Subjects -> PHYSICS (Total: 857 journals)
    - MECHANICS (22 journals)
    - NUCLEAR PHYSICS (53 journals)
    - OPTICS (92 journals)
    - PHYSICS (625 journals)
    - SOUND (25 journals)
    - THERMODYNAMICS (30 journals)

OPTICS (92 journals)

Showing 1 - 91 of 91 Journals sorted alphabetically
ACS Photonics     Hybrid Journal   (Followers: 16)
Advanced Optical Materials     Hybrid Journal   (Followers: 11)
Advanced Photonics     Open Access   (Followers: 3)
Advanced Photonics Research     Open Access   (Followers: 2)
Advances In Atomic, Molecular, and Optical Physics     Full-text available via subscription   (Followers: 24)
Advances in Nonlinear Optics     Open Access   (Followers: 9)
Advances in Optical Technologies     Open Access   (Followers: 3)
Advances in Optics     Open Access   (Followers: 11)
Advances in Optics and Photonics     Full-text available via subscription   (Followers: 17)
Annual Review of Vision Science     Full-text available via subscription   (Followers: 4)
APL : Organic Electronics and Photonics     Hybrid Journal   (Followers: 3)
Applied Optics     Hybrid Journal   (Followers: 48)
Applied Physics B: Lasers and Optics     Hybrid Journal   (Followers: 34)
Atmospheric and Oceanic Optics     Hybrid Journal   (Followers: 8)
Biomedical Optics Express     Open Access   (Followers: 6)
Biomedical Photonics     Open Access  
Chinese Optics Letters     Full-text available via subscription   (Followers: 8)
EPJ Photovoltaics     Open Access   (Followers: 2)
European Journal of Hybrid Imaging     Open Access  
Fiber and Integrated Optics     Hybrid Journal   (Followers: 21)
Frontiers of Optoelectronics     Hybrid Journal   (Followers: 3)
High Power Laser Science and Engineering     Open Access   (Followers: 4)
Hindsight : The Journal of Optometry History     Open Access   (Followers: 1)
IEEE Photonics Journal     Open Access   (Followers: 17)
IEEE Photonics Technology Letters     Hybrid Journal   (Followers: 14)
International Journal of Optics     Open Access   (Followers: 14)
International Journal of Optics and Applications     Open Access   (Followers: 7)
International Journal of Optoelectronic Engineering     Open Access   (Followers: 1)
International Journal of Spectroscopy     Open Access   (Followers: 6)
International Journal of Sustainable Lighting     Open Access  
Journal of Astronomical Telescopes, Instruments, and Systems     Hybrid Journal   (Followers: 6)
Journal of Atomic, Molecular, and Optical Physics     Open Access   (Followers: 13)
Journal of Biomedical Photonics & Engineering     Open Access  
Journal of Laser Applications     Full-text available via subscription   (Followers: 14)
Journal of Mass Spectrometry and Advances in the Clinical Lab     Open Access  
Journal of Modern Optics     Hybrid Journal   (Followers: 12)
Journal of Nanoelectronics and Optoelectronics     Full-text available via subscription   (Followers: 1)
Journal of Nonlinear Optical Physics & Materials     Hybrid Journal   (Followers: 2)
Journal of Optical Microsystem     Hybrid Journal   (Followers: 1)
Journal of Optical Technology     Full-text available via subscription   (Followers: 4)
Journal of Optics     Hybrid Journal   (Followers: 14)
Journal of Optics Applications     Open Access   (Followers: 14)
Journal of Optoelectronics Engineering     Open Access   (Followers: 5)
Journal of Photonics     Open Access   (Followers: 5)
Journal of Photonics for Energy     Hybrid Journal   (Followers: 2)
Journal of Physics B: Atomic, Molecular and Optical Physics     Hybrid Journal   (Followers: 32)
Journal of the Optical Society of America A     Hybrid Journal   (Followers: 11)
Journal of the Optical Society of America B     Hybrid Journal   (Followers: 12)
Journal of the Optical Society of Korea     Open Access   (Followers: 2)
Laser & Photonics Reviews     Hybrid Journal   (Followers: 5)
Laser Physics     Hybrid Journal   (Followers: 2)
Lasers in Medical Science     Hybrid Journal   (Followers: 2)
LEUKOS : The Journal of the Illuminating Engineering Society     Hybrid Journal  
Materials Today Electronics     Open Access   (Followers: 2)
Microwave and Optical Technology Letters     Hybrid Journal   (Followers: 11)
Nature Photonics     Full-text available via subscription   (Followers: 37)
Ophthalmic and Physiological Optics     Hybrid Journal   (Followers: 4)
Optica     Open Access   (Followers: 6)
Optical and Quantum Electronics     Hybrid Journal   (Followers: 3)
Optical Engineering     Hybrid Journal   (Followers: 22)
Optical Fiber Technology     Hybrid Journal   (Followers: 8)
Optical Materials     Hybrid Journal   (Followers: 10)
Optical Materials : X     Open Access  
Optical Materials Express     Open Access   (Followers: 7)
Optical Memory and Neural Networks     Hybrid Journal   (Followers: 2)
Optical Nanoscopy     Open Access   (Followers: 1)
Optical Review     Hybrid Journal   (Followers: 2)
Optics & Laser Technology     Hybrid Journal   (Followers: 26)
Optics and Lasers in Engineering     Hybrid Journal   (Followers: 37)
Optics and Photonics Journal     Open Access   (Followers: 18)
Optics and Photonics Letters     Open Access   (Followers: 11)
Optics and Photonics News     Partially Free   (Followers: 7)
Optics and Spectroscopy     Hybrid Journal   (Followers: 8)
Optics Communications     Hybrid Journal   (Followers: 17)
Optics Express     Open Access   (Followers: 23)
Optics Letters     Hybrid Journal   (Followers: 19)
Optik     Hybrid Journal   (Followers: 9)
Optik & Photonik     Open Access  
Optoelectronics Letters     Hybrid Journal   (Followers: 1)
Photochem     Open Access  
Photonic Sensors     Open Access   (Followers: 8)
Photonics     Open Access   (Followers: 4)
Photonics Letters of Poland     Open Access  
Photonics Research     Open Access   (Followers: 2)
PhotonicsViews     Hybrid Journal  
Progress in Optics     Full-text available via subscription   (Followers: 6)
Results in Optics     Open Access   (Followers: 3)
SIAM Journal on Imaging Sciences     Hybrid Journal   (Followers: 7)
Thin Solid Films     Hybrid Journal   (Followers: 11)
Trends in Opto-Electro & Optical Communications     Full-text available via subscription   (Followers: 1)
Virtual Journal for Biomedical Optics     Hybrid Journal   (Followers: 1)
Similar Journals
Journal Cover
High Power Laser Science and Engineering
Journal Prestige (SJR): 0.901
Citation Impact (citeScore): 3
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2095-4719 - ISSN (Online) 2052-3289
Published by Cambridge University Press Homepage  [352 journals]
  • High temporal contrast 1053 nm laser source based on optical parametric
           amplification and second-harmonic generation

    • Authors: Shen; Liya, Li, Yanyan, Li, Wenkai, Song, Jiajun, Qian, Junyu, Sun, Jianyu, Feng, Renyu, Peng, Yujie, Leng, Yuxin
      First page: 1
      Abstract: Temporal contrast directly affects the interaction between ultraintense and ultrashort pulse lasers with matter. Seed laser sources with broad bandwidth and high temporal contrast are significant for overall temporal contrast enhancement. The technique of cascaded nonlinear processes with optical parametric amplification and second-harmonic generation is demonstrated for high temporal contrast seed source generation. Within 40 ps before the main pulse, the temporal contrast reaches over 1011. The pulse energy and duration of the high-contrast pulse are 112 μJ and 70 fs, respectively. Considering its high beam quality and stability, this laser source can serve as a high-quality seed for Nd:glass-based ultraintense and ultrashort pulse laser facilities.
      PubDate: 2023-01-25
      DOI: 10.1017/hpl.2022.39
  • Demonstration of a petawatt-scale optical parametric chirped pulse
           amplifier based on yttrium calcium oxyborate

    • Authors: Sun; Meizhi, Kang, Jun, Liang, Xiao, Zhu, Haidong, Yang, Qingwei, Gao, Qi, Guo, Ailin, Zhu, Ping, Zhang, Panzheng, Li, Linjun, Qiu, Lijuan, Lu, Zhantao, Wang, Sheng, Tu, Xiaoniu, Xie, Xinglong, Zhu, Jianqiang
      First page: 2
      Abstract: As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.
      PubDate: 2023-01-23
      DOI: 10.1017/hpl.2023.7
  • A 100-PW compressor based on single-pass single-grating pair

    • Authors: Du; Shuman, Shen, Xiong, Liang, Wenhai, Wang, Peng, Liu, Jun, Li, Ruxin
      First page: 4
      Abstract: A multistep pulse compressor (MPC) based on a single-pass single-grating pair (SSGP) is proposed to simplify the entire multi-petawatt (PW) compressor. Only one grating pair with relatively long perpendicular distance is used to generate the same amount of spectral chirp compared with a four-grating main compressor. As SSGP compressor induces the largest spatial chirp, it can introduce the best beam-smoothing effect to the laser beam on the last grating. When considering the diffraction loss of only two gratings, the total compression efficiency of the SSGP compressor is even larger than that of a four-grating main compressor. Furthermore, the wavefront aberration induced by the SSGP compressor can be better compensated by using deformable mirrors; however, it is difficult or complicated to be well compensated in a four-grating compressor. Approximately 50–100 PW laser pulses can be obtained using this SSGP-based multistage-smoothing MPC with a single laser beam.
      PubDate: 2023-01-13
      DOI: 10.1017/hpl.2023.5
  • Ultra-broadband pulse generation via hollow-core fiber compression and
           frequency doubling for ultra-intense lasers

    • Authors: Li; Yanyan, Shao, Beijie, Peng, Yujie, Qian, Junyu, Li, Wenkai, Wang, Xinliang, Liu, Xingyan, Lu, Xiaoming, Xu, Yi, Leng, Yuxin, Li, Ruxin
      First page: 5
      Abstract: We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is>1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.
      PubDate: 2023-01-11
      DOI: 10.1017/hpl.2022.44
  • Applications of object detection networks in high-power laser systems and

    • Authors: Lin; Jinpu, Haberstroh, Florian, Karsch, Stefan, Döpp, Andreas
      First page: 7
      Abstract: The recent advent of deep artificial neural networks has resulted in a dramatic increase in performance for object classification and detection. While pre-trained with everyday objects, we find that a state-of-the-art object detection architecture can very efficiently be fine-tuned to work on a variety of object detection tasks in a high-power laser laboratory. In this paper, three exemplary applications are presented. We show that the plasma waves in a laser–plasma accelerator can be detected and located on the optical shadowgrams. The plasma wavelength and plasma density are estimated accordingly. Furthermore, we present the detection of all the peaks in an electron energy spectrum of the accelerated electron beam, and the beam charge of each peak is estimated accordingly. Lastly, we demonstrate the detection of optical damage in a high-power laser system. The reliability of the object detector is demonstrated over 1000 laser shots in each application. Our study shows that deep object detection networks are suitable to assist online and offline experimental analysis, even with small training sets. We believe that the presented methodology is adaptable yet robust, and we encourage further applications in Hz-level or kHz-level high-power laser facilities regarding the control and diagnostic tools, especially for those involving image data.
      PubDate: 2023-01-13
      DOI: 10.1017/hpl.2023.1
  • High-performance 800–1050 nm seed pulses based on spectral broadening
           and filtering for petawatt lasers

    • Authors: Liang; Wenhai, Chen, Renjing, Xu, Yilin, Xuan, Yaping, Wang, Peng, Liu, Jun, Li, Ruxin
      First page: 8
      Abstract: High-performance 86 μJ, 11.2 fs pulses with a spectrum range of 800–1050 nm are generated based on 1030 nm, 190 fs Yb femtosecond pulses by using multi-plate-based spectral broadening and filtering. Taking advantage of single beam configuration, the obtained pulses have excellent power and spectral stabilities. Since the output spectrum is obtained by spectrally filtering the broadened components, the temporal contrast of the output pulses is enhanced by at least four orders of magnitude. Together with the robust and simple setup, the proposed method is expected to be a competitive option for the generation of seed pulses for 10s–100s petawatt lasers.
      PubDate: 2023-01-06
      DOI: 10.1017/hpl.2023.2
  • Laser wakefield accelerator modelling with variational neural networks

    • Authors: Streeter; M. J. V., Colgan, C., Cobo, C. C., Arran, C., Los, E. E., Watt, R., Bourgeois, N., Calvin, L., Carderelli, J., Cavanagh, N., Dann, S. J. D., Fitzgarrald, R., Gerstmayr, E., Joglekar, A. S., Kettle, B., Mckenna, P., Murphy, C. D., Najmudin, Z., Parsons, P., Qian, Q., Rajeev, P. P., Ridgers, C. P., Symes, D. R., Thomas, A. G. R., Sarri, G., Mangles, S. P. D.
      First page: 9
      Abstract: A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
      PubDate: 2023-01-06
      DOI: 10.1017/hpl.2022.47
  • A 110 W fiber gas Raman laser at 1153 nm

    • Authors: Cui; Yulong, Tian, Xin, Rao, Binyu, Li, Hao, Huang, Wei, Pei, Wenxi, Wang, Meng, Chen, Zilun, Wang, Zefeng
      First page: 10
      Abstract: We report here the first hundred-watt continuous wave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
      PubDate: 2023-02-28
      DOI: 10.1017/hpl.2022.43
  • 2.1 $\unicode{x3bc}$ m, high-energy dissipative soliton resonance from a
           holmium-doped fiber laser system

    • Authors: Zhao; Desheng, Zhang, Bin, Zhu, Xiran, Liu, Shuailin, Jiang, Li, Dou, Zhiyuan, Yang, Linyong, Hou, Jing
      First page: 12
      Abstract: We propose a 2.1 μm high-energy dissipative soliton resonant (DSR) fiber laser system based on a mode-locked seed laser and dual-stage amplifiers. In the seed laser, the nonlinear amplifying loop mirror technique is employed to realize mode-locking. The utilization of an in-band pump scheme and long gain fiber enables effectively exciting 2.1 μm pulses. A section of ultra-high numerical aperture fiber (UHNAF) with normal dispersion and high nonlinearity and an output coupler with a large coupling ratio are used to achieve a high-energy DSR system. By optimizing the UHNAF length to 55 m, a 2103.7 nm, 88.1 nJ DSR laser with a 3-dB spectral bandwidth of 0.48 nm and a pulse width of 17.1 ns is obtained under a proper intracavity polarization state and pump power. The output power and conversion efficiency are 0.233 W and 4.57%, respectively, both an order of magnitude higher than those of previously reported holmium-doped DSR seed lasers. Thanks to the high output power and nanosecond pulse width of the seed laser, the average power of the DSR laser is linearly scaled up to 50.4 W via a dual-stage master oscillator power amplifier system. The 3-dB spectral bandwidth broadens slightly to 0.52 nm, and no distortion occurs in the amplified pulse waveform. The corresponding pulse energy reaches 19.1 μJ, which is the highest pulse energy in a holmium-doped mode-locked fiber laser system to the best of our knowledge. Such a 2.1 μm, high-energy DSR laser with relatively wide pulse width has prospective applications in mid-infrared nonlinear frequency conversion.
      PubDate: 2023-01-17
      DOI: 10.1017/hpl.2023.3
  • Angle amplifier in a 2D beam scanning system based on peristrophic
           multiplexed volume Bragg gratings

    • Authors: Dong; Yuanzhi, Jin, Yunxia, Kong, Fanyu, Zhao, Jingyin, Mo, Jianwei, He, Dongbing, Sun, Jing, Shao, Jianda
      First page: 13
      Abstract: In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.
      PubDate: 2023-01-05
      DOI: 10.1017/hpl.2022.42
  • Diode-pumped high-power continuous-wave intracavity frequency-doubled
           Pr3+:YLF ultraviolet lasers around 349 nm

    • Authors: Lin; Xiuji, Zhang, Zheng, Ji, Shuaihao, Fang, Run, Xiao, Bo, Xu, Huiying, Cai, Zhiping
      First page: 6
      Abstract: High-power continuous-wave ultraviolet lasers are useful for many applications. As ultraviolet laser sources, the wavelength switching capability and compact structure are very important to extend the applicability and improve the flexibility in practical applications. In this work, we present two simple and relatively compact schemes by laser diode pumping to obtain a watt-level single-wavelength 348.7-nm laser and discrete wavelength tunable ultraviolet lasers around 349 nm (from 334.7 to 364.5 nm) by intracavity frequency doubling based on Pr3+:YLF and -BBO crystals. The maximum output power of the single-wavelength 348.7-nm laser is 1.033 W. The output powers of the discrete wavelength tunable lasers are at the level of tens of milliwatts, except for two peaks at 348.7 and 360.3 nm with output powers of approximately 500 mW. In addition, simulations are carried out to explain the experimental results and clarify the tuning mechanisms.
      PubDate: 2022-12-05
      DOI: 10.1017/hpl.2022.32
  • High-peak-power random Yb-fiber laser with intracavity Raman-frequency
           comb generation

    • Authors: Liu; Xinxing, Hao, Wenhui, Yang, Zhihui, Tang, Yulong
      First page: 11
      Abstract: The random fiber laser (RFL) has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices. However, it is challenging for RFLs to regulate their emission into regular narrow pulses due to their intrinsic randomness. Here, through engineering the laser configuration (cavity Q value, gain distribution and nonlinearity), we demonstrate that narrow (~2.5 ns) pulses with record peak power as high as 64.3  kW are achieved from a self-Q-switched random ytterbium fiber laser. Based on high intracavity intensity and efficient interplay of multiple nonlinear processes (stimulated Brillouin scattering, stimulated Raman scattering and four-wave mixing), an over-one-octave visible-near-infrared (NIR) Raman-frequency comb is generated from single-mode silica fibers for the first time. After spectrally filtering the Raman peaks, wavelength-tunable pulses with durations of several hundreds of picoseconds are obtained. Such a high-peak-power random Q-switched fiber laser and wide frequency comb in the visible-NIR region can find applications in diverse areas, such as spectroscopy, biomedical imaging and quantum information.
      PubDate: 2022-12-15
      DOI: 10.1017/hpl.2022.40
  • Short mid-infrared watt-level all-fiber nonlinear pulse compressor above
           100-MHz pulse repetition rate

    • Authors: Shang; Jingcheng, Mei, Chao, Zhao, Shengzhi, Liu, Yizhou, Yang, Kejian, Wang, Chun, Li, Tao, Feng, Tianli
      First page: 14
      Abstract: We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.
      PubDate: 2022-12-23
      DOI: 10.1017/hpl.2022.45
  • Impact of temporal modulations on laser-induced damage of fused silica at
           351 nm

    • Authors: Bouyer; C., Parreault, R., Roquin, N., Natoli, J.-Y., Lamaignère, L.
      First page: 15
      Abstract: Laser-induced damage (LID) on high-power laser facilities is one of the limiting factors for the increase in power and energy. Inertial confinement fusion (ICF) facilities such as Laser Mégajoule or the National Ignition Facility use spectral broadening of the laser pulse that may induce power modulations because of frequency modulation to amplitude modulation conversion. In this paper, we study the impact of low and fast power modulations of laser pulses both experimentally and numerically. The MELBA experimental testbed was used to shape a wide variety of laser pulses and to study their impact on LID. A 1D Lagrangian hydrodynamic code was used to understand the impact of different power profiles on LID.
      PubDate: 2022-12-27
      DOI: 10.1017/hpl.2022.41
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-