for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> CHEMISTRY (Total: 849 journals)
    - ANALYTICAL CHEMISTRY (50 journals)
    - CHEMISTRY (598 journals)
    - CRYSTALLOGRAPHY (22 journals)
    - ELECTROCHEMISTRY (25 journals)
    - INORGANIC CHEMISTRY (42 journals)
    - ORGANIC CHEMISTRY (45 journals)
    - PHYSICAL CHEMISTRY (67 journals)

CHEMISTRY (598 journals)                  1 2 3 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
2D Materials     Hybrid Journal   (Followers: 8)
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 26)
ACS Catalysis     Full-text available via subscription   (Followers: 32)
ACS Chemical Neuroscience     Full-text available via subscription   (Followers: 17)
ACS Combinatorial Science     Full-text available via subscription   (Followers: 23)
ACS Macro Letters     Full-text available via subscription   (Followers: 23)
ACS Medicinal Chemistry Letters     Full-text available via subscription   (Followers: 39)
ACS Nano     Full-text available via subscription   (Followers: 227)
ACS Photonics     Full-text available via subscription   (Followers: 11)
ACS Synthetic Biology     Full-text available via subscription   (Followers: 21)
Acta Chemica Iasi     Open Access   (Followers: 2)
Acta Chimica Sinica     Full-text available via subscription   (Followers: 1)
Acta Chimica Slovaca     Open Access   (Followers: 1)
Acta Chromatographica     Full-text available via subscription   (Followers: 9)
Acta Facultatis Medicae Naissensis     Open Access  
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 5)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 5)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 7)
Adsorption Science & Technology     Full-text available via subscription   (Followers: 5)
Advanced Functional Materials     Hybrid Journal   (Followers: 50)
Advanced Science Focus     Free   (Followers: 3)
Advances in Chemical Engineering and Science     Open Access   (Followers: 53)
Advances in Chemical Science     Open Access   (Followers: 13)
Advances in Chemistry     Open Access   (Followers: 14)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 18)
Advances in Drug Research     Full-text available via subscription   (Followers: 22)
Advances in Enzyme Research     Open Access   (Followers: 9)
Advances in Fluorine Science     Full-text available via subscription   (Followers: 8)
Advances in Fuel Cells     Full-text available via subscription   (Followers: 15)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 19)
Advances in Nanoparticles     Open Access   (Followers: 14)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 15)
Advances in Polymer Science     Hybrid Journal   (Followers: 41)
Advances in Protein Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 19)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 5)
Advances in Science and Technology     Full-text available via subscription   (Followers: 12)
African Journal of Bacteriology Research     Open Access  
African Journal of Chemical Education     Open Access   (Followers: 2)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 7)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Alkaloids: Chemical and Biological Perspectives     Full-text available via subscription   (Followers: 3)
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 67)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 14)
American Journal of Chemistry     Open Access   (Followers: 26)
American Journal of Plant Physiology     Open Access   (Followers: 13)
American Mineralogist     Hybrid Journal   (Followers: 13)
Analyst     Full-text available via subscription   (Followers: 38)
Angewandte Chemie     Hybrid Journal   (Followers: 158)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 208)
Annales UMCS, Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 1)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 3)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 3)
Annual Reports Section B (Organic Chemistry)     Full-text available via subscription   (Followers: 8)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 14)
Anti-Infective Agents     Hybrid Journal   (Followers: 3)
Antiviral Chemistry and Chemotherapy     Hybrid Journal  
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7)
Applied Spectroscopy     Full-text available via subscription   (Followers: 23)
Applied Surface Science     Hybrid Journal   (Followers: 28)
Arabian Journal of Chemistry     Open Access   (Followers: 6)
ARKIVOC     Open Access   (Followers: 2)
Asian Journal of Biochemistry     Open Access   (Followers: 1)
Atomization and Sprays     Full-text available via subscription   (Followers: 3)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 2)
Avances en Quimica     Open Access   (Followers: 1)
Biochemical Pharmacology     Hybrid Journal   (Followers: 10)
Biochemistry     Full-text available via subscription   (Followers: 283)
Biochemistry Insights     Open Access   (Followers: 5)
Biochemistry Research International     Open Access   (Followers: 6)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 9)
Bioinspired Materials     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access   (Followers: 2)
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 1)
Biomacromolecules     Full-text available via subscription   (Followers: 19)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 4)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 108)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 93)
Bioorganic Chemistry     Hybrid Journal   (Followers: 10)
Biopolymers     Hybrid Journal   (Followers: 18)
Biosensors     Open Access   (Followers: 2)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 1)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 2)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 3)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 2)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 10)
Canadian Mineralogist     Full-text available via subscription   (Followers: 3)
Carbohydrate Research     Hybrid Journal   (Followers: 26)
Carbon     Hybrid Journal   (Followers: 67)
Catalysis for Sustainable Energy     Open Access   (Followers: 6)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 8)
Catalysis Science and Technology     Free   (Followers: 6)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 3)
Catalysts     Open Access   (Followers: 7)
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
ChemBioEng Reviews     Full-text available via subscription   (Followers: 1)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 12)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Full-text available via subscription   (Followers: 70)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 23)
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 3)
Chemical Research in Toxicology     Full-text available via subscription   (Followers: 19)
Chemical Reviews     Full-text available via subscription   (Followers: 170)
Chemical Science     Open Access   (Followers: 21)
Chemical Technology     Open Access   (Followers: 16)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 5)
Chemical Week     Full-text available via subscription   (Followers: 8)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 55)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 25)
ChemInform     Hybrid Journal   (Followers: 8)
Chemistry & Biodiversity     Hybrid Journal   (Followers: 6)
Chemistry & Biology     Full-text available via subscription   (Followers: 30)
Chemistry & Industry     Hybrid Journal   (Followers: 5)
Chemistry - A European Journal     Hybrid Journal   (Followers: 144)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 15)
Chemistry and Materials Research     Open Access   (Followers: 18)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 5)
Chemistry in Education     Open Access   (Followers: 9)
Chemistry International     Hybrid Journal   (Followers: 2)
Chemistry Letters     Full-text available via subscription   (Followers: 45)
Chemistry of Materials     Full-text available via subscription   (Followers: 226)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 9)
Chemistry World     Full-text available via subscription   (Followers: 22)
Chemistry-Didactics-Ecology-Metrology     Open Access  
ChemistryOpen     Open Access   (Followers: 2)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
Chemoecology     Hybrid Journal   (Followers: 2)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
Chemosensors     Open Access  
ChemPhysChem     Hybrid Journal   (Followers: 9)
ChemPlusChem     Hybrid Journal   (Followers: 2)
ChemTexts     Hybrid Journal  
CHIMIA International Journal for Chemistry     Full-text available via subscription   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 10)
Chromatographia     Hybrid Journal   (Followers: 24)
Chromatography Research International     Open Access   (Followers: 7)
Clay Minerals     Full-text available via subscription   (Followers: 9)
Cogent Chemistry     Open Access  
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 10)
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 8)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 3)
Combustion Science and Technology     Hybrid Journal   (Followers: 18)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 2)
Composite Interfaces     Hybrid Journal   (Followers: 6)
Comprehensive Chemical Kinetics     Full-text available via subscription   (Followers: 2)
Comptes Rendus Chimie     Full-text available via subscription  
Comptes Rendus Physique     Full-text available via subscription   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computers & Chemical Engineering     Hybrid Journal   (Followers: 9)
Coordination Chemistry Reviews     Full-text available via subscription   (Followers: 2)
Copernican Letters     Open Access  
Critical Reviews in Biochemistry and Molecular Biology     Hybrid Journal   (Followers: 5)
Crystal Structure Theory and Applications     Open Access   (Followers: 3)
CrystEngComm     Full-text available via subscription   (Followers: 11)
Current Catalysis     Hybrid Journal   (Followers: 2)
Current Metabolomics     Hybrid Journal   (Followers: 5)
Current Opinion in Colloid & Interface Science     Hybrid Journal   (Followers: 9)
Current Research in Chemistry     Open Access   (Followers: 8)
Current Science     Open Access   (Followers: 56)
Dalton Transactions     Full-text available via subscription   (Followers: 20)
Detection     Open Access   (Followers: 2)
Developments in Geochemistry     Full-text available via subscription   (Followers: 2)
Diamond and Related Materials     Hybrid Journal   (Followers: 12)
Dislocations in Solids     Full-text available via subscription  
Doklady Chemistry     Hybrid Journal  
Drying Technology: An International Journal     Hybrid Journal   (Followers: 4)
Eclética Química     Open Access   (Followers: 1)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
Ecotoxicology and Environmental Contamination     Open Access  
Educación Química     Open Access   (Followers: 1)
Education for Chemical Engineers     Hybrid Journal   (Followers: 5)
EJNMMI Radiopharmacy and Chemistry     Open Access  
Elements     Full-text available via subscription   (Followers: 2)
Environmental Chemistry     Hybrid Journal   (Followers: 9)
Environmental Chemistry Letters     Hybrid Journal   (Followers: 4)
Environmental Science & Technology Letters     Full-text available via subscription   (Followers: 5)

        1 2 3 | Last

Journal Cover American Mineralogist
  [SJR: 1.185]   [H-I: 104]   [13 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0003-004X
   Published by GeoScienceWorld Homepage  [16 journals]
  • A new high JIF for American Mineralogist (by all early indications), why
           you shouldnt care, and a note on values
    • Authors: Putirka K.
      Pages: 1369 - 1372
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-ed102713
      Issue No: Vol. 102, No. 7 (2017)
  • Sapphire, a not so simple gemstone
    • Authors: Sutherland F. L.
      Pages: 1373 - 1374
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6105
      Issue No: Vol. 102, No. 7 (2017)
  • Radon emanation coefficients of several minerals: How they vary with
           physical and mineralogical properties
    • Authors: Krupp, K; Baskaran, M, Brownlee, S. J.
      Pages: 1375 - 1383
      Abstract: The escape rates of radon gas from rocks and minerals are of great relevance to many branches of geosciences, and it is, thus, important to understand the physical and mineralogical properties that control radon emanation rates. Mechanisms of radon loss from minerals have direct bearing on the reliability of U-Pb and U-Th-He geochronology. Fourteen minerals from three different mineral groups and with localities spanning three continents were selected for this study. The radon emanation coefficients (REC) for each mineral were measured as a function of grain size, temperature, 238U and 232Th activities, total absorbed α-dose, density, and mineral melting temperature. The measured 238U and 232Th activities ranged from 0.01 to 6487 Bq/g and from below detection limit to 776 Bq/g, respectively. The REC values for unheated, pulverized samples ranged from 0.083 to 7.0%, which is comparable to previously reported ranges (except for zircon). An inverse correlation between grain size and REC was observed. Full annealing of fission tracks resulted in an overall decrease in REC values, suggesting that nuclear tracks could possibly act as conduits for radon release. While activity, α dose, density, and melting temperatures are not strongly correlated with REC values, it was observed that minerals with high melting points (≥1400 °C) have lower REC values, most likely due to inhibition of radon release by compact crystal-lattice structures. This is the first attempt, to our knowledge, to correlate REC values with melting temperature, and this study reports six minerals for which no REC values have been previously reported.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6107
      Issue No: Vol. 102, No. 7 (2017)
  • Cabvinite, Th2F7(OH){middle dot}3H2O, the first natural actinide halide
    • Authors: Orlandi, P; Biagioni, C, Zaccarini, F.
      Pages: 1384 - 1389
      Abstract: The new mineral species cabvinite, Th2F7(OH)·3H2O (IMA 2016-011), has been discovered in the Mo-Bi ore deposit of Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy. It occurs as white square prismatic crystals, up to 100 μm in length and 40 μm in thickness, associated with brookite and iron oxy-hydroxides in vugs of quartz veins. Electron microprobe analysis gave (mean of five spot analyses, in wt%): ThO2 82.35, F 19.93, H2Ocalc 10.21, sum 112.49, O=F –8.40, total 104.09. On the basis of 2 Th atoms per formula unit, the empirical formula of cabvinite is Th2F6.7(OH)1.3·3H2O. Main diffraction lines in the X-ray powder diffraction pattern are [d (Å) (relative visual intensity) hkl]: 8.02 (ms) 110; 3.975 (s) 121,211; 3.595 (m) 310,130; 2.832 (m) 400,321,231; 2.125 (m) 402; 2.056 (m) 332; and 2.004 (ms) 440,521,251. Cabvinite is tetragonal, space group I4/m, with a = 11.3689(2), c = 6.4175(1) Å, V = 829.47(2) Å3, Z = 4. The crystal structure has been solved and refined to R1 = 0.021 on the basis of 813 reflections with Fo> 4(Fo). It consists of Th tricapped trigonal prisms, connected through corner-sharing, giving rise to a framework hosting [001] tunnels. Cabvinite is the first natural actinide halide, and the site of discovery appears to provide a natural laboratory for the study of Th mobility and sequestration.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6013
      Issue No: Vol. 102, No. 7 (2017)
  • Cathodoluminescence images and trace element compositions of fluorapatite
           from the Hongge layered intrusion in SW China: A record of prolonged
           crystallization and overprinted fluid metasomatism
    • Authors: Xing, C.-M; Wang, C. Y.
      Pages: 1390 - 1401
      Abstract: Cathodoluminescence (CL) and trace element analyses were performed for fluorapatite from the gabbro and Fe-Ti oxide ores in the upper zone of the Hongge Fe-Ti oxide-bearing, mafic-ultramafic layered intrusion in SW China. The fluorapatite is closely associated with Fe-Ti oxides and interstitial to plagioclase and clinopyroxene. The fluorapatite grains in one thin section vary from ~10 to 800 μm in width and ~50 to 1200 μm in length. Coarse-grained fluorapatite crystals (>200 in width) in the same thin section show both simple and complex CL images. The coarse-grained fluorapatite crystals with simple CL images show discontinuous, thin dark rims along grain boundaries, whereas those with complex images show clearly bright veinlets across the grains. On the other hand, fine-grained fluorapatite crystals (
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6028
      Issue No: Vol. 102, No. 7 (2017)
  • Structural characterization of marine nano-quartz in chalk and flint from
           North Sea Tertiary chalk reservoirs for oil and gas
    • Authors: Drits, V. A; Skibsted, J, Dorzhieva, O. V, Fallick, A. E, Lindgreen, H.
      Pages: 1402 - 1417
      Abstract: A new type of quartz, a nano-quartz consisting of spherical particles, is assumed to have formed by crystallization in the sea during sedimentation of the chalk in the North Sea and to have remained largely intact during burial diagenesis. The presence and nature of this nano-quartz have not been identified until recently, despite the fact that this quartz is the type present in the Upper Cretaceous-Danian chalk reservoir for oil and gas in the North Sea, both in the flint and as dispersed particles. In the present work detailed structural analysis of the nano-quartz has been carried out by X-ray diffraction, solid-state 29Si and 27Al MAS NMR, thermal analysis including water release, IR-absorption spectroscopy, and elemental analysis supplemented with analysis of oxygen isotope composition. It is found that IVAl substitutes for Si and that VIAl probably is bonded to hydroxyls on the particle surface of the nano-quartz structures. The charge compensation of tetrahedral Al3+, in addition to its conventional way of compensation by formation of the local structural arrangement [AlO4/M+]° defects (M+ = H+, Na, K, Li), can occur at the expense of the OH– group coordinating one of the four tetrahedral Si4+ nearest to the Al3+ tetrahedron. The most significant feature of the North Sea nano-quartz deduced in the present investigation is the presence of [4H]Si defects, also known as hydrogarnet defects. This defect is present in up to 5% of the tetrahedral sites, whereas Al3+ occupies less than 1% of the tetrahedral sites. Two types of distribution of the [4H]Si defects were determined. In one of them the [4H]Si defects aggregates parallel to the (0001) plane to form platelets as cracks with hydroxylated surfaces on both sides. The second type of [4H]Si defect occurs in the form of isolated tetrahedral vacant sites.The formation of the aggregated [4H]Si platelets lying in the (0001) plane mostly increases the c parameters of the structure, whereas the isolated [4H]Si defects and K+Na impurities contribute to increasing the a parameters.The remarkable correlation of the positional distribution of the samples revealed from the relationships between a and c parameters and between amount of OH– groups responsible for formation of [4H]Si defects and a and c parameters can be considered as evidence for the validity of the structural formulas and, in general, of the main structural features of the studied samples. The unusually high content of [4H]Si defects in the nano-quartz samples may be related to their formation by precipitation in waters of the Danish North Sea.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5992
      Issue No: Vol. 102, No. 7 (2017)
  • Secondary minerals associated with Lassen fumaroles and hot springs:
           Implications for martian hydrothermal deposits
    • Authors: McHenry, L. J; Carson, G. L, Dixon, D. T, Vickery, C. L.
      Pages: 1418 - 1434
      Abstract: The active hot springs, fumaroles, and mud pots of the southwestern Lassen hydrothermal system include various alteration environments, which produce a range of hydrothermal mineral assemblages. Analysis of water, mineral precipitates, altered sediment, and rock samples collected at and near these features at Sulphur Works, Bumpass Hell, Little Hot Springs Valley, and Growler and Morgan Hot Springs reveals conditions ranging from ~100 °C acid-sulfate fumaroles (e.g., Sulphur Works and Bumpass Hell) to near-neutral hot springs (e.g., Growler and Morgan), and includes both oxidizing and reducing conditions. Resulting hydrothermal minerals include a wide variety of sulfates (dominated by Al-sulfates, but also including Fe2+, Fe3+, Ca, Mg, and mixed-cation sulfates), sulfides (pyrite and marcasite), elemental sulfur, and smectite and kaolinite clays. Most altered samples contain at least one silica phase, most commonly quartz, but also including cristobalite, tridymite, and/or amorphous silica. Quartz and other silica phases are not as abundant in the less altered rock samples, thus their abundance in some hydrothermally altered sediment samples suggests a detrital origin, or formation by hydrothermal alteration (either modern or Pleistocene); this requires a high degree of diagenetic (or epigenetic) maturation. These results support a previously identified model that the Lassen hydrothermal system involves the de-coupling of a vapor phase (which becomes acidic as it oxidizes near the surface, producing acid-sulfate fumaroles at higher elevations at Sulphur Works and Bumpass Hell) from the residual near neutral thermal waters that emerge as hot springs at lower elevations (Growler and Morgan). Because both acid-sulfate fumarole and near-neutral sinter-producing hot springs have been invoked to explain the silica-rich deposits observed by the Mars Exploration Rover Spirit near Home Plate in the Columbia Hills on Mars, Lassen can serve as a useful terrestrial analog for comparison.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5839
      Issue No: Vol. 102, No. 7 (2017)
  • Phillipsite and Al-tobermorite mineral cements produced through
           low-temperature water-rock reactions in Roman marine concrete
    • Authors: Jackson, M. D; Mulcahy, S. R, Chen, H, Li, Y, Li, Q, Cappelletti, P, Wenk, H.-R.
      Pages: 1435 - 1450
      Abstract: Pozzolanic reaction of volcanic ash with hydrated lime is thought to dominate the cementing fabric and durability of 2000-year-old Roman harbor concrete. Pliny the Elder, however, in first century CE emphasized rock-like cementitious processes involving volcanic ash (pulvis) "that as soon as it comes into contact with the waves of the sea and is submerged becomes a single stone mass (fierem unum lapidem), impregnable to the waves and every day stronger" (Naturalis Historia 35.166). Pozzolanic crystallization of Al-tobermorite, a rare, hydrothermal, calcium-silicate-hydrate mineral with cation exchange capabilities, has been previously recognized in relict lime clasts of the concrete. Synchrotron-based X-ray microdiffraction maps of cementitious microstructures in Baianus Sinus and Portus Neronis submarine breakwaters and a Portus Cosanus subaerial pier now reveal that Al-tobermorite also occurs in the leached perimeters of feldspar fragments, zeolitized pumice vesicles, and in situ phillipsite fabrics in relict pores. Production of alkaline pore fluids through dissolution-precipitation, cation-exchange and/or carbonation reactions with Campi Flegrei ash components, similar to processes in altered trachytic and basaltic tuffs, created multiple pathways to post-pozzolanic phillipsite and Al-tobermorite crystallization at ambient seawater and surface temperatures. Long-term chemical resilience of the concrete evidently relied on water-rock interactions, as Pliny the Elder inferred. Raman spectroscopic analyses of Baianus Sinus Al-tobermorite in diverse microstructural environments indicate a cross-linked structure with Al3+ substitution for Si4+ in Q3 tetrahedral sites, and suggest coupled [Al3++Na+] substitution and potential for cation exchange. The mineral fabrics provide a geoarchaeological prototype for developing cementitious processes through low-temperature rock-fluid interactions, subsequent to an initial phase of reaction with lime that defines the activity of natural pozzolans. These processes have relevance to carbonation reactions in storage reservoirs for CO2 in pyroclastic rocks, production of alkali-activated mineral cements in maritime concretes, and regenerative cementitious resilience in waste encapsulations using natural volcanic pozzolans.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5993CCBY
      Issue No: Vol. 102, No. 7 (2017)
  • The origin of needle-like rutile inclusions in natural gem corundum: A
           combined EPMA, LA-ICP-MS, and nanoSIMS investigation
    • Authors: Palke, A. C; Breeding, C. M.
      Pages: 1451 - 1461
      Abstract: Trace-element chemistry and microscopic observations of included gem corundum (α-Al2O3) suggests a new model of syngenetic growth of oriented rutile inclusions rather than the usual interpretation of their growth through exsolution. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is now a robust method for measuring trace elements in gem-quality corundum (ruby and sapphire). Nonetheless, the corundum structure is relatively unforgiving for substitutional components and typically only a small handful of minor to trace elements are measured by LA-ICP-MS (Mg, Ti, V, Cr, Fe, Ga). Less commonly, trace elements such as Be, Zr, Nb, Sn, La, Ce, Ta, and W are found in natural corundum. Their concentrations are typically correlated with high contents of Ti and silky or cloudy zones in the corundum that contain a high concentration of needle-like rutile or other oxide inclusions. Three metamorphic-type sapphires from Sri Lanka, Madagascar, and Tanzania were studied here using LA-ICP-MS, electronprobe microanalysis (EPMA), and nanoSIMS to document correlations between the various trace elements and their distribution between the corundum and included, oriented rutile TiO2 needles. NanoSIMS and EPMA measurements show concentration of Be, Mg, Fe, V, Zr, Nb, Ce, Ta, and W in the rutile needles. The relative atomic concentrations of Mg and Ti from LA-ICP-MS measurements suggest the corundum-rutile intergrowth grew as a mechanical mixture of the two phases as opposed to rutile formation through exsolution from the corundum host. This scenario is also suggested for the three magmatic-type sapphires studied here based on the presence of glassy melt inclusions in close association with included, oriented oxide needles. The preservation of a glassy melt inclusion requires fast cooling, whereas exsolution of the oxide inclusions would require slow cooling and annealing at a temperature lower than sapphire formation. The studied sapphires suggest the likely origin of the oriented, needle-like rutile inclusions to be syngenetic epitaxial coprecipitation of both rutile and corundum. The interpretation of such oriented oxide inclusions has important implications for understanding the geological formation conditions based on trace element data or using such data to separate sapphires and rubies based on their geographic origin.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5965
      Issue No: Vol. 102, No. 7 (2017)
  • Dehydration studies of natrolites: Role of monovalent extra-framework
           cations and degree of hydration
    • Authors: Lee, Y; Ahn, D, Vogt, T, Lee, Y.
      Pages: 1462 - 1469
      Abstract: Rietveld refinements of natrolite analogs [M16Al16Si24O80·nH2O, M-NAT, M = Li, Na, Ag, K, NH4, Rb, and Cs, 14.0(1) < n
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5902
      Issue No: Vol. 102, No. 7 (2017)
  • Mineralogical and compositional features of rock fulgurites: A record of
           lightning effects on granite
    • Authors: Elmi, C; Chen, J, Goldsby, D, Giere, R.
      Pages: 1470 - 1481
      Abstract: Fulgurites are a naturally occurring glass formed when sand, rock, or soil is struck by atmospheric electrical discharges (lightning). The aim of this paper is to provide insights into the conditions occurring in rocks during the lightning strike. Rock fulgurites collected from Mt. Mottarone, Baveno (Piedmont, Italy) have been investigated to assess the mineralogical and compositional changes occurring in granite due to a lightning strike. X-ray powder diffraction showed that the samples represent the dominant granitic rock type of the Baveno massif, the so-called "Pink Baveno." Fulgurite coats the surface of the granite as a brown-black, glassy to very fine-grained porous layer. Powder diffraction data for the fulgurite reveal the presence of cristobalite and quartz crystals in a glass matrix, suggesting that temperature exceeded ~1700 °C at near atmospheric conditions, assuming thermodynamic equilibrium. Electron probe microanalysis of the glass revealed that it is mainly composed of SiO2 and Al2O3 and that it has a porosity of 5–7 area% in the studied zones. The presence of the amorphous phase indicates that the abrupt electrical (Joule) heating of the rock surface yielded high temperatures, producing a thin melt layer on the surface, which then cooled adiabatically. Idealized physical model was developed to simulate the effects of Joule heating and subsequent thermal conduction close to the rock surface during and after a lightning strike. The quantity of organic matter in the glass, obtained via Elemental Analyzer, suggests that rapid quenching of the melt trapped NOx and COx gases produced during heating. Raman spectroscopy revealed the presence of polyaromatic hydrocarbon molecules, which, combined with the Elemental Analyzer data, suggest that organic matter was pyrolyzed at around 300–350 °C and then trapped in the glass matrix of the studied rock fulgurites.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5971
      Issue No: Vol. 102, No. 7 (2017)
  • Formation of basic lead phases during fire-setting and other natural and
           man-made processes
    • Authors: Keim, M. F; Gassmann, B, Markl, G.
      Pages: 1482 - 1500
      Abstract: Basic lead phases are relatively rare compounds occurring in various natural and anthropogenically influenced environments, most importantly those related to fire-setting (FS). The medieval FS mining method and subsequent alteration processes lead to a complex set of basic lead phases including caledonite, hydrocerussite, leadhillite, and lanarkite. Although basic lead phases have been known for over 100 years, their mode of formation and stability relations are only insufficiently known. In this study, the formation of this interesting phase assemblage is described in detail including textures, genesis, and conditions of formation. Samples include ones collected in a medieval mining district in SW-Germany and ones that underwent short-term (50 days) experiments mimicking FS and subsequent mine dump processes. The mode of occurrence and the stability relation of basic lead phases formed during FS is discussed using thermodynamic models that are adapted to also explain their occurrence in other anthropogenic and in natural environments.Textures indicate a three step development of the FS assemblage starting with formation of cerussite during supergene weathering of primary galena prior to FS. This is followed by the decarbonization of the supergene cerussite during FS leading to the formation of lead oxides. Finally, the newly formed lead oxides were hydrated by rain and soil water in the mine dumps producing basic lead phases. Chemical composition of partially produced melt indicates that FS temperatures of up to 950 °C were reached in rare cases, whereas the lack of melt phase and predominance of litharge and lead oxycarbonates in most other samples implies that temperatures in most cases do not exceed 540 °C. Calculated stability diagrams reveal that most basic lead phases are stable at moderate to high pH and low PCO2. Thermodynamic models quantitatively explain their formation in the medieval mine dumps by the reaction of the lead oxides with a weathering fluid that increases pH and consumes CO2 that favors the precipitation of basic lead phases. This also explains the occurrence of basic lead phases in other anthropogenic environments like slag dumps, lead contaminated soils or in contact to concrete, where the reaction of a fluid with portlandite produces high pH and low PCO2-environments. One possible explanation for the rare formation of basic lead minerals in natural oxidation zones in the absence of lead oxides is the alteration of primary galena under elevated temperatures, since the stability fields of the basic lead phases hydrocerussite and lanarkite are enlarged under elevated temperatures.The short-term experiments show that the precipitation of basic lead phases is almost independent of the external fluid from which they precipitate. Hence, their stability is controlled by microenvironments formed at the mineral-water interface. Consequently, no closed systems in terms of CO2 or external high pH-fluids are needed to stabilize basic lead phases in contact with lead oxides. Analyses of the experimental fluid phase show that the solubility of lead in environments, where lead oxides predominate, is mainly controlled by the basic lead phase hydrocerussite. The present study can be used to quantify the formation of basic lead phases at lead contaminated sites or in natural environments. The observations on the natural samples and the experiments show that in specific rock types, like the medieval FS ones, basic lead phases control the availability of the toxic element lead better than anglesite or cerussite over a wide pH-range. In addition, the described FS phase assemblage can help mining archeologists to understand the details of the FS method even without mining traces and provide constraints on temperatures reached during this process.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5931
      Issue No: Vol. 102, No. 7 (2017)
  • Revisiting the nontronite Mossbauer spectra
    • Authors: Baron, F; Petit, S, Pentrak, M, Decarreau, A, Stucki, J. W.
      Pages: 1501 - 1515
      Abstract: The distribution of ferric iron (Fe3+) between the octahedral and tetrahedral sheets of smectites is still an active problem due to the difficulty of identifying and quantifying the tetrahedral ferric iron ([4]Fe3+). Mössbauer spectroscopy has often been used to address this problem, with the spectra being fitted by a sum of doublets, but the empirical attribution of each doublet has failed to yield a uniform interpretation of the spectra of natural reference Fe3+-rich smectites, especially with regard to [4]Fe3+, because little consensus exists as to the [4]Fe3+ content of natural samples. In an effort to resolve this problem, the current study was undertaken using a series of synthetic nontronites [Si4–x [4]Fex3+] [6]Fe23+O10(OH)2Nax with x ranging from 0.51 to 1.3. Mössbauer spectra were obtained at 298, 77, and 4 K. Statistically acceptable deconvolutions of the Mössbauer spectra at 298 and 77 K were used to develop a model of the distribution of tetrahedral substitutions, taking into account: (1) the [4]Fe3+ content; (2) the three possible tetrahedral cationic environments around [6]Fe3+, i.e., [4Si]-(3[6]Fe3+), [3Si [4]Fe3+]-(3[6]Fe3+), and [2Si 2[4]Fe3+]-(3[6]Fe3+); and (3) the local environment around a [4]Fe3+, i.e., [3Si]-(2[6]Fe3+) respecting Lowenstein’s Rule. This approach allowed the range of Mössbauer parameters for [6]Fe3+ and [4]Fe3+ to be determined and then applied to spectra of natural Fe3+-rich smectites. Results revealed the necessity of taking into account the distribution of tetrahedral cations ([4]R3+) around [6]Fe3+ cations to deconvolute the Mössbauer spectra, and also highlighted the influence of sample crystallinity on Mössbauer parameters.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-1501x
      Issue No: Vol. 102, No. 7 (2017)
  • Experimental evidence for the survival of augite to transition zone
           depths, and implications for subduction zone dynamics
    • Authors: Xu, J; Zhang, D, Dera, P, Zhang, B, Fan, D.
      Pages: 1516 - 1524
      Abstract: (Ca,Mg)-rich clinopyroxenes are abundant in Earth’s upper mantle and subduction zones. Experimental studies on the thermoelastic properties of these minerals at simultaneous high pressure and high temperature are important for constraining of the composition and structure of the Earth. Here, we present a synchrotron-based single-crystal X-ray diffraction study of natural diopside-dominated augite [(Ca0.89Na0.05Mg0.06)(Mg0.74Fe0.11Al0.14Ti0.01)(Si1.88Al0.12)O6.00] at P and T to ~27 GPa and 700 K. The experiment simulates conditions in cold subducting slabs, and results indicate that augite is stable over this pressure and temperature range. A third-order high-temperature Birch-Murnaghan equation was fit with the pressure-volume-temperature data, yielding the following thermoelastic parameters: KT0 = 111(1) GPa, K'T0 = 4.1(1), (K0/T)P = –0.008(5) GPa/K and αT = 4(1)x10–5 K–1 +2(3)x10–8 K–2 T. A strain analysis shows that the compression along the three principal stress directions is highly anisotropic with 1:2:3 = 1.98:2.43:1.00. Additionally, high-pressure structural refinements of room-temperature polyhedral geometry, bond lengths and O3-O3-O3 angle were investigated to ~27 GPa at ambient temperature. Pressure dependences of polyhedral volumes and distortion indicate that the substitution of Al3+ for Si4+ significantly changes the compressional behavior of the TO4-tetrahedron in augite. Density calculations of this augite along a subducting slab geotherm suggest that augite as well as other common clinopyroxenes would promote slab stagnations at transition zone depths if they are metastably preserved in significant quantities.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5959
      Issue No: Vol. 102, No. 7 (2017)
  • Hydrothermal alteration of monazite-(Ce) and chevkinite-(Ce) from the Sin
           Quyen Fe-Cu-LREE-Au deposit, northwestern Vietnam
    • Authors: Li, X.-C; Zhou, M.-F.
      Pages: 1525 - 1541
      Abstract: The Sin Quyen deposit in northwestern Vietnam is composed of Fe-Cu-LREE-Au ore bodies hosted in Proterozoic metapelite. There are massive and banded replacement ores with variable amounts of monazite-(Ce) and chevkinite-(Ce) crystals, which have undergone fluid-induced alteration. Monazite-(Ce) and chevkinite-(Ce) were deposited from high-temperature fluids in the early ore-forming stage, but became thermodynamically unstable, and thus were altered to other phases in later ore-forming stages. The alteration of monazite-(Ce) formed a three-layered corona texture, which commonly has relict monazite-(Ce) in the core, newly formed fluorapatite in the mantle, and newly formed allanite-(Ce) in the rim. In some cases, the original monazite-(Ce) was completely consumed, forming a core of polygonal fluorapatite crystals rimmed by allanite-(Ce) crystals. The formation of allanite-(Ce) and fluorapatite at the expense of monazite-(Ce) indicates that the later-stage fluids had high Ca/Na ratios and relatively low temperatures. Chevkinite-(Ce) was variably replaced by an assemblage of allanite-(Ce) + aeschynite-(Ce) ± bastnäsite-(Ce) ± columbite-(Fe) ± ilmenite. The replacement of chevkinite-(Ce) by mainly allanite-(Ce) and aeschynite-(Ce) required low-temperature, Ca-, LREE-, and Nb-rich metasomatic fluids, probably with relatively low fO2.Mass-balance calculations were made to investigate the hydrothermal element mobility. It is assumed that Th was immobile during the alteration process of monazite-(Ce). Light (and middle) REE from La to Tb, U, As, and Ge were variably lost relative to Th, while heavy REE from Dy to Lu, HFSE (e.g., Nb, Ta, Zr, and Hf) and Sr were variably gained relative to Th. Regarding the alteration of chevkinite-(Ce), some major elements in chevkinite-(Ce), such as Ti, La, and Ce, were obviously removed from the system during alteration, whereas Ca, Al, Nb, U, and HREE were needed to be variably supplied by the metasomatic fluids. Concerning the hydrothermal mobility of trace elements, previous studies demonstrated that REE and HFSE can be commonly reserved in the system during alteration, consistent with the traditionally assumed immobile nature of these elements. In contrast, this study shows that REE and HFSE can be mobilized on at least the hundreds of micrometers scale. This may be related to the high flux and strong chemical reactivity of the metasomatic fluids.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5970
      Issue No: Vol. 102, No. 7 (2017)
  • Diagenetic F-rich ferroan calcite and zircon in the offshore Scotian
           Basin, eastern Canada: Significance for understanding thermal evolution of
           the basin
    • Authors: Pe-Piper, G; Sangster, C, Zhang, Y.
      Pages: 1542 - 1555
      Abstract: In the Scotian Basin, offshore eastern Canada, an unusual combination of high heat flow in the Cretaceous and the abundance of halite has resulted in unusual diagenetic minerals such as sphalerite. The Newburn H-23 well is the most distal well in the basin with good core samples and has two previously unknown diagenetic mineral occurrences: fluorine-rich ferroan calcite and diagenetic zircon. This study uses SEM backscattered electron images and EDS analyses, EMP WDS mineral analyses and Raman spectroscopy to determine mineral chemistry and textures to investigate the diagenetic and thermal significance of these minerals.Late diagenetic Fe-calcite contains 1–2.5 wt% fluorine, mostly from adsorption, but rarely as small fluorite crystals. Fluoride is also adsorbed on the surfaces of some framework minerals and chlorite. Fluoride was transported in highly saline formation brines derived from the Argo salt Formation. Zircon grains, 20–40 μm in size, have crystal outlines that are straight adjacent to pores, partially lobate filling porosity, and cross cutting other grains: these may be diagenetic. Some zoned detrital zircon grains show 1–3 μm wide diagenetic outgrowths. Neoformation of diagenetic zircon requires temperatures of>250 °C. Transport of zirconium is favored by ligands in low-pH solution, principally fluoride and phosphate anions, with zirconium mobilized during the alteration of metamict detrital zircon under low-grade metamorphic conditions. The presence of diagenetic sphalerite and the documented mid-Cretaceous thermal event in the Scotian Basin indicate conditions that could have been suitable for the formation of diagenetic zircon in this well. Suitable geological conditions for such diagenetic formation of zircon will be found in a subsiding rift basin with early evaporites that are affected by a subsequent phase of volcanism due to new rifting or subduction.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-5957
      Issue No: Vol. 102, No. 7 (2017)
  • Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from the
           Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar
    • Authors: Ma, C; Krot, A. N, Nagashima, K.
      Pages: 1556 - 1560
      Abstract: Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, anorthite, and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 214 CH3 carbonaceous chondrite. The mean chemical composition of type addibischoffite measured by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to an empirical formula of (Ca2.00)(Al2.55Mg1.73V1.3+08Ti3+0.50Ca0.09Fe2+0.05)6.01(Al4.14Si1.86)O20. The general formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. Addibischoffite has the P aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c = 8.895 Å, α = 106.0°, β = 96.0°, = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by electron backscatter diffraction. The calculated density using the measured composition is 3.41 g/cm3. Addibischoffite is a new member of the warkite (Ca2Sc6Al6O20) group and a new refractory phase formed in the solar nebula, most likely as a result of crystallization from an 16O-rich Ca, Al-rich melt under high-temperature (~1575 °C) and low-pressure (~10–4 to 10–5 bar) conditions in the CAI-forming region near the protosun, providing a new puzzle piece toward understanding the details of nebular processes. The name is in honor of Addi Bischoff, cosmochemist at University of Münster, Germany, for his many contributions to research on mineralogy of carbonaceous chondrites, including CAIs in CH chondrites.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6032
      Issue No: Vol. 102, No. 7 (2017)
  • 17O NMR evidence of free ionic clusters Mn+ CO32- in silicate glasses:
           Precursors for carbonate-silicate liquids immiscibility
    • Authors: Morizet, Y; Florian, P, Paris, M, Gaillard, F.
      Pages: 1561 - 1564
      Abstract: Carbon dioxide is a ubiquitous component of low-silica melts such as kimberlites or melilitites. It is currently assumed that CO2 molecules dissolving in low-silica melts as carbonate groups (CO32–) induce a strong polymerization of the silicate network; however, the exact molecular configuration of this dissolution mechanism is still debated.Using 17O MAS NMR spectroscopy, we have investigated the carbonate molecular environment in a series of synthesized low-silica (31–41 wt% SiO2), CO2-bearing (from 2.9 to 13.2 wt% CO2) silicate glasses analogous to melilitites and kimberlites. With the selective {13C}-, {27Al}-, and {29Si}-17O J HMQC NMR method, we show that CO2 dissolved in the studied low-silica glasses is totally disconnected from the silicate network, forming free ionic clusters (FIC) Mn+ CO32– with Mn+, a charge compensating cation.The Mn+ CO32– FIC are considered as precursors to immiscibility in between carbonate and silicate liquids. Observed in all studied compositions, we suggest that this immiscibility can be produced from moderately to strongly depolymerized silicate melt compositions.
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-6133
      Issue No: Vol. 102, No. 7 (2017)
  • New Mineral Names,
    • Authors: Belakovskiy, D. I; Camara, F, Uvarova, Y.
      Pages: 1565 - 1571
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-NMN102715
      Issue No: Vol. 102, No. 7 (2017)
  • Erratum
    • Pages: 1572 - 1572
      PubDate: 2017-07-03T06:03:20-07:00
      DOI: 10.2138/am-2017-E102718
      Issue No: Vol. 102, No. 7 (2017)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016