Subjects -> CHEMISTRY (Total: 928 journals)
    - ANALYTICAL CHEMISTRY (59 journals)
    - CHEMISTRY (661 journals)
    - CRYSTALLOGRAPHY (23 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (45 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (65 journals)

CHEMISTRY (661 journals)            First | 1 2 3 4 | Last

Showing 401 - 600 of 735 Journals sorted alphabetically
Journal of Molecular Liquids     Hybrid Journal   (Followers: 3)
Journal of Molecular Modeling     Hybrid Journal   (Followers: 5)
Journal of Molecular Recognition     Hybrid Journal   (Followers: 2)
Journal of Molecular Spectroscopy     Hybrid Journal   (Followers: 6)
Journal of Molecular Structure     Hybrid Journal   (Followers: 6)
Journal of Nanoparticles     Open Access   (Followers: 4)
Journal of Nanostructure in Chemistry     Open Access   (Followers: 8)
Journal of Organometallic Chemistry     Hybrid Journal   (Followers: 24)
Journal of Photochemistry and Photobiology     Open Access  
Journal of Photochemistry and Photobiology A: Chemistry     Hybrid Journal   (Followers: 3)
Journal of Photochemistry and Photobiology B: Biology     Hybrid Journal   (Followers: 4)
Journal of Photochemistry and Photobiology C: Photochemistry Reviews     Full-text available via subscription   (Followers: 3)
Journal of Polymer & Composites     Full-text available via subscription   (Followers: 17)
Journal of Polymer and Biopolymer Physics Chemistry     Open Access   (Followers: 7)
Journal of Polymer Science Part A: Polymer Chemistry     Hybrid Journal   (Followers: 92)
Journal of Polymers     Open Access   (Followers: 7)
Journal of Porphyrins and Phthalocyanines     Hybrid Journal   (Followers: 1)
Journal of Progressive Research in Chemistry     Open Access  
Journal of Pure and Applied Chemistry Research     Open Access   (Followers: 3)
Journal of Raman Spectroscopy     Hybrid Journal   (Followers: 14)
Journal of Research and Education Chemistry     Open Access   (Followers: 1)
Journal of Research Updates in Polymer Science     Hybrid Journal   (Followers: 2)
Journal of Rubber Research     Hybrid Journal   (Followers: 1)
Journal of Saudi Chemical Society     Open Access  
Journal of Solid State Chemistry     Hybrid Journal   (Followers: 13)
Journal of Solution Chemistry     Hybrid Journal   (Followers: 1)
Journal of Structural Chemistry     Hybrid Journal   (Followers: 1)
Journal of Sulfur Chemistry     Hybrid Journal   (Followers: 1)
Journal of Supercritical Fluids     Hybrid Journal   (Followers: 3)
Journal of Superhard Materials     Hybrid Journal  
Journal of Surface Science and Technology     Hybrid Journal  
Journal of Surfactants and Detergents     Hybrid Journal   (Followers: 3)
Journal of Taibah University for Science     Open Access  
Journal of the American Chemical Society     Hybrid Journal   (Followers: 326)
Journal of the American Society for Mass Spectrometry     Hybrid Journal   (Followers: 31)
Journal of the American Society of Brewing Chemists     Full-text available via subscription   (Followers: 2)
Journal of the Chilean Chemical Society     Open Access   (Followers: 2)
Journal of the Chinese Chemical Society     Hybrid Journal  
Journal of the Indian Chemical Society     Hybrid Journal  
Journal of The Indonesian Society of Integrated Chemistry     Open Access  
Journal of the Iranian Chemical Society     Hybrid Journal   (Followers: 1)
Journal of the Korean Society for Applied Biological Chemistry     Hybrid Journal  
Journal of the Mexican Chemical Society     Open Access   (Followers: 1)
Journal of the Serbian Chemical Society     Open Access  
Journal of the Turkish Chemical Society, Section A : Chemistry     Open Access  
Journal of Theoretical and Computational Chemistry     Hybrid Journal   (Followers: 9)
Jurnal Inovasi Pendidikan Kimia     Open Access  
Jurnal Kimia (Journal of Chemistry)     Open Access  
Jurnal Kimia Riset     Open Access  
Jurnal Pendidikan Kimia     Open Access  
Jurnal Penelitian Sains (JPS)     Open Access  
Karbala International Journal of Modern Science     Open Access  
Kinetics and Catalysis     Hybrid Journal   (Followers: 4)
Konfigurasi : Jurnal Pendidikan Kimia dan Terapan     Open Access  
Korea-Australia Rheology Journal     Hybrid Journal   (Followers: 1)
Langmuir     Hybrid Journal   (Followers: 58)
Lebensmittelchemie     Hybrid Journal   (Followers: 1)
Lipid Insights     Open Access  
Luminescence     Hybrid Journal   (Followers: 2)
Macromolecular Materials & Engineering     Hybrid Journal   (Followers: 5)
Macromolecular Rapid Communications     Hybrid Journal   (Followers: 10)
Macromolecular Research     Hybrid Journal   (Followers: 2)
Macromolecular Symposia     Hybrid Journal   (Followers: 3)
Macromolecular Theory and Simulations     Hybrid Journal   (Followers: 2)
Macromolecules     Hybrid Journal   (Followers: 48)
Magnetic Resonance in Chemistry     Hybrid Journal   (Followers: 8)
Magnetochemistry     Open Access  
Marine Chemistry     Hybrid Journal   (Followers: 6)
Marine Drugs     Open Access   (Followers: 1)
MATEC Web of Conferences     Open Access  
Materials Advances     Open Access   (Followers: 2)
Materials and Devices     Open Access  
Materials Characterization     Hybrid Journal   (Followers: 32)
Materials Chemistry Frontiers     Hybrid Journal   (Followers: 4)
Materials Horizons     Hybrid Journal   (Followers: 6)
Materials Research Bulletin     Hybrid Journal   (Followers: 25)
Materials Science-Poland     Open Access   (Followers: 1)
Materials Sciences and Applications     Open Access   (Followers: 2)
Medicinal Chemistry Research     Hybrid Journal   (Followers: 8)
Mediterranean Journal of Chemistry     Open Access  
Metallography, Microstructure, and Analysis     Hybrid Journal   (Followers: 1)
Micro and Nano Systems Letters     Open Access   (Followers: 6)
Microchimica Acta     Hybrid Journal   (Followers: 2)
Microporous and Mesoporous Materials     Hybrid Journal   (Followers: 9)
Modern Chemistry & Applications     Open Access   (Followers: 1)
Modern Research in Catalysis     Open Access  
Molbank     Open Access  
Molecular Catalysis     Hybrid Journal   (Followers: 5)
Molecules     Open Access   (Followers: 4)
Molecules and Cells     Hybrid Journal   (Followers: 1)
Monatshefte für Chemie - Chemical Monthly     Hybrid Journal   (Followers: 4)
Mongolian Journal of Chemistry     Open Access  
Moscow University Chemistry Bulletin     Hybrid Journal   (Followers: 1)
MRS Bulletin     Full-text available via subscription   (Followers: 4)
Nachrichten aus der Chemie     Hybrid Journal   (Followers: 13)
Nano Convergence     Open Access   (Followers: 1)
Nano Materials Science     Open Access   (Followers: 1)
Nano Reviews & Experiments     Open Access   (Followers: 14)
Nano Select     Open Access  
Nanochemistry Research     Open Access   (Followers: 1)
Nanoscale     Hybrid Journal   (Followers: 18)
Nanoscale Advances     Open Access  
Nanoscale Horizons     Hybrid Journal  
Nanoscale Research Letters     Open Access   (Followers: 8)
Nanoscience and Nanotechnology Letters     Full-text available via subscription   (Followers: 24)
Natural Product Communications     Open Access  
Natural Product Reports     Hybrid Journal   (Followers: 10)
Natural Science     Open Access   (Followers: 8)
Natural Volatiles & Essential Oils     Open Access  
Nature Chemistry     Full-text available via subscription   (Followers: 96)
Nature Protocols     Full-text available via subscription   (Followers: 73)
Nature Reviews Chemistry     Hybrid Journal   (Followers: 17)
New Journal of Chemistry     Hybrid Journal   (Followers: 16)
Nitric Oxide     Hybrid Journal  
Nitrogen     Open Access  
Nukleonika     Open Access  
Open Chemistry Journal     Open Access  
Open Conference Proceedings Journal     Open Access  
Open Journal of Chemistry     Open Access  
Open Journal of Composite Materials     Open Access   (Followers: 22)
Open Journal of Inorganic Non-metallic Materials     Open Access   (Followers: 2)
Open Journal of Medicinal Chemistry     Open Access   (Followers: 4)
Open Journal of Polymer Chemistry     Open Access   (Followers: 12)
Open Journal of Synthesis Theory and Applications     Open Access  
Open Medicinal Chemistry Journal     Open Access  
Orbital - The Electronic Journal of Chemistry     Open Access   (Followers: 1)
Organic & Biomolecular Chemistry     Hybrid Journal   (Followers: 55)
Organometallics     Hybrid Journal   (Followers: 18)
Oxidation of Metals     Hybrid Journal   (Followers: 16)
Passer Journal of Basic and Applied Sciences     Open Access  
Peptide Science     Full-text available via subscription  
Pharmaceuticals     Open Access   (Followers: 4)
Pharmaceutics     Open Access   (Followers: 5)
Phosphorus, Sulfur, and Silicon and the Related Elements     Hybrid Journal   (Followers: 2)
Photochemistry and Photobiology     Hybrid Journal   (Followers: 3)
Physical Science International Journal     Open Access  
Physics and Materials Chemistry     Open Access   (Followers: 1)
Phytochemistry     Hybrid Journal   (Followers: 4)
Phytochemistry Letters     Full-text available via subscription   (Followers: 1)
Plasma     Open Access   (Followers: 3)
Plasma Chemistry and Plasma Processing     Hybrid Journal   (Followers: 3)
Polycyclic Aromatic Compounds     Hybrid Journal  
Polyhedron     Hybrid Journal   (Followers: 4)
Polymer Chemistry     Hybrid Journal   (Followers: 24)
Polymer crystallization     Hybrid Journal  
Polymer Degradation and Stability     Hybrid Journal   (Followers: 23)
Polymer Engineering & Science     Hybrid Journal   (Followers: 14)
Polymer Reviews     Hybrid Journal   (Followers: 32)
Polymer Science Series D     Hybrid Journal   (Followers: 3)
Polymer Testing     Hybrid Journal   (Followers: 198)
Polymer-Plastics Technology and Materials     Hybrid Journal   (Followers: 5)
Polymers     Open Access   (Followers: 21)
Polymers from Renewable Resources     Hybrid Journal  
Proceedings of the Combustion Institute     Full-text available via subscription   (Followers: 8)
Processes     Open Access  
Progress in Lipid Research     Hybrid Journal   (Followers: 3)
Progress in Organic Coatings     Hybrid Journal   (Followers: 7)
Progress in Polymer Science     Full-text available via subscription   (Followers: 36)
Progress in Reaction Kinetics and Mechanism     Open Access  
Progress in Solid State Chemistry     Full-text available via subscription   (Followers: 3)
Progress in Surface Science     Full-text available via subscription   (Followers: 3)
Protein Science     Hybrid Journal   (Followers: 43)
Radiochemistry     Hybrid Journal   (Followers: 1)
Rapid Communications in Mass Spectrometry     Hybrid Journal   (Followers: 32)
Reaction Chemistry & Engineering     Hybrid Journal  
Reaction Kinetics, Mechanisms and Catalysis     Hybrid Journal   (Followers: 3)
Reactions     Open Access  
Reportes Científicos de la FaCEN     Open Access  
Research Journal of Phytochemistry     Open Access   (Followers: 1)
Resources Chemicals and Materials     Full-text available via subscription   (Followers: 5)
Results in Chemistry     Open Access  
Results in Geochemistry     Open Access  
Results in Surfaces and Interfaces     Open Access  
Review Journal of Chemistry     Hybrid Journal   (Followers: 1)
Reviews in Mineralogy and Geochemistry     Hybrid Journal   (Followers: 4)
Revista Boliviana de Química     Open Access  
Revista CENIC. Ciencias Quimicas     Open Access  
Revista Colombiana de Ciencias Químico-Farmacéuticas     Open Access  
Revista Colombiana de Química     Open Access  
Revista Cubana de Química     Open Access  
Revista de Ciencia y Tecnología     Open Access  
Revista de Ciencias     Open Access  
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales     Open Access  
Revista de la Sociedad Química del Perú     Open Access  
Revista de la Societat Catalana de Química     Open Access  
Revista de Química     Open Access   (Followers: 6)
Revista Debates em Ensino de Química     Open Access  
Revista ION     Open Access  
RSC Advances     Open Access   (Followers: 27)
RSC Chemical Biology     Open Access  
RSC Medicinal Chemistry     Hybrid Journal   (Followers: 6)
Russian Journal of Bioorganic Chemistry     Hybrid Journal   (Followers: 1)
Russian Journal of Coordination Chemistry     Hybrid Journal   (Followers: 1)
Russian Journal of General Chemistry     Hybrid Journal   (Followers: 1)
Russian Journal of Inorganic Chemistry     Hybrid Journal  
Sainstek : Jurnal Sains dan Teknologi     Open Access  
Science China Chemistry     Hybrid Journal   (Followers: 2)
Science Talks     Full-text available via subscription   (Followers: 4)
Sciences & Technologie A : sciences exactes     Open Access  
Scientific Journal of Frontier Chemical Development     Open Access   (Followers: 2)

  First | 1 2 3 4 | Last

Similar Journals
Journal Cover
Number of Followers: 0  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2504-3129
Published by MDPI Homepage  [84 journals]
  • Nitrogen, Vol. 3, Pages 149-160: Simulated Cropping Season Effects on N
           Mineralization from Accumulated No-Till Crop Residues

    • Authors: Rashad S. Alghamdi, Larry Cihacek, Qian Wen
      First page: 149
      Abstract: The adoption of no-till management practices has increased in the United States over the last decade. In the state of North Dakota, approximately 5.7 million hectares of cropland is managed under no-till or conservation tillage management practices. Even though conservation tillage is known for building soil health, increasing soil organic matter, capturing soil moisture, and reducing wind and water erosion, it also presents a unique best management practice since an increased mass of crop residue remains on the soil surface. Producers are concerned about whether plant needs are being met by nitrogen fertilizer that is currently being applied based on current North Dakota recommendations for long-term no-till systems. A Forman clay loam soil (fine-loamy, mixed, superactive, frigid Calcic Argiudolls) was used in this study, as it represented glacial till soils of the region. We examined whether N mineralization from surface-applied crop residue would result in similar or different results when compared to crop residue mixed into the soil. Soil freeze-thaw contribution to soil N mineralization was also evaluated. Six residue treatments with different C/N ratios including corn (Zea mays L.), soybean (Glycine max L.), forage radish (Raphanus sativus L.), winter pea (Pisum sativum L.), spring wheat (Triticum aestivum L.), and winter wheat (Triticum aestivum L.) were used. Five 10–14-week cycles with a three-week freeze period between each cycle at 0 ºC were evaluated for NO3-N production. Crop residues with a narrow C/N ratio contributed to greater instances of N mineralization during each incubation cycle, and the accumulation of crop residues with a wide C/N ratio over each incubation cycle following the first incubation did not offset the immobilization trends observed in the first incubation. A change in N mineralized in the untreated control soil during the last two incubation cycles may have been caused by freeze-thaw effects or a shift in microbial population due to a lack of fresh C inputs.
      Citation: Nitrogen
      PubDate: 2022-03-31
      DOI: 10.3390/nitrogen3020011
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 161-169: Degradation of N-(n-butyl) Thiophosphoric
           Triamide (NBPT) with and without Nitrification Inhibitor in Soils

    • Authors: Ahmed A. Lasisi, Olalekan O. Akinremi
      First page: 161
      Abstract: Recent studies have shown that nitrification inhibitor (NI) impairs the efficacy of urease inhibitor, N-(n-butyl) thiophosphoric triamide (NBPT), in reducing ammonia volatilization and urea hydrolysis rate. A laboratory study was conducted to evaluate the influence of NI (specifically 3,4-dimethyl pyrazole phosphate) on the degradation of NBPT in six soils. Soils were amended with either NBPT (10 mg NBPT kg−1 soil) or NBPT plus NI (DI; 10 mg NBPT + 2.5 mg NI kg−1 soil), incubated at 21 °C, and destructively sampled eight times during a 14-day incubation period. The degradation of NBPT in soil was quantified by measuring NBPT concentration with high-performance liquid chromatography-mass spectrometry, and the degradation rate constant was modeled with an exponential decay function. The study showed that the persistence of NBPT in soil was not influenced by the presence of NI, as the NBPT degradation rate constant across soils was 0.5 d−1 with either NBPT or DI. In contrast, the degradation rate constant was significantly dependent on soils, with values ranging from 0.4 to 1.7 d−1. Soil pH was the most important variable affecting the persistence of NBPT in soils. The half-life of NBPT was 0.4 d in acidic soil and 1.3 to 2.1 d in neutral to alkaline soils. The faster degradation of NBPT in acidic soils may explain its reduced efficacy in such soils.
      Citation: Nitrogen
      PubDate: 2022-04-02
      DOI: 10.3390/nitrogen3020012
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 170-185: Efficiency and Management of Nitrogen
           Fertilization in Sugar Beet as Spring Crop: A Review

    • Authors: Ivana Varga, Jurica Jović, Mirta Rastija, Antonela Markulj Kulundžić, Vladimir Zebec, Zdenko Lončarić, Dario Iljkić, Manda Antunović
      First page: 170
      Abstract: Sugar beet fertilization is a very complex agrotechnical measure for farmers. The main reason is that technological quality is equally important as sugar beet yield, but the increment of the root yield does not follow the root quality. Technological quality implies the concentration of sucrose in the root and the possibility of its extraction in the production of white table sugar. The great variability of agroecological factors that directly affect root yield and quality are possible good agrotechnics, primarily by minimizing fertilization. It should be considered that for sugar beet, the status of a single plant available nutrient in the soil is more important than the total amounts of nutrients in the soil. Soil analysis will show us the amount of free nutrients, the degree of soil acidity and the status of individual elements in the soil so that farmers can make a compensation plan. An estimate of the mineralizing ability of the soil, the N min, is very important in determining the amount of mineral nitrogen that the plant can absorb for high root yield and good technological quality. The amount of N needed by the sugar beet crop to be grown is an important factor, and it will always will be in the focus for the producers, especially from the aspect of trying to reduce the N input in agricultural production to preserve soils and their biodiversity but also to establish high yields and quality.
      Citation: Nitrogen
      PubDate: 2022-04-12
      DOI: 10.3390/nitrogen3020013
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 186-196: Autumn Tillage Reduces the Effect of
           Plant Cover on Topsoil Nitrogen Leaching

    • Authors: Jorge F. Miranda-Vélez, Iris Vogeler
      First page: 186
      Abstract: Keeping cover crops to reduce nitrogen leaching often conflicts with timing tillage operations before the soil becomes un-trafficable during winter, while leaving cover crops in the field until spring raises concerns over pre-emptive competition with the following crop. Therefore, farmers may resort to tilling their fields in autumn after letting cover crops remain in the fields for only a short period of time. We explore the effects of this practice in a laboratory lysimeter setting by analyzing the leaching of nitrate from intact topsoil cores. Cores were extracted from no-till (NT) plots and plots tilled in autumn (AuT), in areas kept bare (B) and with volunteer winter rye plant cover (V) after harvest. Nitrate breakthrough curves show that V significantly reduced N leaching by 61% relative to B in NT, but did not have a significant effect in AuT. Dissection of leached cores and undisturbed reference cores indicated a significant removal of mineral N from the soil during the lysimeter experiment for all treatments except V in NT. This indicates that volunteer cover removed a crucial amount of leachable N and suggests that tillage counteracted the effect of V in AuT, likely due to a combination of reduced uptake and re-mineralization of N in cover crop residue.
      Citation: Nitrogen
      PubDate: 2022-04-13
      DOI: 10.3390/nitrogen3020014
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 197-212: An Original Experimental Design to
           Quantify and Model Net Mineralization of Organic Nitrogen in the Field

    • Authors: Thierry Morvan, Laure Beff, Yvon Lambert, Bruno Mary, Philippe Germain, Benjamin Louis, Nicolas Beaudoin
      First page: 197
      Abstract: Improving the assessment and prediction of soil organic nitrogen (N) mineralization is essential: it contributes significantly to the N nutrition of crops and remains a major economic and environmental challenge. Consequently, a network of 137 fields was established in Brittany, France, to represent the wide diversity of soils and cultivation practices in this region. The experimental design was developed to measure net N mineralization for three consecutive years, in order to improve the accuracy of measuring it. Net N mineralization was quantified by the mineral N mass balance, which was estimated from March to October for a maize crop with no N fertilization. The effect of climate on mineralization was considered by calculating normalized time (ndays) and, then, calculating the N mineralization rate (Vn) as the ratio of the mineral N mass balance to normalized time. Strict screening of the experimental data, using agronomic and statistical criteria, resulted in the selection of a subset of 67 fields for data analysis. Mean Vn was relatively high (0.99 kg N ha−1 nday−1) over the period and varied greatly, from 0.62 to 1.46 kg N ha−1 nday−1 for the 10th and 90th percentiles, respectively. The upper soil layer (0–30 cm) was sampled to estimate its physical and chemical properties, particulate organic matter carbon and N fractions (POM-C and POM-N, respectively), soil microbial biomass (SMB), and extractable organic N (EON) determined in a phosphate borate extractant. The strongest correlations between Vn and these variables were observed with EON (r = 0.47), SMB (r = 0.45), POM-N (r = 0.43), and, to a lesser extent, the soil N stock (r = 0.31). Vn was also strongly correlated with a cropping system indicator (r = 0.39). A modeling approach, using generalized additive models, was used to identify and rank the variables with the greatest ability to predict net N mineralization.
      Citation: Nitrogen
      PubDate: 2022-04-15
      DOI: 10.3390/nitrogen3020015
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 213-246: Communicating Nitrogen Loss Mechanisms

    • Authors: Rebecca L. Whetton, Mary A. Harty, Nicholas M. Holden
      First page: 213
      Abstract: Nitrogen (N) losses are a major environmental issue. Globally, crop N fertilizer applications are excessive, and N use efficiency (NUE) is low. N loss represents a significant economic loss to the farmer. NUE is difficult to quantify in real time because of the multiple chemical–biological–physical factors interacting. While there is much scientific understanding of N interactions in the plant–soil system, there is little formal expression of scientific knowledge in farm practice. The objective of this study was to clearly define the factors controlling NUE in wheat production, focusing on N inputs, flows, transformations, and outputs from the plant–soil system. A series of focus groups were conducted with professional agronomists and industry experts, and their technical information was considered alongside a structured literature review. To express this understanding, clear graphical representations are provided in the text. The analysis of the NUE processes revealed 16 management interventions which could be prioritized to increase farm nitrogen use efficiency. These management interventions were grouped into three categories—inputs, flow between pools, and outputs—and include management options through the range of application errors, fertilizer input choice, root development, pests and disease, soil structure, harvesting and storage errors, and soil resources of water, micronutrients, carbon, nitrogen, and pH. It was noted that technical solutions such as fertilizer formulation and managing organic matter require significant supply chain upgrades. It was also noted that farm-scale decision support would be best managed using a risk/probability-based recommender system rather than generic guidelines.
      Citation: Nitrogen
      PubDate: 2022-04-28
      DOI: 10.3390/nitrogen3020016
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 247-259: Age-Related Changes in Water and Nitrogen
           Utilization in Crop Trees and Understory Vegetation in a Hinoki Cypress
           Plantation Forest in Kochi City, Southern Japan

    • Authors: Yoshiyuki Inagaki, Kazuki Miyamoto, Atsushi Sakai
      First page: 247
      Abstract: Age-related changes in water and nitrogen utilization of crop and understory vegetation in a hinoki cypress plantation forest were investigated from the age of 21 to 46 years in Kochi City, southern Japan. Nitrogen concentration in the leaf litter of hinoki cypress showed a decreasing trend with forest age. The leaf δ15N of hinoki cypress was related to a quadratic function and increased from the age of 21 to 26 years and then decreased to the age of 46 years. These results suggest that older hinoki cypress trees utilize soil nitrogen sources with lower δ15N values, and the competition for soil nitrogen with understory vegetation should be stronger. Carbon isotope discrimination (Δ13C) of hinoki cypress decreased from the age of 21 to 30 years and then increased to the age of 46 years. In contrast, the intrinsic water-use efficiency (iWUE) of hinoki cypress increased from the age of 21 to 36 years and then decreased to the age of 46 years. These findings suggest that hinoki cypress trees in the earlier time increased their iWUE by reducing stomatal opening. In the earlier time, the stomatal opening of understory vegetation increased due to higher soil water availability with decreasing stand density of crop trees. In the later time, the iWUE of hinoki cypress decreased due to lower photosynthetic capacity with nitrogen limitation. These results suggest that the increase in the iWUE of hinoki cypress in response to elevated atmospheric carbon dioxide levels should be smaller in the later time because of stronger competition with understory vegetation for soil nitrogen resources.
      Citation: Nitrogen
      PubDate: 2022-05-02
      DOI: 10.3390/nitrogen3020017
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 260-283: Simulating Increased Permafrost Peatland
           Plant Productivity in Response to Belowground Fertilisation Using the
           JULES Land Surface Model

    • Authors: Rayanne Vitali, Sarah E. Chadburn, Frida Keuper, Anna B. Harper, Eleanor J. Burke
      First page: 260
      Abstract: Several experimental studies have shown that climate-warming-induced permafrost thaw releases previously unavailable nitrogen which can lower nitrogen limitation, increase plant productivity, and counteract some of the carbon released from thawing permafrost. The net effect of this belowground fertilisation effect remains debated and is yet to be included in Earth System models. Here, we included the impact of thaw-related nitrogen fertilisation on vegetation in the Joint UK Land Environment Simulator (JULES) land surface model for the first time. We evaluated its ability to replicate a three-year belowground fertilisation experiment in which JULES was generally able to simulate belowground fertilisation in accordance with the observations. We also ran simulations under future climate to investigate how belowground nitrogen fertilisation affects the carbon cycle. These simulations indicate an increase in plant-available inorganic nitrogen at the thaw front by the end of the century with only the productivity of deep-rooting plants increasing in response. This suggests that deep-rooting species will have a competitive advantage under future climate warming. Our results also illustrate the capacity to simulate belowground nitrogen fertilisation at the thaw front in a global land surface model, leading towards a more complete representation of coupled carbon and nitrogen dynamics in the northern high latitudes.
      Citation: Nitrogen
      PubDate: 2022-05-05
      DOI: 10.3390/nitrogen3020018
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 284-297: Effects of Nitrogen Fertilization on Weed
           Flora and Productivity of Soybean [Glycine max (L.) Merr.] Crop

    • Authors: Ioanna Kakabouki, Antonios Mavroeidis, Varvara Kouneli, Stella Karydogianni, Antigolena Folina, Vassilios Triantafyllidis, Aspasia Efthimiadou, Ioannis Roussis, Anastasios Zotos, Chariklia Kosma, Nikolaos Katsenios
      First page: 284
      Abstract: The literature suggests that nitrogen (N) fertilization increases yield in soybean. This study aimed to investigate the effects of N fertilization on: (i) The performance of soybean, and (ii) the weed flora. A two-year field experiment was carried out in Agrinio, Western Greece. The experiment was set up in a randomized complete block design, with four organic fertilizer treatments and six replications. The four treatments included 0 kg N ha−1 (N0/unfertilized control) and the application of 80 kg N ha−1, 100 kg N ha−1, and 120 kg N ha−1. The application of 120 N kg ha−1 resulted in the most notable increment of plant height (22.6–24%), biomass (10–13%), LAI values (14–17%), and yield (10–12%) compared to the N0. Compared to the N0, total weed biomass was increased by 26–32%, 34–49%, and 55–57% in N80, N100, and N120, respectively. The values of the H (Shannon), Dmg (Margalef), and J (Pielou) indices were unaffected by the fertilization, hence they did not affect weed biodiversity. CRI (crop resistance index), on the contrary, was negatively affected by N fertilization and was significantly reduced. Overall, our results indicate that the application of 80 kg N ha−1 is more efficient, can effectively improve the soybean performance, and enhance its yield.
      Citation: Nitrogen
      PubDate: 2022-05-10
      DOI: 10.3390/nitrogen3020019
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 298-313: Technologies for Biological and
           Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review

    • Authors: Diplina Paul, Abhisek Banerjee
      First page: 298
      Abstract: Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.
      Citation: Nitrogen
      PubDate: 2022-05-14
      DOI: 10.3390/nitrogen3020020
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 314-332: Increased Arctic NO3− Availability
           as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape

    • Authors: Carli A. Arendt, Jeffrey M. Heikoop, Brent D. Newman, Cathy J. Wilson, Haruko Wainwright, Jitendra Kumar, Christian G. Andersen, Nathan A. Wales, Baptiste Dafflon, Jessica Cherry, Stan D. Wullschleger
      First page: 314
      Abstract: Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3−). Researchers have identified two primary mechanisms that increase nitrogen and NO3− availability within permafrost soils: (1) the ‘frozen feast’, where previously frozen organic material becomes available as it thaws, and (2) ‘shrubification’, where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO3− availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO3− production and accumulation. We extrapolate relationships between NO3− and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO3− availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO3− availability by ~250–1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO3− availability and boost future fertilization and productivity in the Arctic.
      Citation: Nitrogen
      PubDate: 2022-05-21
      DOI: 10.3390/nitrogen3020021
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 333-352: Role of Tree Species, the Herb Layer and
           Watershed Characteristics in Nitrate Assimilation in a Central Appalachian
           Hardwood Forest

    • Authors: Sian E. Eisenhut, Ida Holásková, Kirsten Stephan
      First page: 333
      Abstract: Forest plants that can assimilate nitrate may act as nitrate sink and, consequently, reduce nitrate losses from watershed ecosystems through leaching. This study, conducted at the Fernow Experimental Forest in West Virginia, quantified via nitrogen reductase activity (NRA) the nitrate assimilation of two tree species, red maple and sugar maple, and surrounding common herb-layer species at the tissue (foliage, roots) and plot level. NRA measurements were conducted in summer and spring. Furthermore, NRA was quantified under varying levels of soil nitrate availability due to fertilization, different stages in secondary forest succession, and watershed aspect. This study confirmed that NRA of mature maples does not respond to varying levels of soil nitrate availability. However, some herb-layer species’ NRA did increase with nitrogen fertilization, and it may be greater in spring than in summer. Combined with biomass, the herb layer’s NRA at the plot-level (NRAA) comprised 9 to 41% of the total (tree + herb-layer) foliar NRAA during the growing season. This demonstrates that the herb layer contributes to nitrate assimilation disproportionally to its small biomass in the forest and may provide a vernal dam to nitrate loss not only by its early presence but also by increased spring NRA relative to summer.
      Citation: Nitrogen
      PubDate: 2022-06-03
      DOI: 10.3390/nitrogen3020022
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 353-375: Thawing Permafrost as a Nitrogen
           Fertiliser: Implications for Climate Feedbacks

    • Authors: Eleanor Burke, Sarah Chadburn, Chris Huntingford
      First page: 353
      Abstract: Studies for the northern high latitudes suggest that, in the near term, increased vegetation uptake may offset permafrost carbon losses, but over longer time periods, permafrost carbon decomposition causes a net loss of carbon. Here, we assess the impact of a coupled carbon and nitrogen cycle on the simulations of these carbon fluxes. We present results from JULES-IMOGEN—a global land surface model coupled to an intermediate complexity climate model with vertically resolved soil biogeochemistry. We quantify the impact of nitrogen fertilisation from thawing permafrost on the carbon cycle and compare it with the loss of permafrost carbon. Projections show that the additional fertilisation reduces the high latitude vegetation nitrogen limitation and causes an overall increase in vegetation carbon uptake. This is a few Petagrams of carbon (Pg C) by year 2100, increasing to up to 40 Pg C by year 2300 for the RCP8.5 concentration scenario and adds around 50% to the projected overall increase in vegetation carbon in that region. This nitrogen fertilisation results in a negative (stabilising) feedback on the global mean temperature, which could be equivalent in magnitude to the positive (destabilising) temperature feedback from the loss of permafrost carbon. This balance depends on the future scenario and initial permafrost carbon. JULES-IMOGEN describes one representation of the changes in Arctic carbon and nitrogen cycling in response to climate change. However there are uncertainties in the modelling framework, model parameterisation and missing processes which, when assessed, will provide a more complete picture of the balance between stabilising and destabilising feedbacks.
      Citation: Nitrogen
      PubDate: 2022-06-03
      DOI: 10.3390/nitrogen3020023
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 376-386: Using the Haney Soil Test to Predict
           Nitrogen Requirements in Winter Wheat (Triticum aestivum L.)

    • Authors: Debankur Sanyal, Christopher Graham
      First page: 376
      Abstract: Managing nitrogen (N) is one of the of the biggest challenges in achieving environmental and economic sustainability in the agroecosystem. As N fertilizer prices have increased significantly, farmers are considering a revised N recommendation to optimize crop production, while addressing negative environmental impacts of excess N in water bodies. This study analyzes the accuracy of using the Haney Soil Test (HST) to predict the N requirement (HSTNR) of winter wheat (Triticum aestivum L.) in a semi-arid climate. The accuracy of the HST to predict the economically optimum N rate (EONR) was dependent on in-season precipitation. In drought conditions, the HSTNR was 33 kg N ha−1 lower on average than the EONR. Conversely, in wetter years, the HSTNR was 35 kg N ha−1 higher than the EONR. Net return was approximately USD 19 ha−1 lower than that with the EONR under both precipitation scenarios. Similar differences were found for protein content. There was a strong correlation between soil respiration and the soil health calculation, within the HST, and the difference between the net return on yield from the HSTNR and the EONR yield. These indicators may serve as useful metrics for formulating soil health-based N recommendations in winter wheat. However, in drought-prone areas, the HSTNR may significantly underpredict the EONR in many years due to an overestimation of N mineralization.
      Citation: Nitrogen
      PubDate: 2022-06-09
      DOI: 10.3390/nitrogen3020024
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 387-403: Potential Impact of Learning Management
           Zones for Site-Specific N Fertilisation: A Case Study for Wheat Crops

    • Authors: Camilo Franco, Nicolás Mejía, Søren Marcus Pedersen, René Gislum
      First page: 387
      Abstract: This paper proposes an automatic, machine learning methodology for precision agriculture, aiming at learning management zones that allow a more efficient and sustainable use of fertiliser. In particular, the methodology consists of clustering remote sensing data and estimating the impact of decision-making based on the extracted knowledge. A case study is developed on experimental data coming from winter wheat (Triticum aestivum) crops receiving site-specific fertilisation. A first approximation to the data allows measuring the effects of the fertilisation treatments on the yield and quality of the crops. After verifying the significance of such effects, clustering analysis is applied on sensor readings on vegetation and soil electric conductivity in order to automatically learn the best configuration of zones for differentiated treatment. The complete methodology for identifying management zones from vegetation and soil sensing is validated for two experimental sites in Denmark, estimating its potential impact for decision-making on site-specific N fertilisation.
      Citation: Nitrogen
      PubDate: 2022-06-13
      DOI: 10.3390/nitrogen3020025
      Issue No: Vol. 3, No. 2 (2022)
  • Nitrogen, Vol. 3, Pages 26-42: Nutrient Availability for Lactuca sativa
           Cultivated in an Amended Peatland: An Ionic Exchange Study

    • Authors: Jacynthe Dessureault-Rompré, Alexis Gloutney, Jean Caron
      First page: 26
      Abstract: Few conservation strategies have been applied to cultivated peatland. This field study over one growth cycle of Lactuca sativa examined the effect of plant-based, high-C/N-ratio amendments in a real farming situation on peatland. Plant Root Simulator (PRS®) probes were used directly in the field to assess the impacts of incorporating Miscanthus x giganteus straw and Salix miyabeana chips on nutrient availability for lettuce. The results showed that lettuce yield decreased by 35% in the miscanthus straw treatment and by 14% in the willow chip treatment. In addition, the nitrogen flux rate was severely reduced during crop growth (75% reduction) and the plant N uptake index was much lower in the amended treatments than in the control. The phosphorus supply rate was also significantly lower (24% reduction) in the willow treatment. The influence of sampling zone was significant as well, with most macro-nutrients being depleted in the root zone and most micro-nutrients being mobilized. Additional work is needed to optimize the proposed conservation strategy and investigate the effects of consecutive years of soil amendment on different vegetable crops and in different types of cultivated peatlands to confirm and generalize the findings of this study. Future field studies should also explore the long-term carbon dynamics under plant-based, high-C/N-ratio amendments to determine if they can offset annual C losses.
      Citation: Nitrogen
      PubDate: 2022-01-14
      DOI: 10.3390/nitrogen3010002
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 43-57: Identifying Sustainable Nitrogen Management
           Practices for Tea Plantations

    • Authors: Rhys Rebello, Paul J. Burgess, Nicholas T. Girkin
      First page: 43
      Abstract: Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.
      Citation: Nitrogen
      PubDate: 2022-01-14
      DOI: 10.3390/nitrogen3010003
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 58-73: Combination of Inorganic Nitrogen and
           Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing
           Nitrogen Runoff

    • Authors: Ian Phillips, Chanyarat Paungfoo-Lonhienne, Iman Tahmasbian, Benjamin Hunter, Brianna Smith, David Mayer, Matthew Redding
      First page: 58
      Abstract: Improved nitrogen fertiliser management and increased nitrogen use efficiency (NUE) can be achieved by synchronising nitrogen (N) availability with plant uptake requirements. Organic materials in conjunction with inorganic fertilisers provide a strategy for supplying plant-available N over the growing season and reducing N loss. This study investigated whether a combined application of inorganic N with an organic soil amendment could improve nitrogen use efficiency by reducing N loss in runoff. Nitrogen runoff from a ryegrass (Lolium multiflorum) cover was investigated using a rainfall simulator. Nitrogen was applied at low, medium and high (50, 75 and 100 kg/ha) rates as either (NH4)2SO4 or in combination with a poultry manure-based organic material. We showed that the NUE in the combination (58–75%) was two-fold greater than in (NH4)2SO4 (24–42%). Furthermore, this combination also resulted in a two-fold lower N runoff compared with the inorganic fertiliser alone. This effect was attributed to the slower rate of N release from the organic amendment relative to the inorganic fertiliser. Here, we demonstrated that the combined use of inorganic and organic N substrates can reduce nutrient losses in surface runoff due to a better synchronisation of N availability with plant uptake requirements.
      Citation: Nitrogen
      PubDate: 2022-01-20
      DOI: 10.3390/nitrogen3010004
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 74-75: Acknowledgment to Reviewers of Nitrogen in

    • Authors: Nitrogen Editorial Office Nitrogen Editorial Office
      First page: 74
      Abstract: Rigorous peer-reviews are the basis of high-quality academic publishing [...]
      Citation: Nitrogen
      PubDate: 2022-01-28
      DOI: 10.3390/nitrogen3010005
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 76-89: Negligible Response of Transpiration to
           Late-Summer Nitrogen Fertilization in Japanese Oak (Quercus crispula)

    • Authors: Nao Nagano, Tomonori Kume, Yasuhiro Utsumi, Naoaki Tashiro, Kyoichi Otsuki, Masaaki Chiwa
      First page: 76
      Abstract: Increased atmospheric nitrogen (N) deposition, caused by anthropogenic activities, has various effects on forest ecosystems. Some reports have investigated the responses in tree transpiration to N addition, but few studies have measured the short-term response of mature tree transpiration to N fertilization. This study aimed to clarify the short-term transpiration response in 27-year-old deciduous hardwood trees to an increase in N availability. We established two plot types (control and N-fertilized plots) in Quercus crispula plantation stands in Hokkaido, Northern Japan. We measured sap flow density (SFD; cm3 m−2 s−1) using a thermal dissipation method for three months during the growing season. In the N-fertilized plot, we added 50 kg N ha−1 yr−1 of ammonium nitrate (NH4NO3) to the forest floor in the middle of the measurement periods. For daily mean SFD, we did not find a significant difference between the control and the N-fertilized plots. Leaf N contents did not differ between treatments, implying a negligible difference in physiological responses and transpiration rates. The slight difference between treatments could be because the trees had already foliated before applying the N fertilizer to our deciduous hardwood trees. The present results indicate that the potential increase in N deposition during the growing season does not immediately alter tree transpiration.
      Citation: Nitrogen
      PubDate: 2022-02-03
      DOI: 10.3390/nitrogen3010006
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 90-100: Biochar Applied with Inorganic Nitrogen
           Improves Soil Carbon, Nitrate and Ammonium Content of a Sandy Loam
           Temperate Soil

    • Authors: Peter Omara, Lawrence Aula, Fred Otim, Alfred Obia, Joao Luis Bigatao Souza, Daryl Brain Arnall
      First page: 90
      Abstract: Biochar is suggested to improve soil properties. However, its combination with inorganic nitrogen (N) fertilizer in temperate soils is not well understood. This study compared the effect of fertilizer N-biochar-combinations (NBC) and fertilizer-N (FN) on total soil N (TSN), soil organic carbon (SOC), soil nitrate (NO3−–N), and ammonium (NH4+–N). Soil samples were taken from experiments at Efaw and Lake Carl Blackwell (LCB), Oklahoma, USA with ten treatments consisting of three N rates (50, 100, and 150 kg N ha−1) and three biochar rates (5, 10, and 15 t ha−1). Results at Efaw showed greater TSN and SOC under NBC compared to FN by 3 and 21%, respectively. No percentage difference was observed for NH4+–N while NO3−–N was lower by 7%. At LCB, TSN, SOC, NO3−–N, and NH4+–N were higher under NBC by 5, 18, 24, and 10%, respectively, compared to FN. Whereas application of biochar improved SOC at both sites, NO3−–N and NH4+–N were only significant at LCB site with a sandy loam soil but not at Efaw with silty clay loam. Therefore, biochar applied in combination with inorganic N can improve N availability with potential to increase crop N uptake on coarse textured soils.
      Citation: Nitrogen
      PubDate: 2022-02-23
      DOI: 10.3390/nitrogen3010007
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 101-117: Review on Detection Methods of Nitrogen
           Species in Air, Soil and Water

    • Authors: Md Faishal Yousuf, Md Shaad Mahmud
      First page: 101
      Abstract: Nitrogen species present in the atmosphere, soil, and water play a vital role in ecosystem stability. Reactive nitrogen gases are key air quality indicators and are responsible for atmospheric ozone layer depletion. Soil nitrogen species are one of the primary macronutrients for plant growth. Species of nitrogen in water are essential indicators of water quality, and they play an important role in aquatic environment monitoring. Anthropogenic activities have highly impacted the natural balance of the nitrogen species. Therefore, it is critical to monitor nitrogen concentrations in different environments continuously. Various methods have been explored to measure the concentration of nitrogen species in the air, soil, and water. Here, we review the recent advancements in optical and electrochemical sensing methods for measuring nitrogen concentration in the air, soil, and water. We have discussed the advantages and disadvantages of the existing methods and the future prospects. This will serve as a reference for researchers working with environment pollution and precision agriculture.
      Citation: Nitrogen
      PubDate: 2022-03-04
      DOI: 10.3390/nitrogen3010008
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 118-127: Spatial Variability in Inorganic Soil
           Nitrogen Production in a Mixed-Vegetation Urban Landscape

    • Authors: Juma Bukomba, Mary G. Lusk
      First page: 118
      Abstract: Urban landscapes are not homogeneous, and small-scale variations in plant community or management inputs can give rise to a large range of environmental conditions. In this paper, we investigated the small-scale variability of soil nitrogen (N) properties in a single urban landscape that has distinctly different patches or types of cover. We specifically measured soil net N mineralization, nitrification, and exchangeable forms of inorganic N for patches with traditional turfgrass versus patches with common turfgrass alternatives such as ornamental grasses, groundcovers, and mulches. All soil N properties were variable among landscape patches, showing that soil N processing can vary on scales of a few meters. Notably, both mineralization and nitrification were the highest in a patch covered with perennial peanut, but exchangeable nitrate (NO3−) was low for the same soil, indicating that soils under perennial peanut may be producing high levels of inorganic N but that the produced N does not stay in the soil, possibly leaching to underlying groundwater. We recommend future studies on the mechanisms that drive the variable N properties seen under distinct urban landscape patches, with special emphasis on potential patterns in N losses for mixed-vegetation landscapes.
      Citation: Nitrogen
      PubDate: 2022-03-11
      DOI: 10.3390/nitrogen3010009
      Issue No: Vol. 3, No. 1 (2022)
  • Nitrogen, Vol. 3, Pages 128-148: Effects of Drainage Water Management in a
           Corn–Soy Rotation on Soil N2O and CH4 Fluxes

    • Authors: Jacob G. Hagedorn, Eric A. Davidson, Thomas R. Fisher, Rebecca J. Fox, Qiurui Zhu, Anne B. Gustafson, Erika Koontz, Mark S. Castro, James Lewis
      First page: 128
      Abstract: Drainage water management (DWM), also known as controlled drainage, is a best management practice (BMP) deployed on drainage ditches with demonstrated success at reducing dissolved nitrogen export from agricultural fields. By slowing discharge from agricultural ditches, subsequent anaerobic soil conditions provide an environment for nitrate to be reduced via denitrification. Despite this success, incomplete denitrification might increase nitrous oxide (N2O) emissions and more reducing conditions might increase methanogenesis, resulting in increased methane (CH4) emissions. These two gases, N2O and CH4, are potent greenhouse gases (GHG) and N2O also depletes stratospheric ozone. This potential pollution swapping of nitrate reduction for GHG production could negatively impact the desirability of this BMP. We conducted three years of static chamber measurements of GHG emissions from the soil surface in farm plots with and without DWM in a corn–soybean rotation on the Delmarva Peninsula. We found that DWM raised the water table at the drainage ditch edge, but had no statistically significant effect on water-filled pore space in the field soil surface. Nor did we find a significant effect of DWM on GHG emissions. These findings are encouraging and suggest that, at least for this farm site, DWM can be used to remove nitrate without a significant tradeoff of increased GHG emissions.
      Citation: Nitrogen
      PubDate: 2022-03-17
      DOI: 10.3390/nitrogen3010010
      Issue No: Vol. 3, No. 1 (2022)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-