks of the Mankhambo block increases with decreasing age.
      PubDate: 2022-08-01
      DOI: 10.1134/S0869591122040038
       
  • Conditions of Formation of Layered Intrusions of the Monchegorsk Magmatic
           Cluster

    • Free pre-print version: Loading...

      Abstract: Abstract The paper presents geochronological data and results of petrological modeling of the Monchegorsk and Monchetundra layered massifs. The U-Pb ID-TIMS zircon dating of norite from the marginal zone of Mt. Nittis yielded 2506 ± 7 Ma, which coincides with previous data on similar rocks from other areas. Based on the comparison of sections of the Monchegorsk and Kivakka massifs, the pre-erosion thickness of the Monchegorsk massif is estimated as 3700 m. Calculations using rocks of the marginal zone of the Monchegorsk intrusion at a pressure of 6.5–5.5 kbar showed that the melt in equilibrium with Ol contained SiO2 ≤ 55 wt %, TiO2 ≤ 0.50 wt %, and MgO ≤14 wt %. The temperature of the primary magma could be equal to 1390°C. At a lower pressure (below 6.5 kbar), the obtained melt becomes more siliceous. In the Monchegorsk intrusion, the composition of intratelluric olivine according to this model could vary within 88–92 mol % Fo. The content of intratelluric olivine in the melt, depending on pressure, could vary from 11 to 24 vol %. Magmas that formed the Monchegorsk intrusion and the layered series of the Monchetundra intrusion (hole 742) were derived from different sources.
      PubDate: 2022-08-01
      DOI: 10.1134/S0869591122030079
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 18.232.31.206
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-