Subjects -> CHEMISTRY (Total: 928 journals)
    - ANALYTICAL CHEMISTRY (59 journals)
    - CHEMISTRY (661 journals)
    - CRYSTALLOGRAPHY (23 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (45 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (65 journals)

CHEMISTRY (661 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 735 Journals sorted alphabetically
Accounts of Materials Research     Hybrid Journal  
Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement     Hybrid Journal   (Followers: 30)
ACS Applied Polymer Materials     Hybrid Journal   (Followers: 8)
ACS Catalysis     Hybrid Journal   (Followers: 52)
ACS Chemical Neuroscience     Hybrid Journal   (Followers: 23)
ACS Combinatorial Science     Hybrid Journal   (Followers: 21)
ACS Environmental Au     Open Access   (Followers: 9)
ACS Macro Letters     Hybrid Journal   (Followers: 25)
ACS Materials Letters     Open Access   (Followers: 2)
ACS Medicinal Chemistry Letters     Hybrid Journal   (Followers: 42)
ACS Nano     Hybrid Journal   (Followers: 182)
ACS Photonics     Hybrid Journal   (Followers: 14)
ACS Symposium Series     Full-text available via subscription   (Followers: 3)
ACS Synthetic Biology     Hybrid Journal   (Followers: 30)
Acta Chemica Malaysia     Open Access  
Acta Chimica Slovaca     Open Access   (Followers: 2)
Acta Chimica Slovenica     Open Access   (Followers: 2)
Acta Chromatographica     Full-text available via subscription   (Followers: 7)
Acta Metallurgica Sinica (English Letters)     Hybrid Journal   (Followers: 8)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
adhäsion KLEBEN & DICHTEN     Hybrid Journal   (Followers: 7)
Adhesion Adhesives & Sealants     Hybrid Journal   (Followers: 10)
Adsorption Science & Technology     Open Access   (Followers: 7)
Advanced Electronic Materials     Hybrid Journal   (Followers: 7)
Advanced Functional Materials     Hybrid Journal   (Followers: 71)
Advanced Journal of Chemistry, Section A     Open Access   (Followers: 3)
Advanced Journal of Chemistry, Section B     Open Access   (Followers: 1)
Advanced Science Focus     Free   (Followers: 6)
Advanced Theory and Simulations     Hybrid Journal   (Followers: 2)
Advanced Therapeutics     Hybrid Journal   (Followers: 1)
Advances in Chemical Engineering and Science     Open Access   (Followers: 109)
Advances in Chemical Science     Open Access   (Followers: 51)
Advances in Chemistry     Open Access   (Followers: 34)
Advances in Colloid and Interface Science     Full-text available via subscription   (Followers: 15)
Advances in Environmental Chemistry     Open Access   (Followers: 11)
Advances in Enzyme Research     Open Access   (Followers: 10)
Advances in Heterocyclic Chemistry     Full-text available via subscription   (Followers: 8)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 33)
Advances in Nanoparticles     Open Access   (Followers: 17)
Advances in Organometallic Chemistry     Full-text available via subscription   (Followers: 18)
Advances in Polymer Science     Hybrid Journal   (Followers: 51)
Advances in Protein Chemistry and Structural Biology     Full-text available via subscription   (Followers: 18)
Advances in Quantum Chemistry     Full-text available via subscription   (Followers: 6)
Advances in Sample Preparation     Open Access   (Followers: 5)
Advances in Science and Technology     Full-text available via subscription   (Followers: 16)
Aerosol Science and Engineering     Hybrid Journal  
African Journal of Chemical Education     Open Access   (Followers: 5)
African Journal of Pure and Applied Chemistry     Open Access   (Followers: 6)
Aggregate     Open Access   (Followers: 2)
Agrokémia és Talajtan     Full-text available via subscription   (Followers: 2)
Al-Kimia : Jurnal Penelitian Sains Kimia     Open Access  
Alchemy : Journal of Chemistry     Open Access   (Followers: 4)
Alchemy : Jurnal Penelitian Kimia     Open Access  
Alotrop     Open Access  
AMB Express     Open Access   (Followers: 1)
Ambix     Hybrid Journal   (Followers: 3)
American Journal of Biochemistry and Biotechnology     Open Access   (Followers: 43)
American Journal of Biochemistry and Molecular Biology     Open Access   (Followers: 19)
American Journal of Chemistry     Open Access   (Followers: 37)
American Journal of Plant Physiology     Open Access   (Followers: 9)
Analyst     Hybrid Journal   (Followers: 35)
Analytical Science Advances     Open Access   (Followers: 1)
Angewandte Chemie     Hybrid Journal   (Followers: 151)
Angewandte Chemie International Edition     Hybrid Journal   (Followers: 228)
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia     Open Access   (Followers: 1)
Annals of Clinical Chemistry and Laboratory Medicine     Open Access   (Followers: 6)
Annual Reports in Computational Chemistry     Full-text available via subscription   (Followers: 4)
Annual Reports Section A (Inorganic Chemistry)     Full-text available via subscription   (Followers: 5)
Annual Review of Chemical and Biomolecular Engineering     Full-text available via subscription   (Followers: 12)
Annual Review of Food Science and Technology     Full-text available via subscription   (Followers: 13)
Antiviral Chemistry and Chemotherapy     Open Access   (Followers: 1)
Applied Organometallic Chemistry     Hybrid Journal   (Followers: 7)
Applied Spectroscopy     Full-text available via subscription   (Followers: 24)
Applied Surface Science     Hybrid Journal   (Followers: 31)
Arabian Journal of Chemistry     Open Access   (Followers: 4)
ARKIVOC     Open Access   (Followers: 1)
Asian Journal of Applied Chemistry Research     Open Access   (Followers: 1)
Asian Journal of Biochemistry     Open Access   (Followers: 2)
Asian Journal of Chemical Sciences     Open Access  
Asian Journal of Chemistry and Pharmaceutical Sciences     Open Access  
Asian Journal of Physical and Chemical Sciences     Open Access   (Followers: 2)
Australian Journal of Chemistry     Hybrid Journal   (Followers: 7)
Autophagy     Hybrid Journal   (Followers: 7)
Biochemical Pharmacology     Hybrid Journal   (Followers: 11)
Biochemistry     Hybrid Journal   (Followers: 201)
Biochemistry Insights     Open Access   (Followers: 6)
Biochemistry Research International     Open Access   (Followers: 5)
BioChip Journal     Hybrid Journal  
Bioinorganic Chemistry and Applications     Open Access   (Followers: 5)
Biointerface Research in Applied Chemistry     Open Access  
Biointerphases     Open Access   (Followers: 1)
Biology, Medicine, & Natural Product Chemistry     Open Access   (Followers: 2)
Biomacromolecules     Hybrid Journal   (Followers: 23)
Biomass Conversion and Biorefinery     Partially Free   (Followers: 10)
Biomedical Chromatography     Hybrid Journal   (Followers: 6)
Biomolecular NMR Assignments     Hybrid Journal   (Followers: 3)
BioNanoScience     Partially Free   (Followers: 3)
Bioorganic & Medicinal Chemistry     Hybrid Journal   (Followers: 90)
Bioorganic & Medicinal Chemistry Letters     Hybrid Journal   (Followers: 66)
Bioorganic Chemistry     Hybrid Journal   (Followers: 9)
Biopolymers     Hybrid Journal   (Followers: 15)
Biosensors     Open Access   (Followers: 3)
Biotechnic and Histochemistry     Hybrid Journal   (Followers: 3)
Bitácora Digital     Open Access  
Boletin de la Sociedad Chilena de Quimica     Open Access  
Bulletin of Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences     Open Access  
Bulletin of the Chemical Society of Ethiopia     Open Access   (Followers: 1)
Bulletin of the Chemical Society of Japan     Full-text available via subscription   (Followers: 24)
Bulletin of the Korean Chemical Society     Hybrid Journal   (Followers: 1)
C - Journal of Carbon Research     Open Access   (Followers: 5)
Cakra Kimia (Indonesian E-Journal of Applied Chemistry)     Open Access  
Canadian Association of Radiologists Journal     Full-text available via subscription   (Followers: 1)
Canadian Journal of Chemistry     Hybrid Journal   (Followers: 12)
Canadian Mineralogist     Full-text available via subscription   (Followers: 5)
Carbohydrate Polymer Technologies and Applications     Open Access  
Carbohydrate Polymers     Hybrid Journal   (Followers: 9)
Carbohydrate Research     Hybrid Journal   (Followers: 24)
Carbon     Hybrid Journal   (Followers: 65)
Carbon Capture Science & Technology     Open Access  
Carbon Trends     Open Access   (Followers: 3)
Catalysis Reviews: Science and Engineering     Hybrid Journal   (Followers: 9)
Catalysis Science and Technology     Hybrid Journal   (Followers: 9)
Catalysis Surveys from Asia     Hybrid Journal   (Followers: 4)
Catalysts     Open Access   (Followers: 11)
Cell Reports Physical Science     Open Access  
Cellulose     Hybrid Journal   (Followers: 7)
Cereal Chemistry     Full-text available via subscription   (Followers: 4)
Chem     Hybrid Journal  
Chem Catalysis     Hybrid Journal  
ChemBioEng Reviews     Full-text available via subscription   (Followers: 3)
ChemCatChem     Hybrid Journal   (Followers: 8)
Chemical and Engineering News     Free   (Followers: 22)
Chemical Bulletin of Kazakh National University     Open Access  
Chemical Communications     Hybrid Journal   (Followers: 81)
Chemical Engineering Research and Design     Hybrid Journal   (Followers: 26)
Chemical Physics Impact     Full-text available via subscription  
Chemical Research in Chinese Universities     Hybrid Journal   (Followers: 4)
Chemical Research in Toxicology     Hybrid Journal   (Followers: 22)
Chemical Reviews     Hybrid Journal   (Followers: 168)
Chemical Science     Open Access   (Followers: 39)
Chemical Science International Journal     Open Access  
Chemical Technology     Open Access   (Followers: 75)
Chemical Thermodynamics and Thermal Analysis     Open Access   (Followers: 2)
Chemical Vapor Deposition     Hybrid Journal   (Followers: 4)
Chemie in Unserer Zeit     Hybrid Journal   (Followers: 54)
Chemie-Ingenieur-Technik (Cit)     Hybrid Journal   (Followers: 22)
ChemInform     Hybrid Journal   (Followers: 5)
Chemistry     Open Access  
Chemistry & Biodiversity     Hybrid Journal   (Followers: 7)
Chemistry & Industry     Full-text available via subscription   (Followers: 6)
Chemistry - A European Journal     Hybrid Journal   (Followers: 121)
Chemistry - An Asian Journal     Hybrid Journal   (Followers: 19)
Chemistry Africa : A Journal of the Tunisian Chemical Society     Hybrid Journal  
Chemistry and Materials Research     Open Access   (Followers: 18)
Chemistry Central Journal     Open Access   (Followers: 4)
Chemistry Education Research and Practice     Free   (Followers: 6)
Chemistry Education Review     Open Access   (Followers: 1)
Chemistry in Education     Open Access   (Followers: 3)
Chemistry Letters     Full-text available via subscription   (Followers: 44)
Chemistry of Heterocyclic Compounds     Hybrid Journal   (Followers: 4)
Chemistry of Materials     Hybrid Journal   (Followers: 162)
Chemistry of Natural Compounds     Hybrid Journal   (Followers: 10)
Chemistry World     Hybrid Journal   (Followers: 20)
Chemistry-Didactics-Ecology-Metrology     Open Access  
ChemistryOpen     Open Access   (Followers: 1)
ChemistrySelect     Hybrid Journal  
Chemistry–Methods     Open Access   (Followers: 1)
Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik     Hybrid Journal  
ChemNanoMat     Hybrid Journal   (Followers: 1)
Chemoecology     Hybrid Journal   (Followers: 2)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 13)
Chemosensors     Open Access   (Followers: 1)
ChemPhotoChem     Hybrid Journal  
ChemPhysChem     Hybrid Journal   (Followers: 12)
ChemPhysMater     Full-text available via subscription  
ChemPlusChem     Hybrid Journal   (Followers: 2)
Chempublish Journal     Open Access  
ChemSystemsChem     Hybrid Journal   (Followers: 1)
ChemTexts     Hybrid Journal   (Followers: 1)
CHIMIA International Journal for Chemistry     Open Access   (Followers: 2)
Chinese Journal of Chemistry     Hybrid Journal   (Followers: 6)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 9)
Chromatographia     Hybrid Journal   (Followers: 22)
Chromatography     Open Access   (Followers: 2)
Chromatography Research International     Open Access   (Followers: 4)
Ciencia     Open Access  
Clay Minerals     Hybrid Journal   (Followers: 8)
Cogent Chemistry     Open Access   (Followers: 3)
Colloid and Interface Science Communications     Open Access  
Colloid and Polymer Science     Hybrid Journal   (Followers: 6)
Colloids and Interfaces     Open Access  
Colloids and Surfaces B: Biointerfaces     Hybrid Journal   (Followers: 8)
Combinatorial Chemistry & High Throughput Screening     Hybrid Journal   (Followers: 2)
Combustion Science and Technology     Hybrid Journal   (Followers: 26)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 1)
Communications Chemistry     Open Access   (Followers: 2)
Communications Materials     Open Access  
Composite Interfaces     Hybrid Journal   (Followers: 6)
Comptes Rendus : Chimie     Open Access  
Comptes Rendus : Physique     Open Access   (Followers: 2)

        1 2 3 4 | Last

Similar Journals
Journal Cover
Bioinorganic Chemistry and Applications
Journal Prestige (SJR): 0.419
Citation Impact (citeScore): 2
Number of Followers: 5  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1565-3633 - ISSN (Online) 1687-479X
Published by Hindawi Homepage  [339 journals]
  • Active Treatment of Water Chemistry for Swimming Pools Using Novel
           Automated System (NAS)

    • Abstract: The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e., pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart.
      PubDate: Tue, 17 May 2022 17:50:09 +000
  • Synthesis and Characterization of Banana and Pineapple Reinforced Hybrid
           Polymer Composite for Reducing Environmental Pollution

    • Abstract: Nonbiodegradable polymers constitute major pollution and their usage cannot be ignored due to their properties. Hybrid polymer composite research has increased in recent times due to improved characteristics and biodegradable nature. The effect of different stacking sequences containing pineapple/banana/basalt fiber has been studied in the present work to reduce the usage of synthetic fibers without compromising on properties. Hybrid composites were manufactured using the hand layup method and were assessed for mechanical and morphological characteristics. The results showed that several properties improved by keeping the pineapple layer in the skin layer. The adhesion between the matrix and the fiber played a vital role in determining the properties of the composites manufactured. Morphological studies have concluded that the proper bonding between the matrix and the fiber has enhanced several properties.
      PubDate: Wed, 11 May 2022 11:05:01 +000
  • Assessing Deep Learning Techniques for the Recognition of Tropical Disease
           in Images from Parasitological Exams

    • Abstract: Schistosoma mansoni is one of the tropical diseases with the greatest epidemic reach in the world. One of the WHO guidelines is the prior and efficient diagnosis for mapping foci and applying the appropriate treatment of infected people. The current process for diagnosis still depends on an analysis of parasitological exams performed by a human being under a laboratory microscope. The area of pattern recognition in images presents itself as a promising alternative to support and automate image-based exams, and deep learning techniques have been successfully applied for this purpose. In order to automate this process, it is proposed in this work the application of deep learning methods for the detection of schistosomiasis eggs, and a comparison is made between two deep learning techniques, convolutional neural network (CNN) and structured pyramidal neural network (SPNN). The results obtained in a real database indicate that the techniques are effective in the recognition of schistosomiasis eggs, in which both obtained AUC (area under the curve) above 0.90, with the CNN showing superiority in this aspect. . However, the SPNN proved to be faster than the CNN.
      PubDate: Mon, 09 May 2022 13:05:03 +000
  • Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of
           Organic Dye

    • Abstract: The Cu-doped ZnO photocatalysts were prepared with a green and coprecipitation approach by using water hyacinth (Eichhornia crassipes) aquatic plant extract. In the preparation process, different amount of copper precursors such as 1, 2, 3, 4, and 5% of molar ratio were added to zinc nitrate precursors and abbreviated as Cu-ZnO (1%), Cu-ZnO (2%), Cu-ZnO (3%), Cu-ZnO (4%), and Cu-ZnO (5%), respectively. The characterization of the obtained samples was carried out, and the removal of the methylene blue (MB) dye was examined. Out of all catalysts, Cu-ZnO (3%) had the best photocatalytic performance and 89% of the MB dye was degraded. However, the degradation performances of blank (without catalysts), ZnO, Cu-ZnO (1%), Cu-ZnO (2%), Cu-ZnO (4%), and Cu-ZnO (5%) catalysts were 6, 54, 69, 83, 80, and 73%, respectively. Therefore, the use of water hyacinth plant extract with the optimum amount of Cu added to ZnO during the preparation of the catalyst could have a promising application in the degradation of organic pollutants.
      PubDate: Wed, 04 May 2022 12:20:01 +000
  • Bhavana, an Ayurvedic Pharmaceutical Method and a Versatile Drug Delivery
           Platform to Prepare Potentiated Micro-Nano-Sized Drugs: Core Concept and
           Its Current Relevance

    • Abstract: Scholars of ancient Ayurveda (Indian system of medicine) were extremely reasonable and had strong scientific rationality in fundamental concepts, which are also applied to drug manufacture and therapy. Bhavana is a unique traditional method of transformation of raw material/substances into the drug by levigation or wet grinding of powdered drugs with juice/decoction/solution of plant, animal, or mineral origin. This method adds the unique capability of affecting the physicochemical and biological properties of a drug, making the drug quicker, augmented, and persistent action with minimal dose. Despite the fact that Bhavana has a wide range of applications in Ayurvedic pharmaceutics, there is only a limited amount of knowledge of its fundamental notions. A comprehensive review was performed on the core concepts of Bhavana, alongside its possible pharmacotherapeutic effects and relevance in drug development, by probing Ayurvedic claims in light of published pharmaceutical, analytical, and pharmacological reports. Various processes, such as thermo- and photochemistry, physicochemical reactions, and mechanic chemical changes, appear to occur during Bhavana.
      PubDate: Fri, 29 Apr 2022 10:35:01 +000
  • Synthesis of the Magnetically Nanoporous Organic Polymer
           Fe3O4@SiO2-NH2-COP and Its Application in the Determination of Sulfonamide
           Residues in Surface Water Surrounding a Cattle Farm

    • Abstract: Efficient extractions of trace antibiotic residues in the environment are a key factor for accurate quantification of the residues. A new nanoporous material, namely, magnetically covalent organic polymer (MCOP, Fe3O4@SiO2-NH2-COP) was synthesized in this work and was used for magnetic solid-phase extraction (MSPE). The combination of MSPE with high-performance liquid chromatography separation together with ultraviolet detection (HPLC-UV) was established as an effective method for the determination of four sulfonamide (SA) residues in surface water surrounding a cattle farm. The synthesized magnetic material was characterized by SEM, TEM, FT-IR, magnetic properties measurement system (MPMS), and nitrogen gas porosimetry. The material possessed many attractive features, such as a unique microporous structure, a larger specific surface area (137.93 m2·g−1) than bare Fe3O4 (24.84 m2·g−1), high saturation magnetization (50.5 emu·g−1), open adsorption sites, and high stability. The influencing parameters, including pH, the used amount of MCOPs, the type of eluent, adsorption solution, and desorption time, were optimized. Under the optimized conditions, the method conferred good linearity ranges (R2 ≥ 0.9990), low detection limits (S/N = 3, LOD, 0.10–0.25 μg·L−1), and satisfactory recoveries (79.7% to 92.2%). The enrichment factor (EF) for the four SAs was 34.13–38.86. The relative standard deviations of intraday (n = 5) and of interday (n = 3) were less than 4.8% and 8.9%, respectively. The equilibria between extraction and desorption for SAs could be reached within 150 s. The proposed method was sensitive and convenient for detecting SA residues in complex environmental matrices, and the successful application of the new MCOPs as an adsorbent was demonstrated.
      PubDate: Sat, 23 Apr 2022 09:20:01 +000
  • Low-Intensity Light-Responsive Anticancer Activity of Platinum(II) Complex
           Nanocolloids on 2D and 3D In Vitro Cancer Cell Model

    • Abstract: This study aimed to evaluate the therapeutic efficacy of low-intensity visible light responsive nanocolloids of a Pt-based drug using a 2D and three-dimensional (3D) in vitro cancer cell model. Biocompatible and biodegradable polymeric nanocolloids, obtained using the ultrasonication method coupled with Layer by Layer technology, were characterized in terms of size (100 ± 20 nm), physical stability, drug loading (78%), and photoactivation through spectroscopy studies. The in vitro biological effects were assessed in terms of efficacy, apoptosis induction, and DNA-Pt adducts formation. Biological experiments were performed both in dark and under visible light irradiation conditions, exploiting the complex photochemical properties. The light-stimuli responsive nanoformulation gave a significant enhancement in drug bioactivity. This allowed us to achieve satisfying results by using nanomolar drug concentration (50 nM), which was ineffective in darkness condition. Furthermore, our nanocolloids were validated in 3D in vitro spheroids using confocal microscopy and cytofluorimetric assay to compare their behavior on culture in 2D monolayers. The obtained results confirmed that these nanocolloids are promising tools for delivering Pt-based drugs.
      PubDate: Sat, 23 Apr 2022 09:20:01 +000
  • Influences of Extrusion and Silver Content on the Degradation of Mg-Ag
           Alloys In Vitro and In Vivo

    • Abstract: Binary magnesium-silver (Mg-Ag) alloys were designed as antibacterial materials for biomedical implant applications. In the present study, we focused on the effects of extrusion (extrusion ratio (ER): 1, 7.1, and 72.2) and Ag content (Ag = 0, 3, and 6 wt.%) on the degradation of Mg-Ag alloys in vitro and in vivo via microstructure characterization and corrosion/degradation measurements. The results showed that the Ag promoted a galvanic reaction with the Mg matrix to accelerate degradation or formed a protective oxide mesh texture to inhibit degradation, especially in vivo. Ag might also be beneficial for product crystallization, biomineralization, and organic matter deposition. For pure Mg, extrusion produced a more refined grain and decreased the degradation rate. For the Mg-Ag alloys, a low extrusion ratio (7.1) accelerated the degradation caused by the increase in the proportion of the precipitate. This promoted the release of Mg2+ and Ag+, which led to more deposition of organic matter and calcium phosphate, but also more H2 bubbles, which led to disturbance of product deposition in some local positions or even inflammatory reactions. Extrusion at a higher ratio (72.2) dissolved the precipitates. This resulted in moderate degradation rates and less gas production, which promoted osteogenesis without an obvious inflammation reaction.
      PubDate: Sat, 23 Apr 2022 08:35:02 +000
  • Gallium(III) Complex with Cloxyquin Ligands Induces Ferroptosis in Cancer
           Cells and Is a Potent Agent against Both Differentiated and Tumorigenic
           Cancer Stem Rhabdomyosarcoma Cells

    • Abstract: In this work, gallium(III) complex with cloxyquin (5-chloro-8-quinolinol, HClQ) ligands is shown to effectively inhibit proliferation of rhabdomyosarcoma cells, the frequent, aggressive, and poorly treatable cancer of children. It offers striking selectivity to cancer cells compared to noncancerous human fibroblasts. The data reveal that the complex induces ferroptosis in rhabdomyosarcoma cells, likely due to interfering with iron metabolism. Importantly, it can kill both bulk and stem rhabdomyosarcoma cells. To the best of our knowledge, this is the first compound based on metal other than Fe capable of inducing ferroptosis in cancer cells.
      PubDate: Sat, 23 Apr 2022 08:35:02 +000
  • Anticancer, Antibacterial, Antioxidant, and DNA-Binding Study of
           Metal-Phenalenyl Complexes

    • Abstract: Phenalenyl (PLY)-based metal complexes are a new addition to the metal complex family. Various applications of metal-based phenalenyl complexes (metal-PLY) have been reported, such as catalyst, quantum spin simulators, spin electronic devices, and molecular conductors, but the biological significance of metal-PLY (metal = Co(II), Mn(III), Ni(II), Fe(III), and Al(III)) systems has yet to be explored. In this study, the anticancer properties of such complexes were investigated in ovarian cancer cells (SKOV3 and HEY A8), and the cytotoxicity was comparable to that of other platinum-based drugs. Antibacterial activity of the metal-PLY complexes against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria was studied using a disk diffusion test and minimum inhibitory concentration (MIC) methods. All five metal-PLY complexes showed significant antibacterial activity against both bacterial strains. The antioxidant properties of metal-PLY complexes were evaluated following the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method and were acceptable. The DNA-binding properties of these metal-PLY complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements, and thermal denaturation methods. Experimental evidence revealed that the complexes bind to DNA through intercalation, and the molecular docking study supported this conclusion.
      PubDate: Thu, 14 Apr 2022 13:20:01 +000
  • TiO2 Nanocoatings with Controllable Crystal Type and Nanoscale Topography
           on Zirconia Implants to Accelerate Bone Formation

    • Abstract: In dentistry, zirconia implants have emerged as a promising alternative for replacing missing teeth due to their superior aesthetic performance and chemical stability. To improve the osseointegration of zirconia implants, modifying their surface with hierarchical micro/nanotopography and bioactive chemical composition are two effective ways. In this work, a microscale topography was prepared on a zirconia surface using hydrofluoric acid etching, and then a 50 nm TiO2 nanocoating was deposited via atomic layer deposition (ALD). Subsequently, an annealing treatment was used to transform the TiO2 from amorphous to anatase and simultaneously generate nanoscale topography. Various investigations into the coating surface morphology, topography, wettability, and chemical composition were carried out using scanning electron microscopy, white light interferometry, contact-angle measurement, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, in vitro cytocompatibility and osteogenic potential performance of the coatings were evaluated by human bone marrow mesenchymal stem cells (hBMSCs), and in vivo osseointegration performance was assessed in a rat femoral condyle model. Moreover, the possible mechanism was also investigated. The deposition of TiO2 film with/without annealing treatment did not alter the microscale roughness of the zirconia surface, whereas the nanotopography changed significantly after annealing. The in vitro studies revealed that the anatase TiO2 coating with regular wavelike nanostructure could promote the adhesion and proliferation of osteoblasts and further improve the osteogenic potential in vitro and osseointegration in vivo. These positive effects may be caused by nanoscale topography via the canonical Wnt/β-catenin pathway. The results suggest that using ALD in combination with annealing treatment to fabricate a nanotopographic TiO2 coating is a promising way to improve the osteogenic properties of zirconia implants.
      PubDate: Tue, 12 Apr 2022 07:20:01 +000
  • A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a
           Trifunctional Mimic Enzyme and Efficient Composite in the Detection of

    • Abstract: This research raises the potential use of coordination polymers as new useful materials in two essential research fields, allowing the obtaining of a new multiartificial enzyme with the capacity to inhibit the growth of bacteria resistance. The fine selection of the ligands allows the design of a new 2D coordination polymer (CP), with the formula [Cu2(IBA)2(OH2)4]n·6nH2O, by the combination of Cu (II) as the metal center with a pseudoamino acid (H2IBA = isophthaloyl bis β-alanine). Quantitative total X-ray fluorescence (TXRF) analyses show that the obtained CP can gradually release Cu (II) ions. Additionally, this CP can be nanoprocessed and transformed into a metal-organic gel (MOG) by using different Cu (II) salt concentrations and the application of ultrasounds. Considering its nanometric dimensions, the slow Cu (II) release and its simple processability, its performance as an artificial enzyme, and its antibacterial ability were explored. The results obtained show the first nanocoordination polymer acting as an artificial multienzyme (peroxidase, catalase, and superoxodismutase) exhibiting antibacterial activity in the presence of hydrogen peroxide, with selective behavior for three bacterium strains (S. spiritovirum, A. faecales, and B. cereus). Indeed, this CP shows a more robust inhibition capacity for Sphingobacterium. Going beyond that, as there are no comfortable and practically clinical tests capable of detecting the presence of Sphingobacteria, the compound can be easily embedded to form moldable gelatin that will facilitate the handling and low-cost commercial kits.
      PubDate: Mon, 11 Apr 2022 13:05:02 +000
  • Green Synthesis of Silver Nanoparticles Incorporated Aromatherapies
           Utilized for Their Antioxidant and Antimicrobial Activities against Some
           Clinical Bacterial Isolates

    • Abstract: There is a need to synthesize eco-friendly nanoparticles with more effective and potent antibacterial activities. A green and cost-effective method for the synthesis of silver nanoparticles (AgNPs) using Thymus vulgaris, Mentha piperita, and Zingiber officinale extracts was developed. The analytical instrumentation, namely, UV/Vis, absorption spectroscopy, FTIR, and scanning electron microscopy (SEM), was used to determine the developed AgNPs, confirming the functional groups involved in their reduction. Acidic molybdate, DPPH, and FRAP regents were reacted with AgNPs extract to evaluate their antioxidant, scavenging, and oxidative activities. The agar well diffusion method was used to determine the antibacterial potential of AgNPs extracts using clinical isolates. The developed AgNPs showed peaks at 25 cum\Diff, 50 cum\Diff, and 75 cum\Diff, respectively, of 16.59 ± 0.78, 45.94 ± 1.07, and 81.04 ± 0.98 nm, for Thymus vulgaris, Mentha piperita, and Zingiber officinale. SEM revealed uniform prepared and encapsulated AgNPs by plant extracts matrix. The FTIR shows the involvement of amide (-CO-NH2), carbonyl (-CO), and hydroxyl (-OH), which resulted in the reduction of AgNPs. The AgNPs extract showed significantly higher TAA, DPPH, and FRAP values than free AgNPs and plant extract (). Antibacterial of AgNPs extracts revealed various degrees of inhibition zones against Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus. The developed AgNPs extract showed acceptable antioxidant activities and noticeable antibacterial potential. The prepared green synthesized AgNPs showed a promising antibacterial activity against four multidrug-resistant clinical isolates, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus. Further, fractionated extracts other than crude extracts will be utilized in the preparation of AgNPs to get more efficient antibacterial activities for future work.
      PubDate: Mon, 11 Apr 2022 12:50:01 +000
  • Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A
           Comprehensive Review

    • Abstract: Carbon dots (CDs) provide distinctive advantages of strong fluorescence, good photostability, high water solubility, and outstanding biocompatibility, and thus are widely exploited as potential imaging agents for in vitro and in vivo bioimaging. Imaging is absolutely necessary when discovering the structure and function of cells, detecting biomarkers in diagnosis, tracking the progress of ongoing disease, treating various tumors, and monitoring therapeutic efficacy, making it an important approach in modern biomedicine. Numerous investigations of CDs have been intensively studied for utilization in bioimaging-supported medical sciences. However, there is still no article highlighting the potential importance of CD-based bioimaging to support various biomedical applications. Herein, we summarize the development of CDs as fluorescence (FL) nanoprobes with different FL colors for potential bioimaging-based applications in living cells, tissue, and organisms, including the bioimaging of various cell types and targets, bioimaging-supported sensing of metal ions and biomolecules, and FL imaging-guided tumor therapy. Current CD-based microscopic techniques and their advantages are also highlighted. This review discusses the significance of advanced CD-supported imaging-based in vitro and in vivo investigations, suggests the potential of CD-based imaging for biomedicine, and encourages the effective selection and development of superior probes and platforms for further biomedical applications.
      PubDate: Sun, 10 Apr 2022 11:05:02 +000
  • A Systematic Review and Network Meta-Analysis of Biomedical Mg Alloy and
           Surface Coatings in Orthopedic Application

    • Abstract: Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.
      PubDate: Thu, 31 Mar 2022 03:35:01 +000
  • Curcumin Is an Iconic Ligand for Detecting Environmental Pollutants

    • Abstract: The rapid increase in industrial revolution and the consequent environmental contamination demands continuous monitoring and sensitive detection of the pollutants. Nanomaterial-based sensing system has proved to be proficient in sensing environmental pollutants. The development of novel ligands for enhancing the sensing efficiency of nanomaterials has always been a challenge. However, the amendment of nanostructure with molecular ligand increases the sensitivity, selectivity, and analytical performance of the resulting novel sensing platform. Organic ligands are capable of increasing the adsorption efficacy, optical properties, and electrochemical properties of nanomaterials by reducing or splitting of band gap. Curcumin (diferuloylmethane) is a natural organic ligand that exhibits inherent fluorescence and electrocatalytic property. Due to keto-enol tautomerism, it is capable of giving sensitive signals such as fluorescence, luminescence, ultraviolet absorption shifts, and electrochemical data. Curcumin probes were also reported to give enhanced meterological performances, such as low detection limit, repeatability, reproducibility, high selectivity, and high storage stability when used with nanosystem. Therefore, research on curcumin-modified nanomaterials in the detection of environmental pollution needs a special focus for prototype and product development to enable practical use. Hence, this article reviews the role of curcumin as a natural fluorophore in optical and electrochemical sensing of environmentally significant pollutants. This review clearly shows that curcumin is an ideal candidate for developing and validating nanomaterials-based sensors for the detection of environmental pollutants such as arsenic, lead, mercury, boron, cyanide, fluoride, nitrophenol, trinitrotoluene, and picric acid and toxic gases such as ammonia and hydrogen chloride. This review will afford references for future studies and enable researchers to translate the lab concepts into industrial products.
      PubDate: Sun, 27 Mar 2022 13:05:01 +000
  • The Synthesis of Hydroxyapatite by Hydrothermal Process with Calcium
           Lactate Pentahydrate: The Effect of Reagent Concentrations, pH,
           Temperature, and Pressure

    • Abstract: Hydroxyapatite and other calcium phosphates in the form of whiskers are lately widely considered as fillers for biocomposites due to their special biological and reinforcing properties. Depending on the method of synthesis, apatite whiskers of various sizes and phase composition can be obtained. In our work, hydroxyapatite (HAp) whiskers were successfully prepared in reaction between calcium lactate pentahydrate and orthophosphoric acid. The advantage of the proposed technique is the simple but precise control of the HAp crystal morphology and high product purity which is necessary for biomedical applications. The effect of reagent concentrations, pH, reaction temperature, and pressure on HAp whiskers’ morphology and composition was investigated. In the result, we obtained hydroxyapatite of different morphology such as whiskers, hexagonal rods, and nanorods. The products were characterized by SEM, XRD, and FTIR. In this work, the synthesis of HAp whiskers by direct decomposition of calcium lactate pentahydrate chelates under hydrothermal conditions was showed for the first time.
      PubDate: Fri, 25 Mar 2022 07:20:01 +000
  • Computational Study on the Inhibitory Effect of Natural Compounds against
           the SARS-CoV-2 Proteins

    • Abstract: COVID-19 is more virulent and challenging to human life. In India, the Ministry of AYUSH recommended some strategies through Siddha, homeopathy, and other methods to effectively manage COVID-19 (Guidelines for AYUSH Clinical Studies in COVID-19, 2020). Kabasura Kudineer and homeopathy medicines are in use for the prevention and treatment of COVID-19 infection; however, the mechanism of action is less explored. This study aims to understand the antagonist activity of natural compounds found in Kabasura Kudineer and homeopathy medicines against the SARS-CoV-2 using computational methods. Potential compounds were screened against NSP-12, NSP-13, NSP-14, NSP-15, main protease, and spike proteins. Structure-based virtual screening results shows that, out of 14,682 Kabasura Kudineer compounds, the 250395, 129677029, 44259583, 44259584, and 88583189 compounds and, out of 3,112 homeopathy compounds, the 3802778, 320361, 5315832, 14590080, and 74029795 compounds have good scoring function against the SARS-CoV-2 structural and nonstructural proteins. As a result of docking, homeopathy compounds have a docking score ranging from −5.636 to 13.631 kcal/mol, while Kabasura Kudineer compounds have a docking score varying from −8.290 to −13.759 kcal/mol. It has been found that the selected compounds bind well to the active site of SARS-CoV-2 proteins and form hydrogen bonds. The molecular dynamics simulation study shows that the selected compounds have maintained stable conformation in the simulation period and interact with the target. This study supports the antagonist activity of natural compounds from Kabasura Kudineer and homeopathy against SARS-CoV-2’s structural and nonstructural proteins.
      PubDate: Fri, 25 Mar 2022 06:05:00 +000
  • Feasibility and Efficacy of a Degradable Magnesium-Alloy GBR Membrane for
           Bone Augmentation in a Distal Bone-Defect Model in Beagle Dogs

    • Abstract: We explored the feasibility and efficacy of a degradable magnesium (Mg) alloy guided bone regeneration (GBR) in the treatment of bone defects after tooth extraction. A GBR membrane (MAR-Gide (MG)) was used to treat a mandibular second molar (M2M)-distal bone defect (DBD). In eight beagle dogs, bilateral mandibular second and fourth premolars were hemi-sected. The distal roots were removed to create a two-wall bony defect of dimension 5 mm × 5 mm × 5 mm to simulate M2M-DBD. Thirty-two bone defects were assigned randomly into four groups according to GBR membranes (MG and Bio-Gide (BG)) applied and the time of killing (3 months and 6 months after surgery). The osteogenesis of bone defects and MG degradation were analyzed using micro-CT, histology (staining, tartrate-resistant acid phosphatase), and inductively coupled plasma mass spectrometry. MG did not increase the prevalence of infection, wound dehiscence, or subcutaneous emphysema compared with those using BG. Trabecular volume/total volume at 3 months (63.71 ± 10.4% vs. 59.97 ± 8.94%) was significantly higher in the group MG than that in the group BG. Implanted MG was degraded completely within 3 months, and “island-shaped” new bone was found near MG degradation products. A significant difference was not found in vertical bone height or percent of new bone formation (45.44 ± 12.28% vs. 43.49 ± 7.12%) between the groups. The concentration of rare-earth elements in mandibular lymph nodes of the group MG was significantly higher than that of the group BG () but did not lead to histopathological changes. In summary, MG exhibited good biocompatibility and clinical applicability compared with BG in vivo. The osteogenic effect of MG could be enhanced by regulating the degradation rate of Mg-alloy.
      PubDate: Wed, 23 Mar 2022 12:35:01 +000
  • Removal of Doxycycline from Water using Dalbergia sissoo Waste Biomass
           Based Activated Carbon and Magnetic Oxide/Activated Bioinorganic
           Nanocomposite in Batch Adsorption and Adsorption/Membrane Hybrid Processes

    • Abstract: The carbonaceous adsorbents, an activated carbon (AC) and a bioinorganic nanocomposite (MAC), were prepared using Dalbergia sissoo sawdust as waste biomass, in this study. Both the adsorbents were characterized by FTIR, EDX, SEM, XRD, TG/DTA, surface area, and a pore size analyzer. The adsorbents were used for the removal of an antibiotic, doxycycline (DC) antibiotic, from wastewater in order to minimize a load of antibiotics in industrial effluents and consequently the drug resistance problem. Initially, the effectiveness of adsorbent was confirmed using batch adsorption experiments where isothermal models like Langmuir, Freundlich Temkin, Jovanovic, and Harkins–Jura were utilized to govern the maximum adsorption capacity of AC and MAC while pseudo-first- and second-order kinetic models were used to estimate the values of different kinetic parameters. Langmuir model best accommodated the equilibrium data whereas the pseudo-second-order kinetic model finest trimmed the kinetics data. The effect of pH on adsorption was also evaluated where maximum removal was observed between pH 5 and 7 by both adsorbents. The effect of temperature on adsorption was evaluated where the entropy change (ΔS0) comes out to have a numerically positive value whereas Gibbs free energy change (ΔG0) and enthalpy change (ΔH0) were negative indicating the spontaneous nature and feasibility of the procedure. The robust technology of membrane separation is rapidly replacing the conventional technologies but at the same time suffers from the problem of membrane fouling. As pretreatment, the AC and MAC were used in hybrid with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes whereas permeate fluxes and percent retention of DC were compared for naked membrane operations and AC/membrane and MAC/membrane process. The permeate fluxes for MAC/membrane processes were greater as compared to AC/membrane and naked membrane processes showing the effectiveness of the bioinorganic composite as foul control and consequently recovery of DC from effluents. The percent retention of the UF membrane was lower as compared to NF and RO membranes. Improvement in percent retention for UF/AC, UF/MAC, NF/AC, NF/MAC, RO/AC, and RO/MAC was observed. The bioinorganic composite MAC contains a magnetic iron oxide which was effectively removed from slurry after use through the magnetic process and that was the main reason for high permeate fluxes in MAC/membrane operations.
      PubDate: Thu, 17 Mar 2022 07:05:01 +000
  • Role of Nanoparticles in Environmental Remediation: An Insight into Heavy
           Metal Pollution from Dentistry

    • Abstract: Environmental damage is without a doubt one of the most serious issues confronting society today. As dental professionals, we must recognize that some of the procedures and techniques we have been using may pose environmental risks. The usage and discharge of heavy metals from dental set-ups pollute the environment and pose a serious threat to the ecosystem. Due to the exclusive properties of nanosized particles, nanotechnology is a booming field that is being extensively studied for the remediation of pollutants. Given that the nanoparticles have a high surface area to volume ratio and significantly greater reactivity, they have been greatly considered for environmental remediation. This review aims at identifying the heavy metal sources and their environmental impact in dentistry and provides insights into the usage of nanoparticles in environmental remediation. Although the literature on various functions of inorganic nanoparticles in environmental remediation was reviewed, the research is still confined to laboratory set-ups and there is a need for more studies on the usage of nanoparticles in environmental remediation.
      PubDate: Thu, 17 Mar 2022 06:50:01 +000
  • Biogenic Synthesis of Silver Nanoparticles (AgNPs) Using Aqueous Leaf
           Extract of Buchanania lanzan Spreng and Evaluation of Their Antifungal
           Activity against Phytopathogenic Fungi

    • Abstract: Nanoparticles show the multidisciplinary versatile utility and are gaining the prime place in various fields, such as medicine, electronics, pharmaceuticals, electrical designing, cosmetics, food industries, and agriculture, due to their small size and large surface to volume ratio. Biogenic or green synthesis methods are environmentally friendly, economically feasible, rapid, free of organic solvents, and reliable over conventional methods. Plant extracts are of incredible potential in the biosynthesis of metal nanoparticles owing to their bountiful availability, stabilizing, and reducing ability. In the present study, the aqueous leaf extract of Buchanania lanzan Spreng was mixed with 0.5 mM silver nitrate and incubated at 70°C for 1 h and synthesized a good quantity of AgNPs. The synthesized AgNPs were characterized using UV-visible spectroscopy, X-ray diffractometry (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The maximum absorption of UV-visible spectra was obtained in the range of 420–430 nm. Furthermore, SEM and TEM results inferred that the size of the particles were 23–62 nm, spherical, crystalline, uniformly distributed, and negatively charged with the zeta potential of −27.6 mV. In addition, the antifungal activities of the AgNPs were evaluated against two phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici in vitro using poison food techniques on PDA media. The maximum rate of mycelia inhibition was found in 150 ppm concentration of AgNPs against both phytopathogenic fungi.
      PubDate: Thu, 10 Mar 2022 08:05:00 +000
  • Solanum tuberosum Leaf Extract Templated Synthesis of Co3O4 Nanoparticles
           for Electrochemical Sensor and Antibacterial Applications

    • Abstract: Green synthesis of metal oxide nanoparticles (NPs) is a viable alternative methodology because of cost-effective and availability of environmentally friendly templates for desired application, which has attracted the attention of researchers in recent years. In the present study, Co3O4 NPs were synthesized in various volume ratios in the presence of Solanum tuberosum leaf extract as a template. The synthesized Co3O4 NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), surface area electron diffraction (SAED), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and Fourier transform infrared (FTIR) spectroscopy. XRD analysis found that the average crystalline sizes for the 1 : 2, 1 : 1, and 2 : 1 volume ratios was 25.83, 21.05, and 27.98 nm, respectively. SEM-EDX and TEM analyses suggest that the green-synthesized Co3O4 NPs are spherical in shape without the presence of impurities. The band gap values of the 1 : 2, 1 : 1, and 2 : 1 volume ratios of Co3O4 NPs were found to be 1.83, 1.77, and 2.19 eV, respectively. FTIR analysis confirmed the presence of various bioactive ingredients within the leaf extract of Solanum tuberosum. Co3O4 NPs-modified electrodes showed better sensing capability towards ascorbic acid and citric acid due to enhanced electron transfer kinetics. Among three volume ratios (1 : 2, 1 : 1, and 2 : 1) of Co3O4 nanoelectrodes, 1 : 1 and 2 : 1 were identified as the best performing nanoelectrodes. This is possibly due to the high catalytic behavior and the more homogenized surface structure. Co3O4 (1 : 2) nanodrug showed the enhanced antibacterial activity (16 mm) towards S. aureus which is attributed to the formation of enhanced reactive oxygen species (ROS).
      PubDate: Tue, 08 Mar 2022 11:05:02 +000
  • Fluoride Coatings on Magnesium Alloy Implants

    • Abstract: After several years of research and development, it has been reported that magnesium alloys can be used as degradable metals in some medical device applications. Over the years, fluoride coatings have received increasing research attention for improving the corrosion resistance of magnesium. In this paper, different methods for preparing fluoride coatings and the characteristics of these coatings are reported for the first time. The influence of the preparation conditions of fluoride coatings, including the magnesium substrate, voltage, and electrolyte, on the coatings is discussed. Various properties of magnesium fluoride coatings are also summarized, with an emphasis on corrosion resistance, mechanical properties, and biocompatibility. We screened experiments and papers that planned the application of magnesium fluoride coatings in living organisms. We have selected the literature with the aim of enhancing the performance of in vivo implants for reading and further detailed classification. The authors searched PubMed, SCOPUS, Web of Science, and other databases for 688 relevant papers published between 2005 and 2021, citing 105 of them. The selected time range is the last 16 years. Furthermore, this paper systematically discusses future prospects and challenges related to the application of magnesium fluoride coatings to medical products.
      PubDate: Mon, 07 Mar 2022 07:20:01 +000
  • A Comprehensive Review of the Development of Carbohydrate Macromolecules
           and Copper Oxide Nanocomposite Films in Food Nanopackaging

    • Abstract: Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
      PubDate: Sat, 05 Mar 2022 04:05:00 +000
  • The Potential Application of Green-Synthesized Metal Nanoparticles in
           Dentistry: A Comprehensive Review

    • Abstract: Orodental problems have long been managed using herbal medicine. The development of nanoparticle formulations with herbal medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines, prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating oral cancers and providing a high level of oral healthcare. These are also found in toothpaste, mouthwash, and other dental care products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. This study reviews the green synthesis of MNPs applied in dentistry in recent studies (2010–2021).
      PubDate: Thu, 03 Mar 2022 11:05:01 +000
  • Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis,
           Characterization, and Unusual Mode of Anticancer Action

    • Abstract: One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.
      PubDate: Wed, 02 Mar 2022 10:35:00 +000
  • A Survey on Nanotechnology-Based Bioremediation of Wastewater

    • Abstract: Rainwater discharge and human impacts produce wastewater, which is a contaminated type of water. Sediments also discharge phosphate into the water column when there is a lack of dissolved oxygen in the water. Through the manufacturing of environmentally benign nanoparticles, nanotechnology may reduce the amount of money spent by enterprises to remediate such contaminants. Because of their improved physiological, biochemical, and biomechanical qualities, nanoparticles are getting prominence. The importance of the global wastewater dilemma is discussed in this survey. The use of nanomaterials in heavy metal remediation (HMR) and wastewater treatment is covered in this survey. This paper also discusses the benefits of nanotechnology over traditional approaches in certain fields. This survey aims to gather together many recent studies on nanoparticle production and their benefits as adsorbents in the remediation of wastewater which have been done so far. The promising role of nanotechnology in wastewater remediation is surveyed in this research, which also discusses recent developments in nanotechnology-mediated remediation methods. This survey examines the vital potential of nanotechnology in wastewater treatment, as well as recent breakthroughs in nanotechnology-mediated treatment systems.
      PubDate: Wed, 02 Mar 2022 07:05:00 +000
  • Biosynthesis and Characterization of Silver Nanoparticles Produced by
           Phormidium ambiguum and Desertifilum tharense Cyanobacteria

    • Abstract: The world faces a challenge with the pervasion of multidrug-resistant bacteria that encourages scientists to develop and discover alternative, ecofriendly, and easy-to-produce new antibacterial agents. Our work is part of the greater effort of scientists around the world to achieve this goal by the biological synthesis of silver nanoparticles using cyanobacterial extracellular and intracellular components as nonchemical reducing agents. Two Egyptian cyanobacteria were isolated and identified according to 16S rRNA gene sequencing as Phormidium ambiguum and a novel species Desertifilum tharense. The sequences were deposited with accession numbers MW762709 and MW762710 for Desertifilum tharense and Phormidium ambiguum, respectively, in the GenBank. The results of UV-Vis analysis showed promising extracellular Ag-NPs synthesis by Desertifilum tharense and Phormidium ambiguum under light conditions. Therefore, these Ag-NPs were characterized and evaluated for antibacterial and antioxidant activity. TEM and SEM analyses revealed the spherical crystals with face-centered cubic structures and size range of 6.24–11.4 nm and 6.46–12.2 nm for Ag-NPs of Desertifilum tharense and Phormidium ambiguum, respectively. XRD and EDX results confirmed the successful synthesis of Ag-NPs in their oxide form or chloride form. The FTIR spectrum data confirmed the presence of hydroxyl and amide groups. Desertifilum tharense Ag-NPs displayed the largest inhibition zone that ranged from 9 mm against Micrococcus luteus ATCC 10240 to 25 mm against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. For Phormidium ambiguum Ag-NPs, the inhibition zone diameter was in the range of 9 mm to 18 mm. The biosynthesized Ag-NPs significantly inhibited the growth of medically important resistance-pathogenic Gram-positive and Gram-negative bacteria. The Ag-NPs of Phormidium ambiguum exhibited the highest scavenging activity of 48.7% when compared with that of Desertifilum tharense, which displayed 43.753%.
      PubDate: Mon, 28 Feb 2022 07:20:03 +000
  • Waterborne Antifouling Paints Containing Nanometric Copper and Silver
           against Marine Bacillus Species

    • Abstract: Due to the concern to find an alternative to reduce the colonization (microfouling and macrofouling) or the biocorrosion of surfaces submerged for long periods in water, we evaluated the antifouling activity of a commercial paint added with silver nanoparticles (AgNP’s) and copper nanoparticles (CuNP’s), beside copper-soybean chelate, by electrolytic synthesis, using them in low concentrations (6.94E − 04 mg Ag g−1 paint, 9.07E − 03 mg Cu g−1 paint, and 1.14E − 02 mg Cu g−1 paint, respectively). The test for paint samples was carried out by JIS Z2801-ISO 22196 for periods of initial time, 6 months, and 12 months, against three bacterial strains of marine origin, Bacillus subtilis, Bacillus pumilus, and Bacillus altitudinis. It was possible to demonstrate, according to the standard, that the sample with the greatest antimicrobial activity was the copper-soybean chelate against two of the three strains studied (B. pumilus with R = 2.11 and B. subtilis with R = 2.41), which represents more than 99% of bacterial inhibition. Therefore, we considered a novel option for inhibiting bacterial growth with nanoparticles as antifouling additives.
      PubDate: Tue, 15 Feb 2022 09:35:01 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-