Subjects -> CHEMISTRY (Total: 986 journals)
    - ANALYTICAL CHEMISTRY (59 journals)
    - CHEMISTRY (713 journals)
    - CRYSTALLOGRAPHY (23 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (45 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (71 journals)

CHEMISTRY (713 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 29)
ACS Applied Polymer Materials     Hybrid Journal   (Followers: 9)
ACS Catalysis     Hybrid Journal   (Followers: 51)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 21)
ACS Combinatorial Science     Hybrid Journal   (Followers: 21)
ACS Macro Letters     Hybrid Journal   (Followers: 25)
ACS Materials Letters     Open Access   (Followers: 2)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 43)
ACS Nano     Hybrid Journal   (Followers: 189)
ACS Photonics     Hybrid Journal   (Followers: 15)
ACS Symposium Series     Full-text available via subscription   (Followers: 3)
ACS Synthetic Biology     Hybrid Journal   (Followers: 28)
Acta Chemica Malaysia     Open Access  
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 2)
Acta Chromatographica     Full-text available via subscription   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 8)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 7)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 9)
Advanced Electronic Materials     Hybrid Journal   (Followers: 5)
Advanced Functional Materials     Hybrid Journal   (Followers: 70)
Advanced Journal of Chemistry, Section A     Open Access   (Followers: 3)
Advanced Journal of Chemistry, Section B     Open Access   (Followers: 1)
Advanced Science Focus     Free   (Followers: 5)
Advanced Theory and Simulations     Hybrid Journal   (Followers: 2)
Advanced Therapeutics     Hybrid Journal   (Followers: 1)
Advances in Chemical Engineering and Science     Open Access   (Followers: 104)
Advances in Chemical Science     Open Access   (Followers: 50)
Advances in Chemistry     Open Access   (Followers: 34)
Advances in Chemistry     Full-text available via subscription   (Followers: 4)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 16)
Advances in Environmental Chemistry     Open Access   (Followers: 9)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 31)
Advances in Nanoparticles     Open Access   (Followers: 17)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Polymer Science     Hybrid Journal   (Followers: 50)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 18)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Science and Technology     Full-text available via subscription   (Followers: 16)
Aerosol Science and Engineering     Hybrid Journal  
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 5)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 6)
Aggregate     Open Access  
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alchemy : Journal of Chemistry     Open Access   (Followers: 3)
Alchemy : Jurnal Penelitian Kimia     Open Access  
Alotrop     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 43)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 19)
American Journal of Chemistry     Open Access   (Followers: 37)
American Journal of Plant Physiology     Open Access   (Followers: 7)
Analyst     Hybrid Journal   (Followers: 36)
Analytical Science Advances     Open Access   (Followers: 1)
Angewandte Chemie     Hybrid Journal   (Followers: 155)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 227)
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 6)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 4)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7)
Applied Surface Science     Hybrid Journal   (Followers: 30)
Arabian Journal of Chemistry     Open Access   (Followers: 4)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Applied Chemistry Research     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 2)
Asian Journal of Chemical Sciences     Open Access   (Followers: 1)
Asian Journal of Chemistry and Pharmaceutical Sciences     Open Access  
Asian Journal of Physical and Chemical Sciences     Open Access   (Followers: 2)
Atomization and Sprays     Full-text available via subscription   (Followers: 7)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 7)
Avances en Quimica     Open Access  
Biochemical Pharmacology     Hybrid Journal   (Followers: 11)
Biochemistry     Hybrid Journal   (Followers: 203)
Biochemistry Research International     Open Access   (Followers: 5)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 22)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 3)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 93)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 66)
Bioorganic Chemistry     Hybrid Journal   (Followers: 9)
Biopolymers     Hybrid Journal   (Followers: 15)
Biosensors     Open Access   (Followers: 3)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 5)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 12)
Canadian Mineralogist     Full-text available via subscription   (Followers: 5)
Carbohydrate Polymer Technologies and Applications     Open Access  
Carbohydrate Polymers     Hybrid Journal   (Followers: 8)
Carbohydrate Research     Hybrid Journal   (Followers: 24)
Carbon     Hybrid Journal   (Followers: 65)
Carbon Capture Science & Technology     Open Access   (Followers: 5)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 9)
Catalysis Science and Technology     Hybrid Journal   (Followers: 9)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 4)
Catalysts     Open Access   (Followers: 11)
Cell Reports Physical Science     Open Access  
Cellulose     Hybrid Journal   (Followers: 8)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
Chem     Hybrid Journal   (Followers: 9)
Chem Catalysis     Hybrid Journal   (Followers: 6)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 3)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 21)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Hybrid Journal   (Followers: 81)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 25)
Chemical Physics Impact     Full-text available via subscription   (Followers: 5)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 4)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 176)
Chemical Science     Open Access   (Followers: 39)
Chemical Science International Journal     Open Access  
Chemical Technology     Open Access   (Followers: 74)
Chemical Thermodynamics and Thermal Analysis     Open Access   (Followers: 7)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 4)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 54)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 21)
ChemInform     Hybrid Journal   (Followers: 5)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Industry     Full-text available via subscription   (Followers: 6)
Chemistry - A European Journal     Hybrid Journal   (Followers: 125)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 19)
Chemistry Africa : A Journal of the Tunisian Chemical Society     Hybrid Journal  
Chemistry and Materials Research     Open Access   (Followers: 17)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 6)
Chemistry Education Review     Open Access   (Followers: 1)
Chemistry in Education     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 44)
Chemistry of Heterocyclic Compounds     Hybrid Journal   (Followers: 5)
Chemistry of Materials     Hybrid Journal   (Followers: 160)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 10)
Chemistry World     Hybrid Journal   (Followers: 20)
Chemistry-Didactics-Ecology-Metrology     Open Access  
ChemistryOpen     Open Access   (Followers: 1)
ChemistrySelect     Hybrid Journal   (Followers: 1)
Chemistry–Methods     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
ChemNanoMat     Hybrid Journal   (Followers: 1)
Chemoecology     Hybrid Journal   (Followers: 2)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 13)
ChemPhotoChem     Hybrid Journal  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPhysMater     Full-text available via subscription   (Followers: 8)
ChemPlusChem     Hybrid Journal   (Followers: 2)
Chempublish Journal     Open Access  
ChemSystemsChem     Hybrid Journal   (Followers: 1)
ChemTexts     Hybrid Journal   (Followers: 1)
CHIMIA International Journal for Chemistry     Open Access   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 9)
Chromatographia     Hybrid Journal   (Followers: 22)
Chromatography     Open Access   (Followers: 2)
Chromatography Research International     Open Access   (Followers: 4)
Ciencia     Open Access  
Clay Minerals     Hybrid Journal   (Followers: 7)
Cogent Chemistry     Open Access   (Followers: 3)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 6)
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 8)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 2)
Combustion Science and Technology     Hybrid Journal   (Followers: 26)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 1)
Communications Chemistry     Open Access   (Followers: 2)
Communications Materials     Open Access  
Composite Interfaces     Hybrid Journal   (Followers: 6)
Comptes Rendus : Chimie     Open Access  
Comptes Rendus : Physique     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 11)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Chemistry     Open Access   (Followers: 4)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 11)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 6)
Corrosion Communications     Open Access   (Followers: 5)
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 17)
Croatica Chemica Acta     Open Access  
CrystEngComm     Hybrid Journal   (Followers: 10)

        1 2 3 4 | Last

Similar Journals
Journal Cover
Canadian Mineralogist
Journal Prestige (SJR): 0.565
Citation Impact (citeScore): 1
Number of Followers: 5  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 0008-4476 - ISSN (Online) 1499-1276
Published by GeoScienceWorld Homepage  [17 journals]
  • Highly refractory dunite formation at Gibbs Island and Bruce Bank, and its
           role in the evolution of the circum-Antarctic continent

    • Free pre-print version: Loading...

      Authors: Akizawa N; Yamaguchi A, Tani K, et al.
      Abstract: ABSTRACTThe continental margin is of profound importance as it records continental growth by accretion of orogenic magmas and following continental rifting. A high degree of mantle melting due to hydrous fluid input is expected to simultaneously stimulate continental growth and lower the intrinsic density of the mantle than more fertile mantle, which in turn isolates the continental lithosphere from the convective mantle. The mantle peridotites from Gibbs Island (South Shetland Islands) and Bruce Bank in the Drake Passage provide us an insight into the tectonic history in the circum-Antarctic region. To elucidate the continental growth of Antarctica, we present geochemical data of eight dunites from Gibbs Island and one dunite from Bruce Bank, including Re–Os isotope and highly siderophile element compositions.The dunites are severely affected by serpentinization as evidenced by antigorite + brucite or lizardite (loss on ignition = LOI ranging from 3 to 34 wt.%) but contain primary euhedral to subhedral chromites with or without spherical inclusions. The chromites rarely form lens-shaped aggregates. A dunite from Gibbs Island contains fresh olivine grains filling a fracture in the chromite with low LOI (3 wt.%), indicating a deserpentinization origin from a precursor serpentinized dunite. The dunites show highly depleted bulk-rock major element compositions (Mg/Si = 1.4–1.6 and Al/Si = 0.004–0.01 for Gibbs Island dunites, Mg/Si = 0.66 and Al/Si = 0.008 for Bruce Bank dunite), overlapping a compositional field defined by forearc peridotites. The positive correlation in Re/Ir–LOI space corroborates Re input during the later serpentinization process. The 187Os/188Os ratios of the dunites range from 0.11907 to 0.14493.Phanerozoic Re-depletion (melt depletion) ages of ca. 535–129 Ma are recorded in the Gibbs Island dunites, except for one with a Mesoproterozoic Re-depletion age of ca. 1.2 Ga. Since there exists serpentinization-related perturbation of Re, the ages provide minimum time estimates for melt depletion events. The early Paleozoic melt depletion is inferred to have occurred at a very early stage of Antarctic Peninsula formation in response to plate convergence along the margin of Gondwana, whereas the Mesoproterozoic Re-depletion age reflects convecting mantle heterogeneity unrelated to any nearby crust-forming events. The petrographic characteristics of the chromites and highly depleted nature of the dunites are attributed to melt–peridotite reaction in a subduction zone setting. A feasible interpretation for the dunite formation is that the mantle had experienced two stages of melting with the final stage occurring along the Gondwana continental margin in the subduction zone setting. Resultant highly refractory lithospheric mantle was later displaced and dispersed during the Gondwana breakup. Widespread existence of the dunite may be attributed to multi-stage melt depletion along the continental margin.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Sintering as a key process in the textural evolution of chromitite seams
           in layered mafic-ultramafic intrusions

    • Free pre-print version: Loading...

      Authors: Hunt EJ; O'Driscoll B, Day JD.
      Abstract: ABSTRACTNearly monomineralic stratiform chromitite seams of variable thickness (millimeters to meters) occur in many of the world's layered mafic-ultramafic intrusions. These seams are often associated with economically significant quantities of platinum group metals, yet the petrogenesis of these societally important materials remains enigmatic. Here we evaluate processes associated with late-magmatic (postcumulus) textural maturation of chromitite seams from four layered mafic-ultramafic intrusions of different ages and sizes. From largest to smallest, these intrusions are the ∼2060 Ma Bushveld Complex (South Africa), the ∼2710 Ma Stillwater Complex (USA), the ∼1270 Ma Muskox Intrusion (Canada), and the ∼60 Ma Rum Eastern Layered Intrusion (Scotland). Three endmember chromitite textures are described, based on chromite grain size and degree of textural equilibration: (1) coarse-grained chromite crystals (>0.40 mm) that occur in the central portions of seams and exhibit high degrees of solid-state textural equilibration; (2) fine-grained chromite crystals (0.11–0.44 mm) at the margins of seams in contact with and disseminated throughout host anorthosite or pyroxenite; and (3) fine-grained chromite crystals (0.005–0.28 mm) hosted within intra-seam orthopyroxene, clinopyroxene, and olivine oikocrysts. Crystal size distribution and spatial distribution pattern analyses are consistent with coarsening occurring through processes of textural maturation, including the sintering of grains by coalescence. We propose that textural maturation initially occurred in the supra-solidus state followed by an important stage of solid-state textural maturation and that these equilibration processes played a major role in the eventual microstructural and compositional homogeneity of the chromitite seams.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • The chromian spinels of the Lyavaraka ultrabasic complex, Serpentinite
           Belt, Kola Peninsula, Russia: Patterns of zoning, hypermagnesian
           compositions, and early oxidation

    • Free pre-print version: Loading...

      Authors: Barkov AY; Nikiforov AA, Korolyuk VN, et al.
      Abstract: ABSTRACTThe maximum value of Mg# [= 100Mg/(Mg + Fe2+ + Mn)] in chromium-bearing spinel-group minerals (Chr) in the Ultrabasic Core Zone (UCZ) of the Lyavaraka orthopyroxenite – harzburgite – dunite complex of the Serpentinite Belt in the Kola Peninsula is 54.5–67.5. Such highly magnesian compositions of spinel are associated with notable enrichments of ferric iron (Fe3+# 58–63). There are two generations of accessory Chr in the UCZ unit. The first generation occurs as inclusions in olivine that is not unusually magnesian (Mg# 90.3), and the second is closely associated with serpentine. The compositional series of Chr at Lyavaraka attains more aluminous compositions than was observed in nearby intrusive bodies. The anomalously high level of Mg in Chr, also manifest in ilmenite, is mainly a result of the high intrinsic fugacity of oxygen attained locally in the melt. A progressive buildup in H2O and increase in fO2 likely resulted from efficient vesiculation and selective loss of H2 from the Al-undepleted komatiitic magma crystallizing in a shallow setting. The chromian spinel forming in such a modified magma is virtually unzoned in Mn, and a minor quantity of Mn is also present in olivine and orthopyroxene. In contrast, zinc is strongly partitioned in the core of Chr, as it is relatively incompatible in the coexisting olivine and orthopyroxene at that stage. Zinc efficiently partitioned into the H2O-enriched melt, which crystallized as the pegmatitic orthopyroxenite near the contacts at Lyavaraka. A high potential of oxidation appears to be characteristic of all orthopyroxenite – harzburgite – dunite suites of the Serpentinite Belt formed from a primitive melt of komatiitic composition.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Distribution of noble metals in magmatic sulfide occurrences in the
           Montagnais Sill Complex, Labrador Trough, Canada

    • Free pre-print version: Loading...

      Authors: Smith WD; Maier WD, Bliss I.
      Abstract: ABSTRACTWe have characterized the distribution of noble metals among six styles of magmatic sulfide mineralization in the Montagnais Sill Complex of the Labrador Trough in northern Québec using optical and electron microscopy combined with laser ablation-inductively coupled plasma-mass spectrometry trace element analysis of sulfides. The principal sulfide minerals include pyrrhotite, chalcopyrite, and pentlandite with accessory sphalerite and sulfarsenides. In addition, cubanite, troilite, and mackinawite are present in ultramafic-hosted assemblages. The precious metal mineral assemblages are dominated by tellurides, Ag-rich gold, and sperrylite which generally occur at the margins of sulfides. Few iridium-group platinum group element- and Rh-bearing grains were identified and mass-balance calculations show that these elements are generally hosted in pyrrhotite and pentlandite. Virtually all Pt and Au are hosted in precious metal grains, whereas Pd is distributed between precious metal grains and pentlandite. Where present, sulfarsenides are a key host of iridium-group platinum group element, Rh, Pd, Te, and Au. The presence of troilite, cubanite, and mackinawite and the absence of pentlandite exsolution lamellae in the ultramafic-hosted sulfides indicates an initial sulfide melt with a high metal/S ratio. Sulfarsenides present among globular sulfide assemblages derive from an immiscible As-rich melt that exsolved from the sulfide melt in response to the assimilation of the As-bearing floor rocks. In this study, the composition of sulfides is consistent with those derived from Ni-Cu-dominated deposits and not platinum group element-dominated deposits.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Genesis and mechanisms of metal enrichment in the Baimazhai Ni-Cu-(PGE)
           deposit, Ailaoshan Orogenic Belt, SW China

    • Free pre-print version: Loading...

      Authors: Lu Y; Lesher C, Yang L, et al.
      Abstract: ABSTRACTThe ∼259 Ma Baimazhai Ni-Cu-(platinum-group element) deposit is located in the Ailaoshan-Red River fault zone on the southwest margin of the Yangtze Plate in the Jinping area of southeastern Yunnan Province. The intrusion is lenticular (∼530 m long × 190 m wide × 24–64 m thick) and concentrically zoned (margin to core) from gabbro through pyroxenite to peridotite. It contains ∼50 kt of Ni-Cu-(platinum-group element) mineralization, concentrically zoned (margin to core) from disseminated through net-textured to massive sulfides with an average grade of 1.03 wt.% Ni, 0.81 wt.% Cu, and 0.02∼0.69 ppm Pd+Pt. The sulfide assemblage comprises pyrrhotite, chalcopyrite, and pentlandite, with lesser magnetite, violarite, galena, and cobaltite. The mineralization is enriched in Ni-Cu-Co relative to the platinum-group elements and the host rocks are enriched in highly incompatible lithophile elements relative to moderately incompatible lithophile elements with high Th/Yb and intermediate Nb/Yb ratios. These host rocks, and those at most other Ni-Cu-platinum-group element deposits in the Emeishan Large Igneous Province, have high γOs and intermediate εNd values, indicating that they crystallized from a magma derived from a subduction-modified pyroxenite mantle source and modified by crustal contamination. The initial concentrations of metals in the primary magma are estimated to have been on the order of 200 ppm Ni and 100 ppm Cu, but only 0.4 ppb Pd, 0.2 ppb Pt, 0.005 ppb Rh, 0.02 ppb Ru, and 0.01 ppb Ir. The δ34S values of ores and separated sulfides range from 5.8‰ to 8.6‰, between the ∼10‰ value of sulfides in the metasedimentary country rocks and the 0 ± 0.5‰ value expected for magmas derived from MORB-type mantle, or the –2.5 ± 0.3‰ value expected for subduction-modified mantle, consistent with equilibration at magma:sulfide mass ratios (R factors) of 100–1000. Variations in Ir100 and Pd100 (metals in 100% sulfide) are consistent with 40–60% fractional crystallization of monosulfide solid solution to form Ni-Co-intermediate platinum-group element (Ru, Os, Ir)-rich massive ores and Cu-palladium/platinum-group elements (Pt, Pd, Rh)-Au-rich residual sulfide liquids. This process is also recorded by magnetite: Type I (early magmatic), type II (late magmatic), and type III (secondary) magnetites exhibit progressively lower Cr-Ti-V concentrations. The platinum-group element contents in base-metal minerals are low, and only pentlandite, violarite, and cobaltite contain detectable concentrations of Pd, Rh, and Ru. There is abundant textural evidence for metamorphic-hydrothermal alteration of sulfides in the Baimazhai intrusion, with secondary violarite, chalcopyrite, and pentlandite being enriched (Ag, Sb, Au, Pb) or depleted (Sn) in more mobile chalcophile elements. The different tectonic and petrogenetic settings of the Baimazhai and other deposits in China highlight the potential of Ni-Cu-platinum-group element deposits to occur in subduction or post-subduction settings and demonstrate that the key controls are magma flux and access to crustal S. Exploration potential remains for the Ailaoshan orogenic belt to host additional magmatic Ni-Cu deposits.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Relationships among the Geordie Lake Cu-Pd deposit, alkaline basalt, and
           syenites in the Coldwell Complex, Midcontinent Rift, Canada

    • Free pre-print version: Loading...

      Authors: Good DJ; Linnen RL, Meghji I, et al.
      Abstract: ABSTRACTThe Geordie Lake Cu-Pd deposit is associated with troctolite at the base of the Geordie Lake intrusion, located near the center of the Coldwell Complex (1106.5 + 1.2 Ma). It is the only platinum group element deposit in the Midcontinent Rift associated with alkaline rocks. This study focuses on the long-standing questions regarding genetic relationships among the Geordie Lake gabbros, the Wolfcamp basalt, and the various syenites that make up the east-central portion of the Coldwell Complex. Primitive mantle-normalized trace-element patterns for the Geordie Lake intrusion are nearly flat from Th to Ce and show negative Sr, Eu, and Zr anomalies. Characteristic ratios for the Geordie Lake gabbro and troctolite include Th/Nb (0.12), La/Nb (1.1), La/Lu (150), La/Sm (6.9), Zr/Sm (18), and Gd/Yb (2.8). Trace-element patterns that are useful for determining petrogenesis for gabbros are similar to the Wolfcamp basalt and augite syenite with some key exceptions, notably the middle rare earth element and Zr abundances. Affects due to metasomatism or crustal contamination in Wolfcamp basalt and Geordie Lake gabbros and syenites are negligible. Results of Rayleigh fractionation modeling show (1) the Geordie Lake intrusion and Wolfcamp basalt are very similar but not directly related by crystallization, (2) the gabbros and basalt are not related to the syenites, (3) the lower augite syenite can be related to the upper augite syenite and amphibole quartz syenite by fractionation of a hypothetical crystal cumulate composed of orthoclase (78%), clinopyroxene (15%), olivine (1%), and titanomagnetite (6%). We conclude that the Geordie Lake intrusion, Wolfcamp basalt, and saturated syenites in the Coldwell were derived by separate partial melting events in a common mantle source.The origin of the sulfide mineralization is enigmatic because it exhibits characteristics of both magmatic and hydrothermal processes. The sulfide assemblage changes from disseminated bornite and chalcopyrite in the basal zone to pyrrhotite plus chalcopyrite in the upper zones. Sulfides occur as coarse blebs interstitial to fresh or partly altered silicates, or as very fine grains intergrown with clusters of biotite and actinolite. Primitive mantle-normalized platinum group element patterns exhibit a W-shape for Pd-Pt-Rh-Ir-Ni, indicating a relative depletion of Pt and Ir. The Cu/Pd ratios in the mineralized zones are within the range of mantle values (1000–10,000), Pd/Pt is 14–19, Pd/Rh is 91 + 37, and Pd/Ir >16,000. The Pd/Pt, Pd/Rh, and Pd/Ir are considerably higher than in the Wolfcamp basalt (<1, 17, and 75, respectively). If the sulfides are magmatic in origin, then either the Geordie Lake magma was, unlike the Wolfcamp basalt magma, depleted in Pt, Rh, and Ir, or these elements were selectively removed from the sulfide assemblage. Alternatively, Pd was enriched by late-stage hydrothermal processes. Additional work is recommended to constrain petrogenesis of the sulfides by detailed base-metal and TABS (Te, As, Bi, Sb, and Sn) element analysis.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Transgressive nature and chilled margins of the Upper Zone in the western
           Bushveld Complex, South Africa

    • Free pre-print version: Loading...

      Authors: Chistyakova Su; Latypov RM, Kruger F, et al.
      Abstract: ABSTRACTThe Upper Zone of the Bushveld Complex has long been known to have formed from a major influx of magma into the chamber that caused large-scale erosion of the chamber floor cumulates. The most dramatic manifestations of this process are two major gap areas (Northern and Southern) in the western Bushveld Complex in which the Upper Zone appears to have eroded away the underlying cumulates down to the very base of the Complex. However, due to almost complete lack of outcrops in the gap areas, no direct field observations have ever been reported to confirm the transgressive nature of the Upper Zone. Here, we present for the first time such observations from the Kameelhoek chromite mine located at the margin of the Northern Gap. In the open pit we have documented several transgressive depressions (up to 40 m in width) in the orthopyroxenite and chromitites of the Lower Critical Zone that are filled in with magnetite gabbro of the Upper Zone. The magnetite gabbro is chilled against the sidewalls of the depressions, forming glassy and fine-grained textured rocks with plagioclase laths arranged in radial clusters. Mineralogically and chemically, the magnetite gabbro correlates with cumulates from the lowermost part of the Upper Zone at its normal position in the complex. Three major points that have emerged from this study are: (1) the Critical Zone has been eroded away by magma that was parental to the Upper Zone, (2) this eroding magma was not the one that initiated formation of the Pyroxenite Marker, but rather the evolved melt that replenished the chamber at some later stage, and (3) the melt was phenocryst-free and likely derived from a deep-seated staging chamber. Our study thus supports a recent notion that even during the formation of the Upper Zone, the Bushveld chamber had still been operating as an open system that was replenished by melts from deeper magma sources.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • PGE distribution in Merensky wide-reef facies of the Bushveld Complex,
           South Africa: Evidence for localized hydromagmatic control

    • Free pre-print version: Loading...

      Authors: Prevec SA; Largatzis S, Brownscombe W, et al.
      Abstract: ABSTRACTThe wide-reef facies of the Merensky Reef in the eastern part of the western lobe of the Bushveld Complex was sampled in order to better resolve otherwise spatially constrained variation in highly siderophile elements across this geological unit. The platinum group element mineralogy and whole-rock highly siderophile element concentrations were measured across two vertical sections in close proximity. In one section, the Merensky Reef unit was bound by top and bottom platinum group elements-enriched horizons (reefs) with a well-developed pegmatoidal phase in the top third of the intrareef pyroxenite, but with neither a top nor a bottom chromitite present. The other drill core section featured a thin (<1 cm thick) chromitite layer associated with the highest platinum group element concentrations of any rock in this study as the bottom reef, but with a chromitite-absent top reef, and very poor development of the pegmatoid.Primitive mantle-normalized profiles of the main lithological units show relatively flat, primitive mantle-like highly siderophile element abundances (Cr, V, Co, Ni, platinum group elements, Au and Cu) in the Merensky pyroxenite, with modest depletion in Ir-affiliated platinum group elements. The platinum group element-rich top and bottom reefs, and the pegmatoidal upper pyroxenites, display characteristic enrichment in the Pt-affiliated platinum group elements and undepleted Ir-affiliated platinum group elements. The leuconoritic hanging wall and footwall rocks show comparable highly siderophile element profiles, distinguished from one another by relative depletion in the Pt-affiliated platinum group elements of the footwall samples. The vertical variation in highly siderophile element abundances through both sections is characterized by low platinum group element abundances through the lower reef pyroxenite, with platinum group element, Au, and Cu ± Ni concentrations increasing through the upper pegmatoidal pyroxenite, and main enrichment peaks at the top and bottom reefs. Significant localized (centimeter-scale) zones of chalcophile metal depletion are present immediately above the top reef and below the bottom reef. In addition, a wider zone of Pt-affiliated platinum group elements (with Pd more depleted than Pt)-depletion was identified within the pegmatoidal pyroxenite around one meter below the top reef. The platinum group element mineralogy of the bottom reef consists mainly of platinum group element sulfides, with minor arsenides and antimonides. In contrast, the platinum group element mineralogy of the top reef, and the small amount of data from the intrareef pyroxenite, mainly consist of Pt-affiliated platinum group elements-Bi-tellurides. The Pt-sulfides are mainly equant, relatively coarse crystals (many grains between 50 to 100 μm2 area), contrasting with the Pt-affiliated platinum group elements-Sb-As and -Bi-Te minerals that tend be high aspect-ratio grains, occurring in veinlets or as rims on earlier-forming platinum group element phases. These Te-As-Bi-Sb compounds are closely associated with chlorite, actinolite, quartz, and chalcopyrite, consistent with secondary deposition at lower temperatures and association with aqueous fluids. A model is proposed involving the emplacement of the Merensky unit as a magma pulse into at least semi-crystallized host rock, followed by aqueous fluid saturation and local migration, combined with concentration of late magmatic fluids around the top and bottom contacts of the magma pulse. Late remobilization of Pt-affiliated platinum group elements from the zones immediately (centimeter-scale) above the top reef, and from the underlying meter or two of pyroxenite, and from the centimeters underlying the bottom reef, have added additional platinum group elements to the reefs as late platinum group elements-Te-As-Bi-Sb minerals, independent of whether or not chromite is present in the reef initially.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Trace precious metals in major sulfide minerals from the Federova Tundra
           platinum group element deposit in the Fedorova-Pana layered intrusion,
           central Kola Peninsula, Russia

    • Free pre-print version: Loading...

      Authors: Cabri LJ; Subbotin VV.
      Abstract: ABSTRACTDrill-core samples from the basal Cu-Ni-platinum-group element mineralization of the Early Proterozoic Fedorova Tundra intrusion in the Fedorova-Pana layered intrusion, central Kola Peninsula, Russia, were studied in two separate projects in Canada and Russia. In Canada, trace precious metal analyses by laser ablation inductively coupled mass spectrometry of 323 base metal sulfide particles [pentlandite (101), pyrrhotite (98), chalcopyrite (25), and pyrite (99)] show that Pd is highly concentrated in pentlandite. Most of the analyses (71%) were done using two master composite samples of comminuted drill core representative of the West Pit and East Pit mineralization, FWMC and FEMC, respectively. Fewer analyses were made of three other comminuted drill core samples from the West Pit referred to as “lithology” samples: OLFW (olivine-bearing rocks), ANFW (leucocratic rocks), and GNFW (gabbronorite). In Russia, 120 polished sections sliced from drill core from the West and East Pits and from four other Fedorova Tundra intrusion deposits (Kievey, Northern Kamennik, Eastern Chuarvy, and Southern Kievey) were studied mineralogically. Platinum group mineral characterization and trace Pd electron probe microanalyses of pentlandite were done using polished sections from all six locations (n = 95). The trace electron probe microanalysis data for Pd in pentlandite from the West (n = 35) and East (n = 19) Pit samples, though at much higher detection levels, are considered to be comparable to the laser ablation inductively coupled mass spectrometry data. The Eastern Chuarvy samples show particularly high Pd concentrations averaging 0.49 wt.% Pd (n = 11) and as high as 1.64 wt.% Pd. The combined data from these studies guides our estimate that pentlandite accounts for 30 to 50% of the Pd in these ores and that Rh solid solution in sulfides may account for >98% of the total Rh.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • The effects of post-cumulus alteration on the distribution of chalcophile
           elements in magmatic sulfide deposits and implications for the formation
           of low-S-high-PGE zones: The Luanga deposit, Carajás Mineral Province,
           Brazil

    • Free pre-print version: Loading...

      Authors: Mansur E; Barnes S, Ferreira Filho CF.
      Abstract: ABSTRACTMost of the World's platinum-group element ore deposits occur as thin stratiform layers within layered intrusions. These layers generally contain disseminated base-metal sulfides or chromite. However, cryptic platinum-group element deposits also occur without chromite or base-metal sulfides in what are known as low-S-high platinum-group element deposits. The origin of these deposits is not clearly understood. The Luanga Complex hosts the largest platinum-group elements resource in South America (i.e., 142 Mt at 1.24 ppm Pt + Pd + Au and 0.11% Ni) and hosts both a platinum-group element deposit containing disseminated base-metal sulfides (style 1) and a low-S-high platinum-group element deposit (style 2). It therefore offers the opportunity to compare the two deposit types in the same overall geological setting and consider how the low-S-high platinum-group element deposit could have formed. The first deposit style is termed the Sulfide zone and consists of a 10–50 meter-thick interval with disseminated base metal sulfides, whereas the second style is named low-S-high-Pt-Pd zone and consists of 2–10 meter-thick discontinuous lenses of 1–5 meter-thick sulfide- and oxide-free harzburgite and orthopyroxenite with discrete platinum-group minerals. Secondary assemblages commonly replace primary igneous minerals to a variable extent throughout the deposit, and thus allow for investigating the effects of post-cumulus alteration on the distribution of a wide range of chalcophile elements in a magmatic sulfide deposit at both whole-rock and mineral scale. This study presents the whole-rock distribution of S, platinum-group elements, and Te, As, Bi, Sb, and Se in both mineralization styles and the concentration of trace elements in base-metal sulfides from the Sulfide zone. The Sulfide zone has Pt/Pd ratios around 0.5 and high concentrations of Te, As, Bi, Sb, and Se, whereas the low-S-high-platinum-group element zone has Pt/Pd ratios greater than 1 and much lower Se, Te, and Bi concentrations, but comparable As and Sb contents. This is reflected in the platinum-group element assemblage, comprising bismuthotellurides in the Sulfide zone and mostly arsenides and antimonides in the low-S, high platinum-group elements zone. Moreover, the base-metal sulfides from the Sulfide zone have anomalously high As contents (50–500 ppm), which suggest that the sulfide liquid segregated from a very As-rich silicate magma, possibly illustrated by an average komatiitic basalt that assimilated a mixture of upper continental crust and black shales. We interpret the low-S-high platinum-group elements zone as a product of S loss from magmatic sulfides during post-cumulus alteration of the Luanga Complex. Selenium, Te, Bi, and Pd were also lost together with S, whereas As and Sb were expelled from base-metal sulfide structures and combined with platinum-group elements to form platinum-group minerals, suggesting they may play a role fixating platinum-group elements during alteration. The remobilization of chalcophile elements from magmatic sulfide deposits located in the Carajás Mineral Province may represent a potential source for hydrothermal deposits found in the region.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Oberthürite, Rh 3 (Ni,Fe) 32 S 32 and torryweiserite, Rh 5 Ni 10 S 16 ,
           two new platinum-group minerals from the Marathon deposit, Coldwell
           Complex, Ontario, Canada: Descriptions, crystal-chemical considerations,
           and comments on the geochemistry of rhodium

    • Free pre-print version: Loading...

      Authors: McDonald AM; Kjarsgaard IM, Cabri LJ, et al.
      Abstract: ABSTRACTOberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, mine...
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Sulfide mineral chemistry and platinum-group minerals of the UG-2
           chromitite in the northern limb of the Bushveld Igneous Complex, South
           Africa

    • Free pre-print version: Loading...

      Authors: Langa MM; Jugo PJ, Leybourne MI, et al.
      Abstract: ABSTRACTThe UG-2 chromitite layer, with its elevated platinum-group element content, is a key marker horizon in the eastern and western limbs of the Bushveld Igneous Complex and the largest platinum-group element chromite-hosted resource of its kind in the world. In contrast, much less is known about its stratigraphic equivalent in the northern limb, the “UG-2 equivalent” (UG-2E) chromitite. Recent studies on chromite mineral chemistry show similarities between the UG-2 and sections of the UG-2E, but also that the UG-2E was partially contaminated by assimilation of local metasedimentary rocks. Here, we provide a detailed characterization of sulfide minerals and platinum-group minerals in a suite of samples from the UG-2E and compare the results with data obtained from a reference suite of samples from the UG-2. Results from petrographic observations, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, quantitative evaluation of materials by scanning electron microscopy, and δ34S isotopes show that: (1) sulfide minerals in the UG-2E and UG-2 consist mainly of pentlandite-chalcopyrite-pyrrhotite, but pyrrhotite is significantly more abundant in the UG-2E and almost absent in the UG-2; (2) iron contents in pentlandite from the UG-2E are significantly higher than in the UG-2; (3) platinum-group element contents within sulfide minerals are different between the two chromitites; (4) UG-2E platinum-group minerals are dominated by arsenides and bismuthotellurides, and by alloys and platinum-group element-sulfide minerals in the UG-2; (5) sulfide mineral chemistry and δ34S values indicate some crustal contamination of the UG-2E; and (6) sulfide mineral and secondary silicate mineral textures in both the UG-2E and UG-2 are indicative of minor, millimeter- to centimeter-scale, hydrothermal alteration. From our observations and results, we consider the UG-2E chromitite in the northern limb to be the equivalent to the UG-2 in the eastern and western limbs that has been contaminated by assimilation of Transvaal Supergroup footwall rocks during emplacement. The contamination resulted in UG-2E sulfide mineral elemental contents and platinum-group mineral types and abundances that are distinct from those of the UG-2 in the rest of the Bushveld.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Palladothallite, Pd 3 Tl, a new mineral from the Monchetundra layered
           intrusion, Kola Peninsula, Russia

    • Free pre-print version: Loading...

      Authors: Grokhovskaya TL; Vymazalová A, Laufek F, et al.
      Abstract: ABSTRACTPalladothallite, Pd3Tl, is a new mineral discovered in the Monchetundra layered intrusion, Kola Peninsula, Russia. Palladothallite occurs in orthopyroxenite with disseminated Ni-Cu-Fe sulfides and in near-surface oxidized ore of an orthopyroxenite unit. In the holotype specimen, the new mineral forms anhedral grains about 1 to 20 μm in size intergrown with bortnikovite (Pt4Cu3Zn). Palladothallite and bortnikovite form a rim around tulameenite (Pt2FeCu), Pt-Pd-Fe-Cu alloys, and Pt-Pd-Fe-Cu “oxides” in a goethite matrix. In plane-polarized light, palladothallite is white, anisotropy was not observed; it exhibits no internal reflections. Reflectance values of palladothallite in air (R' in %) are: 53.9 at 470 nm, 57.1 at 546 nm, 59.4 at 589 nm and 61.7 at 650 nm. Twelve electron probe microanalyses of palladothallite gave an average composition (in wt.%): Pd 59.99, Cu 1.19, Fe 0.35, Ag 1.1, Tl 35.64, Se 0.34, and S 0.09, total 99.67, corresponding to the empirical formula (Pd2.894Cu0.096Fe0.032Ag0.053)∑3.075(Tl0.895Se0.023S0.008)∑0.926 based on four atoms, with the ideal formula Pd3Tl. The density, calculated on the basis of the empirical formula, is 13.04 g/cm3. Palladothallite crystallizes with the same structure as synthetic Pd3Tl, which was solved by Kurtzemann & Kohlmann (2010) from powder neutron diffraction data. Palladothallite is tetragonal, space group I4/mmm, with a 4.10659(9), c 15.3028(4) Å, V 258.07(1) Å3, and Z = 4. Palladothallite crystallizes in the ZrAl3 structure type. The name corresponds to its chemical composition, palladium and thallium.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Redox-controlled chalcophile element geochemistry of the Polaris
           Alaskan-type mafic-ultramafic complex, British Columbia, Canada

    • Free pre-print version: Loading...

      Authors: Milidragovic D; Nixon GT, Scoates JS, et al.
      Abstract: ABSTRACTThe Early Jurassic Polaris Alaskan-type intrusion in the Quesnel accreted arc terrane of the North American Cordillera is a zoned, mafic-ultramafic intrusive body that contains two main styles of magmatic mineralization of petrologic and potential economic significance: (1) chromitite-associated platinum group element (PGE) mineralization hosted by dunite (±wehrlite); and (2) sulfide-associated Cu-PGE-Au mineralization hosted by olivine (±magnetite) clinopyroxenite, hornblendite, and gabbro-diorite. Dunite-hosted PGE mineralization is spatially associated with thin discontinuous layers and schlieren of chromitite and chromitiferous dunite and is characterized by marked enrichments in iridium-subgroup PGE (IPGE) relative to palladium-subgroup PGE (PPGE). Discrete grains of platinum group minerals (PGM) are exceedingly rare, and the bulk of the PGE are inferred to reside in solid solution within chromite±olivine. The absence of Pt-Fe alloys in dunite of the Polaris intrusion is atypical, as Pt-enrichment of dunite-hosted chromitite is widely regarded as a characteristic feature of Alaskan-type intrusions. This discrepancy appears to be consistent with the strong positive dependence of Pt solubility on the oxidation state of sulfide-undersaturated magmas. Through comparison with experimentally determined PGE solubilities, we infer that the earliest (highest temperature) olivine-chromite cumulates of the Polaris intrusion crystallized from a strongly oxidized ultramafic parental magma with an estimated log f(O2) > FMQ+2. Parental magmas with oxygen fugacities more typical of volcanic arc settings [log f(O2) ∼ FMQ to ∼ FMQ+2] are, in turn, considered more favorable for co-precipitation of Pt-Fe alloys with olivine and chromite. More evolved clinopyroxene- and hornblende-rich cumulates of the Polaris intrusion contain low abundances of disseminated magmatic sulfides, consisting of pyrrhotite and chalcopyrite with minor pentlandite, pyrite, and rare bornite (≤12 wt.% total sulfides), which occur interstitially or as polyphase inclusions in silicates and oxides. The sulfide-bearing rocks are characterized by strong primitive mantle-normalized depletions in IPGE and enrichments in Cu-PPGE-Au, patterns that resemble those of other Alaskan-type intrusions and primitive arc lavas. The absolute abundances and sulfur-normalized whole-rock concentrations (Ci/S, serving as proxy for sulfide metal tenor) of chalcophile elements, including Cu/S, in sulfide-bearing rocks are highest in olivine clinopyroxenite. Sulfide saturation in the relatively evolved magmas of the Polaris intrusion, and Alaskan-type intrusions in general, appears to be intimately tied to the appearance of magnetite. Fractional crystallization of magnetite during the formation of olivine clinopyroxenite at Polaris resulted in reduction of the residual magma to log f(O2) ≤ FMQ+2, leading to segregation of an immiscible sulfide melt with high Cu/Fe and Cu/S, and high PGE and Au tenors. Continued fractionation resulted in sulfide melts that were progressively more depleted in precious and base chalcophile metals. The two styles of PGE mineralization in the Polaris Alaskan-type intrusion are interpreted to reflect the evolution of strongly oxidized, hydrous ultramafic parental magma(s) through intrinsic magmatic fractionation processes that potentially promote sulfide saturation in the absence of wallrock assimilation.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Distribution of sulfides and PGE minerals in the picritic and taxitic
           gabbro-dolerites of the Norilsk 1 intrusion

    • Free pre-print version: Loading...

      Authors: Tolstykh N; Garcia J, Shvedov G.
      Abstract: ABSTRACTDisseminated ores in the Norilsk 1 intrusion were studied to elucidate the typomorphic features of sulfides and noble metal mineralizations in picritic and taxitic (or lower olivine) gabbro-dolerites. The former are characterized by the development of a low-sulfur sulfide association (troilite, Fe-rich pentlandite, talnakhite, chalcocite, native copper) while the latter exhibits a high-sulfur association (monoclinic pyrrhotite, Ni-rich pentlandite, pyrite, heazlewoodite). The contact between these types of rocks is geochemically and mineralogically contrasting. The mineralogical and geochemical zoning directed from the roof to the base of each layer is expressed by an increase in the Cu content (and chalcopyrite) in ores, an increase in the concentration of Ni in pentlandite and S in pyrrhotite in line with a decrease of the crystallization temperature, and an increase in sulfur fugacity in the same direction. Zoning of Pd(Pt) mineralization in picritic and taxitic (olivine) gabbro-dolerites is uniform and characterized by the distribution of Pd-Sn compounds in the upper parts (together with Pd-Pb minerals in picritic rocks) and Pd-As compounds in the lower parts of the sections according to a drop in temperature. Such reverse zoning contradicts the typical mechanism of differentiation by fractional crystallization, and possibly suggests a fluid-magmatic nature. Mineralogical and geochemical features in platinum group element-Cu-Ni-bearing rocks are consistent with the idea that different stages of multi-pulse intrusions of mafic-ultramafic magmas with different compositions formed the picritic and taxitic gabbro-dolerites of the Norilsk region.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Marathonite, Pd 25 Ge 9 , and palladogermanide, Pd 2 Ge, two new
           platinum-group minerals from the Marathon deposit, Coldwell Complex,
           Ontario, Canada: Descriptions, crystal-chemical considerations, and
           genetic implications

    • Free pre-print version: Loading...

      Authors: McDonald AM; Ames DE, Kjarsgaard IM, et al.
      Abstract: ABSTRACTMarathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named.Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical formula and the unit-cell parameters from synthetic Pd2Ge. The average result (n = 14) using wavelength-dispersive spectrometry is: Si 0.04, Fe 0.14, Cu 0.06, Ge 25.21, Te 0.30, Pd 73.10, Pt 0.95, Pb 0.08, total 99.88 wt.%, corresponding (based on 3 apfu) to: (Pd1.97Pt0.01Fe0.01)Σ1.99(Ge1.00Te0.01)∑1.01 or ideally, Pd2Ge. The name is for its chemistry and relationship to palladosilicide. The crystal structure of marathonite was solved by single-crystal X-ray diffraction methods (R = 7.55, wR2 = 19.96 %). It is based on two basic modules, one ordered and one disordered, that alternate along [001]. The ordered module, ∼7.6 Å in thickness, is based on a simple Pd4Ge3 unit cross-linked by Pd atoms to form a six-membered trigonal ring that in turn gives rise to a layered module containing fully occupied Pd and Ge sites. This alternates along [001] with a highly disordered module, ∼3 Å in thickness, composed of a number of partially occupied Pd and Ge sites. The combination of sites in the ordered and disordered modules give the stoichiometric formula Pd25Ge9.The observed paragenetic sequence is: bornite → marathonite → palladogermanide. Phase equilibria studies in the Pd-Ge system show Pd25Ge9 (marathonite) to be stable over the range of 550–970 °C and that Pd2Ge (palladogermanide) is stable down to 200 °C. Both minerals are observed in an assemblage of clinoamphibole, a Fe-rich, chlorite-group mineral, and fragmented chalcopyrite, suggesting physical or chemical alteration, possibly both. Palladogermanide is also found associated with a magnetite of near ...
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • A Comparative Study of Sulfur Isotope Variations within the Flatreef and
           Merensky Reef of the Bushveld Complex, South Africa

    • Free pre-print version: Loading...

      Authors: Keet JJ; Roelofse F, Gauert CK, et al.
      Abstract: ABSTRACTThe Flatreef, a down-dip, sub-horizontal extension of the Platreef, which underlies the Turfspruit and Macalacaskop farms, represents the future of platinum mining in South Africa. The stratigraphic connection between the Platreef, located at the base of the northern limb of the Bushveld Complex, and the Merensky Reef in the western and eastern limbs of the complex, was disputed for many years due to the heterogeneous nature of the Platreef along strike. However, the discovery of the Flatreef led to a new perspective on the Platreef as the former allowed for the study of a magmatic stratigraphy less affected by footwall interaction. Here, we report whole-rock S isotope (δ34S) compositions across the stratigraphic units of the Flatreef and its footwall and hanging wall as intersected by boreholes UMT-276 and UMT-393, as well as stratigraphic units of the Merensky Reef at Two Rivers Platinum mine in the eastern limb. The units of the Flatreef containing platinum group element mineralization, namely the Main Reef and Upper Reef, have δ34S values that overlap with the range recorded for the Merensky Reef in the western and eastern limbs. In UMT-393, Main Reef δ34S values range between 0.2 and 1.5‰ (with the exception of three outliers, 9.7‰, 11.1‰, and 7.9‰), and 0.52‰ and 11.2‰ for two Upper Reef samples. However, in UMT-276, Main Reef δ34S values range between –0.96 and 2.24‰ and 3.19‰ was recorded for an Upper Reef sample. The S isotope compositions recorded for the Merensky Reef pyroxenite at Two Rivers Platinum mine are relatively higher with δ34S values ranging between 1.24 and 4.83‰. The top unit of the Flatreef, which is a transition zone below the Main Zone, as well as the Footwall Cyclic Unit have heavier S isotope compositions with δ34S values ranging between 6 and 17‰ for the former and 0.7 and 18.6‰ for the latter. At Two Rivers Platinum mine, the hanging-wall anorthosite has a δ34S value of 2.9‰ in contrast to the 5.7‰ measured for the footwall anorthosite and 3.27‰ for the footwall feldspathic pyroxenite. The consistent near-mantle S isotope signature and accompanying metal enrichment in the Main Reef of the Flatreef may be explained by extensive interaction of sulfide minerals in a Lower Zone conduit/pre-Platreef staging chamber with large volumes of uncontaminated magma. The δ34S values of the Merensky Reef at Two Rivers Platinum mine are slightly higher compared to that of the Main Reef at Turfspruit and Macalacaskop possibly due to interaction with underlying carbonate rocks.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Naldrettite (Pd 2 Sb): A new find in Brazil and comparison with worldwide
           occurrences

    • Free pre-print version: Loading...

      Authors: Garuti G; Zaccarini F.
      Abstract: ABSTRACTNaldrettite (Pd2Sb) is a PGM discovered in 2005 in Mesamax Northwest deposit, Ungava region, Quebec, Canada. Before and after its approval, PGM with the naldrettite type composition have been reported from a number of localities worldwide. Most frequently, naldrettite has been documented in magmatic Ni–Cu–PGE sulfide deposits, hydrothermal veins in porphyry coppers of the Cu–Au type, and PGE deposits of Alaskan-type zoned intrusions. Naldrettite has been occasionally found in metasomatic Sb–As sulfide ore, metamorphic Ni–oxide ore, and podiform chromitites, although these occurrences have not been fully constrained by solid chemical analyses or paragenetic reconstruction. In this paper we report the first discovery of naldrettite in Brazil. This new finding occurs in a chromitite sample collected in the Luanga Complex, a Neo-archaean layered intrusion in the Carajás Mineral Province. Paragenetic association with alteration assemblages (ferrianchromite, Fe-hydroxides, chlorite) suggests precipitation of naldrettite from metamorphic hydrothermal fluids. The average composition of the Luanga sample (Pd1.76Pt0.24)Σ2.00(Sb0.57As0.43)Σ1.00 shows major substitution of Pt and As. These elements were derived from the breakdown of primary sperrylite, and were incorporated in naldrettite deposited by percolating fluids, at temperature below 350 °C (maximum temperature registered by the crystallization of associated chlorite). An overview of documented occurrences indicates that naldrettite can form in a variety of igneous rocks (ultramafic, mafic, felsic), even involving minimal concentrations of Pd and Sb. Crystallization of naldrettite generally occurs in the post-magmatic stage due to the activity of hydrothermal fluids containing volatile species Sb, As, Bi, Te, and Pd due to its higher mobility compared with the other PGE. A major issue concerns the origin of fluids that can be: (1) “residual”, after the main crystallization of the host magma, (2) “metamorphic”, during regional metamorphism or serpentinization, and (3) “metasomatic”, emanating from an exotic magma intrusion. The combination of two or three of these factors is the most likely process observed in the naldrettite-bearing complexes.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Supergene mobilization and redistribution of platinum-group elements in
           the Merensky Reef, eastern Bushveld Complex, South Africa

    • Free pre-print version: Loading...

      Authors: Korges M; Junge M, Borg G, et al.
      Abstract: ABSTRACTNear-surface supergene ores of the Merensky Reef in the Bushveld Complex, South Africa, contain economic grades of platinum-group elements, however, these are currently uneconomic due to low recovery rates. This is the first study that investigates the variation in platinum-group elements in pristine and supergene samples of the Merensky Reef from five drill cores from the eastern Bushveld. The samples from the Richmond and Twickenham farms show different degrees of weathering. The whole-rock platinum-group element distribution was studied by inductively coupled plasma-mass spectrometry and the platinum-group minerals were investigated by reflected-light microscopy, scanning electron microscopy, and electron microprobe analysis.In pristine (“fresh”) Merensky Reef samples, platinum-group elements occur mainly as discrete platinum-group minerals, such as platinum-group element-sulfides (cooperite–braggite) and laurite as well as subordinate platinum-group element-bismuthotellurides and platinum-group element-arsenides, and also in solid solution in sulfides (especially Pd in pentlandite). During weathering, Pd and S were removed, resulting in a platinum-group mineral mineralogy in the supergene Merensky Reef that mainly consists of relict platinum-group minerals, Pt-Fe alloys, and Pt-oxides/hydroxides. Additional proportions of platinum-group elements are hosted by Fe-hydroxides and secondary hydrosilicates (e.g., serpentine group minerals and chlorite).In supergene ores, only low recovery rates (ca. 40%) are achieved due to the polymodal and complex platinum-group element distribution. To achieve higher recovery rates for the platinum-group elements, hydrometallurgical or pyrometallurgical processing of the bulk ore would be required, which is not economically viable with existing technology.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Structural and chemical characterization of dienerite, Ni 3 As, and its
           revalidation as a mineral species

    • Free pre-print version: Loading...

      Authors: Bonazzi P; Bindi L.
      Abstract: ABSTRACTDienerite, ideally Ni3As, was discovered in 1919 near Radstadt (Salzburg, Austria) and its description and chemical characterization date back to the 1920s. The paucity of reliable experimental data, as well as the absence of any other documented occurrences of such a mineral in over 80 years, led to the supposition of a typographic error in the transcription of the original chemical analysis, suggesting the mineral might in fact be nickelskutterudite [(Ni,Co,Fe)As3]. As a consequence, the mineral was discredited and deleted in the post-2006 IMA list of valid mineral species. Nonetheless, several minerals having a metal/As ratio close to 3:1 and a description fitting that of dienerite were reported after its discreditation.Here we report the discovery of minute inclusions in a sample of josephinite from Josephine Creek (Oregon, USA) exhibiting high optical and electron reflectance. Structural and chemical investigations unequivocally showed that a mineral having cubic structure [a = 9.6206(9) Å, sp. gr. I3d; R1 = 0.0353] and ideal chemical formula Ni3As does exist, suggesting that dienerite could in fact be a valid species. The proposal to revalidate dienerite has been approved by the Commission on New Minerals, Nomenclature and Classification (IMA-Proposal 19-E). The neotype is deposited in the mineralogical collections of the Natural History Museum, University of Florence, Italy, under catalogue number 3364/I.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Preface part I: Dedication Professor Anthony James Naldrett (1933-2020)

    • Free pre-print version: Loading...

      Authors: Lesher M; Cabri LJ, McDonald A.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Nano- and Micrometer-Sized PGM in Ni-Cu-Fe Sulfides from an Olivine
           Megacryst in the Udachnaya Pipe, Yakutia, Russia

    • Free pre-print version: Loading...

      Authors: González-Jiménez J; Tretiakova I, Fiorentini M, et al.
      Abstract: ABSTRACTThis paper focuses on a nanoscale study of nano- and micrometer-size Os-rich mineral particles hosted in a Ni-Fe-Cu sulfide globule found in an olivine megacryst from the Udachnaya pipe (Yakutia, Russia). These platinum-group element mineral particles and their host sulfide matrices were investigated using a combination of techniques, including field emission gun electron probe microanalyzer, field emission scanning electron microscopy, and focused ion beam and high-resolution transmission electron microscopy. The sulfide globule is of mantle origin, as it is hosted in primitive olivine (Fo90–93), very likely derived from the crystallization of Ni-Fe-Cu sulfide melt droplets segregated by liquid immiscibility from a basaltic melt in a volume of depleted subcontinental lithospheric mantle. Microscopic observations by means of field emission scanning electron microscopy and single-spot analysis and mapping by field emission gun electron probe microanalyzer reveal that the sulfide globule comprises a core of pyrrhotite with flame-like exsolutions (usually <10 μm thickness) of pentlandite, which is irregularly surrounded by a rim of granular pentlandite and chalcopyrite. Elemental mapping by energy dispersive spectroscopy (acquired using the high-resolution transmission electron microscopy) of the pyrrhotite (+ pentlandite) core reveals that pentlandite exsolution in pyrrhotite is still observable at the nanoscale as fringes of 100 to 500 nm thicknesses. The sulfide matrices of pyrrhotite, pentlandite, and chalcopyrite contain abundant nano- and micrometer-size platinum group element mineral particles. A careful inspection of eight of these platinum group element particles under focused ion beam and high-resolution transmission electron microscopy showed that they are crystalline erlichmanite (OsS2) with well-developed crystal faces that are distinctively oriented relative to their sulfide host matrices. We propose that the core of the Ni-Fe-Cu sulfide globule studied here was derived from a precursor monosulfide solid solution originally crystallized from a sulfide melt at >1100 °C, which later decomposed into pyrrhotite and the pentlandite flame-like exsolutions upon cooling at <600 °C. Once solidified, the solid monosulfide solid solution reacted with non-equilibrium Cu-and Ni-rich sulfide melt(s), giving rise to the granular pentlandite in equilibrium with chalcopyrite now forming the rim of the sulfide globule. Meanwhile, nano- to micron-sized crystals of erlichmanite crystallized directly from or slightly before monosulfide solid solution from the sulfide melt. Thus, Os, and to a lesser extent Ir and Ru, were physically partitioned by preferential uptake via early formation of nanoparticles at high temperature instead of low-temperature exsolution from solid Ni-Fe-Cu sulfides. The new data provided in this paper highlight the necessity of studying platinum group element mineral particles in Ni-Fe-Cu sulfides using analytical techniques that can image nanoscale textural features in order to better understand the mechanisms of platinum group element fractionation in magmatic systems. These processes may play a crucial role in controlling the background geochemical budgets for siderophile and chalcophile elements in a wide range of mantle-derived magmas.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Genesis of the Jinbaoshan PGE-(Cu)-(Ni) deposit: Distribution of
           chalcophile elements and platinum-group minerals

    • Free pre-print version: Loading...

      Authors: Lu Y; Lesher C, Yang L, et al.
      Abstract: ABSTRACTThe Jinbaoshan platinum group element-(Cu)-(Ni) deposit in southwest China is a sulfide-poor magmatic platinum-group element deposit that experienced multiple phases of post-magmatic modification. The sulfide assemblages of most magmatic Ni-Cu-platinum-group element deposits in China and elsewhere in the world are dominated by pentlandite-pyrrhotite-chalcopyrite with lesser magnetite and minor platinum-group minerals. However, Jinbaoshan is characterized by (1) hypogene violarite-pyrite 1-millerite-chalcopyrite and (2) supergene violarite-(polydymite)-pyrite 2-chalcopyrite assemblages. The platinum-group minerals are small (0.5–10 μm diameter) and include moncheite Pt(Te,Bi)2, mertieite-I Pd11(Sb,As)4, the atokite Pd3Sn – rustenburgite Pt3Sn solid solution, irarsite IrAsS, and sperrylite PtAs2 hosted mainly by violarite, silicates (primarily serpentine), and millerite. The platinum-group minerals occur in two sulfide assemblages: (1) mertieite-I-dominant (with irarsite, palladium, and Pd-alloy) in the hypogene assemblage and (2) moncheite-dominant (with irarsite, sperrylite, and atokite) in the supergene assemblage. Palladium and intermediate platinum-group elements (Os, Ir, Ru) are concentrated mainly in violarite, polydymite, and pyrite 2. Platinum is seldom hosted by base metal sulfides and occurs mainly as discrete platinum-group minerals, such as moncheite, sperrylite, and merenskyite. Violarite and polydymite in the Jinbaoshan deposit contain more Pb-Ag than pentlandite and pyrrhotite in the Great Dyke and Lac des Iles deposit. The formation of the sulfide assemblages in Jinbaoshan can be interpreted to have occurred in three stages: (1) a magmatic Fe-Ni-Cu sulfide melt crystallized Fe-Ni monosulfide and Cu-rich intermediate solid solutions, which inverted to a primary pyrrhotite-pentlandite-chalcopyrite-magnetite assemblage; (2) an early-secondary hypogene voilarite-millterite-pyrite 1-chalcopyrite assemblage formed by interaction with a lower-temperature magmatic-hydrothermal deuteric fluid; and (3) a late-secondary supergene violarite-polydymite-pyrite 2-chalcopyrite assemblage formed during weathering. Late-magmatic-hydrothermal fluids enriched the mineralization in Pb-Ag-Cd-Zn, which are incompatible in monosulfide solid solution, added Co-Pt into violarite, and expelled Pd to the margins of hypogene violarite and millerite, which caused Pd depletion in the hypogene violarite and the formation of mertieite-I. Supergene violarite inherited Pd and intermediate platinum-group elements from primary pentlandite. Thus, the unusual sulfide assemblages in the Jinbaoshan platinum-group element-(Cu)-(Ni) deposit results from multiple overprinted post-magmatic processes, but they did not significantly change the chalcophile element contents of the mineralization, which is interpreted to have formed at high magma:sulfide ratios (R factors) through interaction of crustally derived sulfide and a hybrid picritic-ferropicritic magma derived from subduction-metasomatized pyroxenitic mantle during impingement of the Emeishan plume on the Paleo-Tethyan oceanic subduction system.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Preface part II: Summary of contributions

    • Free pre-print version: Loading...

      Authors: Junge M; Ford F, McDonald A.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • Genesis of sulfide vein mineralization at the Sakatti Ni-Cu-PGE deposit,
           Finland

    • Free pre-print version: Loading...

      Authors: Fröhlich F; Siikaluoma J, Osbahr I, et al.
      Abstract: ABSTRACTThe Sakatti Ni-Cu-platinum-group element deposit is situated in northern Finland and comprises massive, disseminated, and vein sulfide mineralization. A stockwork is formed by chalcopyrite-rich sulfide veins, which contain exceptionally high platinum-group elements and Au grades. The mineralogy and geochemistry of this stockwork zone ore is documented in this investigation. The results are used to develop the first robust genetic concept and its relationship to massive and disseminated mineralization of the Sakatti deposit. This model is similar to that proposed for many Cu-rich magmatic sulfide ores, most importantly the Cu-rich footwall veins described from the Sudbury Complex in Canada and the Cu-rich ore at Noril'sk-Talnakh in Russia.Detailed petrographic studies using a sample suite from exploration drill core intersecting vein-style mineralization revealed a classic magmatic sulfide assemblage of chalcopyrite ± pyrrhotite, pentlandite, and pyrite. More than 1000 platinum-group mineral grains belonging almost exclusively to the moncheite (PtTe2) – merenskyite (PdTe2) – melonite (NiTe2) solid solution series were identified in the studied samples. Notably, almost two thirds of the platinum-group element-bearing minerals consist of melonite. Some of the platinum-group minerals contain inclusions of Ag-rich gold (AgAu2) and muthmannite (AuAgTe2). Most of the platinum-group minerals occur as inclusions in chalcopyrite, although a few grains are located at base-metal sulfide grain boundaries and in fractures in base-metal sulfides.The whole-rock compositions of the stockwork veins are Cu-rich and are interpreted to represent a fractionated Cu-rich sulfide liquid enriched in Pt, Pd, Au, Ag, As, Bi, Pb, Se, Te, Zn, which separated from a monosulfide solid solution (mss). An intermediate solid solution (iss) solidified from the Cu-rich sulfide liquid, recrystallizing chalcopyrite at <550 °C. Simultaneously, small volumes of intercumulus residual melt contained mainly the precious metals, Bi, and Te due to their incompatibility in iss. Solitary and composite platinum-group minerals as well as Au-minerals crystallized first from the residual melt (<600 °C), followed by a succession of various Bi-, Ag-, and Pb-tellurides (∼540 °C), and finally sphalerite and galena. Melonite crystallized as mostly large, solitary grains exsolved directly from Ni-bearing intermediate solid solution (∼600 °C), shortly after the formation of moncheite and merenskyite from the residual melt. Finally, remobilization of the platinum-group minerals occurred at temperatures of <300 °C, as suggested by the presence of minor amounts of Cl-bearing minerals and ragged grain shapes.
      PubDate: Mon, 13 Dec 2021 00:00:00 GMT
       
  • High grade ores of the Onverwacht platinum pipe, eastern Bushveld, South
           Africa

    • Free pre-print version: Loading...

      Authors: Oberthür T; Melcher F, Goldmann S, et al.
      Abstract: ABSTRACTThe platiniferous dunite pipes are discordant orebodies in the Bushveld Complex. The Onverwacht pipe is a large body (>300 m in diameter) of magnesian dunite (Fo80–83) that crosscuts a sequence of cumulates in the Lower Critical Zone of the Bushveld Complex. In a pipe-in-pipe configuration, the main dunite pipe at Onverwacht hosts a carrot-shaped inner pipe of Fe-rich dunite pegmatite (Fo46–62) which comprises the platinum-bearing orebody. The latter was ca. 18 m in diameter and a mining depth of about 320 m was reached.In the present work, a variety of ore samples were studied by whole-rock geochemistry, including analyses of platinum group elements, ore microscopy, and electron probe microanalysis.Olivine of the ore zone displays considerable chemical variation (range 46–62 mol.% Fo) and may represent either a continuum, or different batches of magma, or vertical or horizontal zonation within the ore zone. Chromite is principally regarded to be a consanguineous component of the pipe magma that crystallized in situ and simultaneously with olivine. The Onverwacht mineralization is Pt-dominated (>95% of the platinum group elements) and the ore is virtually devoid of sulfides. Platinum-dominated platinum group minerals predominate, followed by Rh-, Pd-, and Ru-species. Pt-Fe alloys are most frequent, followed by Pt-Rh-Ru-arsenides and -sulfarsenides, platinum group element antimonides, and platinum group element sulfides.Our hypothesis on the genesis of the Onverwacht pipe and its mineralization is as follows: After near-consolidation of the layered series of the Critical Zone, the magnesian dunite pipe of Onverwacht was formed by upward penetration of magmas that replaced the existing cumulates initially by infiltration, followed by the development of a central channel where large volumes of magma flowed through. Fractional crystallization of olivine within the deeper magma chamber and/or during ascent of the melt resulted in the formation of a consanguineous, residual, more iron-rich melt. This melt also contained highly mobile, supercritical, water-bearing fluids and was continuously enriched in platinum group elements and other incompatible elements. In several closing pulses, the platinum group element-enriched residual melts crystallized and sealed the inner ore pipe. Crystallization of the melt resulted in the coeval formation of Fe-rich olivine, chromite, and platinum group minerals. The non-sulfide platinum group element mineralization was introduced in the form of nanoparticles and small droplets of platinum group minerals, which coagulated to form larger grains during evolution of the mineralizing system. The suspended platinum group minerals acted as collectors of other platinum group elements and incompatible elements during generation and ascent of the melt. With decreasing temperature, the platinum group mineral grains annealed and recrystallized, leading to the formation of composite platinum group mineral grains, complex intergrowths, or lamellar exsolution bodies. On further cooling, platinum group minerals overgrowing Pt-Fe alloys formed by reaction of leached elements and ligands like Sb, As, and S mobilized by supercritical magmatic/hydrothermal fluids. Redistribution of platinum group elements/platinum group minerals apparently only occurred on the scale of millimeters to centimeters. Finally, surface weathering led to the local formation of platinum group element oxides/hydroxides by oxidation of reactive precursor platinum group minerals.
      PubDate: Mon, 08 Nov 2021 00:00:00 GMT
       
  • Spatial association between platinum minerals and magmatic sulfides imaged
           with the Maia Mapper and implications for the origin of the
           chromite-sulfide-PGE association

    • Free pre-print version: Loading...

      Authors: Barnes SJ; Ryan C, Moorhead G, et al.
      Abstract: ABSTRACTThe spatial association between Pt minerals, magmatic sulfides, and chromite has been investigated using microbeam X-ray fluorescence (XRF) element mapping and the Maia Mapper. This lab-based instrument combines the Maia parallel energy dispersive (ESD) detector array technology with a focused X-ray beam generated from a liquid metal source. It proves to be a powerful technique for imaging Pt distribution at low-ppm levels on minimally prepared cut rock surfaces over areas of tens to hundreds of square centimeters, an ideal scale for investigating these relationships. Images of a selection of samples from the Bushveld Complex and from the Norilsk-Talnakh ore deposits (Siberia) show strikingly close association of Pt hotspots, equated with the presence of Pt-rich mineral grains, with magmatic sulfide blebs in all cases, except for a taxitic low-S ore sample from Norilsk. In all of the Bushveld samples, at least 75% of Pt hotspots (by number) occur at or within a few hundred microns of the outer edges of sulfide blebs. In samples from the leader seams of the UG2 chromitite, sulfides and platinum hotspots are also very closely associated with the chromite seams and are almost completely absent from the intervening pyroxenite. In the Merensky Reef, the area ratio of Pt hotspots to sulfides is markedly higher in the chromite stringers than in the silicate-dominated lithologies over a few centimeters either side. We take these observations as confirmation that sulfide liquid is indeed the prime collector for Pt and, by inference, for the other platinum group elements (PGEs) in all these settings. We further propose a mechanism for the sulfide-PGE-chromite association in terms of in situ heterogeneous nucleation of all these phases coupled with transient sulfide saturation during chromite growth and subsequent sulfide loss by partial re-dissolution. In the case of the amygdular Norilsk taxite, the textural relationship and high PGE/S ratio is explained by extensive loss of S to an escaping aqueous vapor phase.
      PubDate: Thu, 27 May 2021 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 54.92.164.9
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-