Subjects -> PHYSICS (Total: 857 journals)
    - ELECTRICITY AND MAGNETISM (10 journals)
    - MECHANICS (22 journals)
    - NUCLEAR PHYSICS (53 journals)
    - OPTICS (92 journals)
    - PHYSICS (625 journals)
    - SOUND (25 journals)
    - THERMODYNAMICS (30 journals)

THERMODYNAMICS (30 journals)

Showing 1 - 29 of 29 Journals sorted alphabetically
Advances in Heat Transfer     Full-text available via subscription   (Followers: 26)
Applied Thermal Engineering     Hybrid Journal   (Followers: 41)
Araucaria. Revista Iberoamericana de FilosofĂ­a, PolĂ­tica y Humanidades     Open Access  
Archives of Thermodynamics     Open Access   (Followers: 9)
Chemical Thermodynamics and Thermal Analysis     Open Access   (Followers: 8)
Condensed Matter Physics     Open Access   (Followers: 2)
Diffusion Foundations     Full-text available via subscription   (Followers: 4)
European Journal of Mechanics - B/Fluids     Hybrid Journal   (Followers: 5)
Experimental Heat Transfer     Hybrid Journal   (Followers: 17)
Experimental Thermal and Fluid Science     Hybrid Journal   (Followers: 35)
Fluids     Open Access   (Followers: 1)
Heat and Mass Transfer     Hybrid Journal   (Followers: 28)
Heat Transfer Engineering     Hybrid Journal   (Followers: 37)
High Temperature     Hybrid Journal   (Followers: 2)
HTM Journal of Heat Treatment and Materials     Full-text available via subscription   (Followers: 3)
International Journal of Thermodynamics     Open Access   (Followers: 11)
International Journal of Thermophysics     Hybrid Journal   (Followers: 7)
Journal of Thermodynamics & Catalysis     Open Access   (Followers: 6)
Journal of Chemical Thermodynamics     Hybrid Journal   (Followers: 4)
Journal of Low Temperature Physics     Hybrid Journal   (Followers: 9)
Journal of Non-Newtonian Fluid Mechanics     Hybrid Journal   (Followers: 16)
Journal of Thermal Science     Hybrid Journal   (Followers: 21)
Journal of Thermal Spray Technology     Hybrid Journal   (Followers: 5)
Journal of Thermodynamics     Open Access   (Followers: 7)
Journal of Thermophysics and Heat Transfer     Hybrid Journal   (Followers: 93)
Low Temperature Physics     Hybrid Journal   (Followers: 6)
Metal Science and Heat Treatment     Hybrid Journal   (Followers: 36)
Quantitative InfraRed Thermography Journal     Hybrid Journal  
Thermophysics and Aeromechanics     Hybrid Journal   (Followers: 6)
Similar Journals
Journal Cover
International Journal of Thermodynamics
Journal Prestige (SJR): 0.233
Citation Impact (citeScore): 1
Number of Followers: 11  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1301-9724 - ISSN (Online) 2146-1511
Published by International Centre for Applied Thermodynamics Homepage  [1 journal]
  • Calculation of Complex Chemical Equilibrium Using Optimization Package
           Ipopt

    • Authors: Gleb BELOV; N. M. ARİSTOVA
      Abstract: An approach to the calculation of complex chemical equilibrium using the open-source optimization package Ipopt and the open-source package JuMP is proposed. The code of two procedures written in the open-source Julia programming language for calculating the equilibrium composition and properties of multicomponent heterogeneous thermodynamic systems is presented. The results of the test calculations showed a good performance of the code and a relatively high speed of calculations. Due to the compactness and simplicity of the code, it can be easily integrated into other applications, or used in combination with more complex models.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • Economic, Enviroeconomic Analysis Of Active Solar Still Using Al2O3
           Nanoparticles

    • Authors: Dharamveer SİNGH
      Abstract: The water scarcity is primary need of analysis. The current study analyses the Economic and Enviro-economic of an N-identical (N-PVTCPC) collector double slope solar desalination units (DS-DU) with a heat exchanger (HE) using water based Al2O3 nanoparticles. An analytical program fed into MATLAB, and the analysis was monitored on an annual basis New Delhi, India. The Indian Metrological Department in Pune, India provided the input data necessary for the mathematical procedure. Considering the energy production of the winter and summer, the average yearly energy production will be calculated. The system performance has been analyzed based on Economic and Enviro-economic. In an economic analysis was performed for 15 years has found for cost of water 1.25, 1.51, and 1.79₹/kg respectively, Enviro-economic analysis for life span of 15, 20, and 30 years have found CO2 mitigation/ton 40.85, 57.46, and 90.67 kg/ton respectively and carbon credit earned 204.26, 287.30, and 453.36 ($) respectively. The proposed system has foundenergy, yield, and productivity 7.31%, 8.5%, and 5.17% greater respectively. Therefore overall the proposed system found better to previous system.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • Comparative Evaluation for Selected Gas Turbine Cycles

    • Authors: Mohamed ELWARDANY; Abd El-moneim M. NASSİB, Hany A. MOHAMED
      Abstract: The energy and exergy evaluation of simple gas turbine (SGT), gas turbine with air bottoming cycle (GT-ABC), and partial oxidation gas turbine (POGT) are studied. The governing equations for each cycle are solved using energy equation Solver (EES) software. The characteristics performance for selected cycles are discussed and verified with that obtained for available practical cycles (SGT, GT-ABC, POGT). The present results show a good agreement with the practical one. The effects of significant operational parameters, turbine inlet temperature (TIT), compression ratio (CR), and compressor inlet temperature (CIT), on the specific fuel consumption, energy and exergy efficiencies are discussed. According to the findings, a reduction in CIT and a rise in TIT and CR led to enhance energy and exergy efficiency for each configuration with different ranges. Results revealed that the GT-ABC and POGT cycles are more efficient than those of SGT at the same operational parameters. The energy and exergy efficiencies are 38.4%, 36.2% for SGT, 40%, 37.8 % for GT-ABC, and 41.6%, 39.3% for POGT. The POGT cycle has a better energy and exergy performance at a lower pressure ratio than the SGT and GT-ABC.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • Thermodynamic Properties of Selected Bicyclic Terpenes and Related
           Substances by Gas Chromatography and Group Contributions

    • Authors: Luciana FONSECA; Carlos Eduardo Lima OLİVEİRA, Marco Aurélio CREMASCO
      Abstract: Terpene compounds in the lower layer of the atmosphere can contribute to environmental problems through the formation of particulate material known as secondary organic aerosol (SOA). A clear understanding of the formation and composition of these particles hinges on reliable thermodynamic data. Quick estimation of these physical properties is highly desired. While experimental methods require significant resources and time, the prediction of pure-component properties through group contributions is easily applicable and straightforward. The present study compares the experimental enthalpies of vaporization at 298.15 K for bicyclic terpenes and related substances derived from the gas chromatography technique with estimated values provided by three group contribution methods. A new group contribution model specifically designed for terpene compounds is introduced. Furthermore, this study reveals previously unreported values in the literature for the enthalpy of vaporization at 298.15 K and the normal boiling temperature of Thymol methyl ether, Fenchyl alcohol, and Bicyclo [4.1.0] heptane-7-carboxylic acid.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • High-Pressure Calibration TiN Equation of State

    • Authors: Sırwan KAREEM; Mohammad UONİS, Raed ALSAQA
      Abstract: High pressure is becoming an interesting area of research for originating vital properties in crystalline solids. In the present study, the pressure equation of the state of TiN was investigated by employing various equations of state (EoS) presented in the literature, such as Dodson EoS, Barden EOS, Birch-Murnaghan (B-M) EoS. The EoSs were processed to find the high-pressure effects on the characterizations of TiN such as volume compression ratio, bulk modulus B, Grüneisen parameter, and phonon frequency spectrum. It was shown that a gigantic pressure results in a significant reduction in the volume of the TiN material, and the volume compression ratio reduction, is almost the same for the existing equations of state and the comparative literature results up to a pressure of 80 GPa. The maximum pressure difference is observed to be 4.85 GPa. over the entire pressure of 120GPa. Increasing the bulk modulus with high pressure was expected by the present EoSs, and up to the pressure of about 60 GPa, all curves of bulk modulus are matched with each other. Eventually, a fair comparison has been made between the present results and the first principle approximation along with the generalized gradient approximation method in which a perfect agreement was observed. Finally, the feasibility of TiN EoS as a standard pressure calibration was demonstrated.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • Experimental Investigations on Single-Phase Heat Transfer Enhancement in
           an Air-To-Water Heat Exchanger with Rectangular Perforated Flow Deflector
           Baffle Plate

    • Authors: Atıqur RAHMAN
      Abstract: Experimental analysis was conducted to investigate the turbulent heat transfer behaviors within a tubular heat exchanger, incorporating a novel baffle plate design. The new design includes a perforated circular baffle plate with a rectangular flow deflector that can be adjusted to different inclination angles. The baffle plate is strategically positioned at the entrance of the heat exchanger, resulting in a swirling flow downstream. To assess the impact of the baffle plate design, three baffle plates were placed longitudinally along the flow, with varying pitch ratios (l/D). The effects of pitch ratio (ranging from 0.6 to 1.2), deflector inclination angle (ranging between 30⁰ to 50⁰), and Reynolds numbers (ranging between 16000 to 29000) were examined. The outcomes highlighted the substantial impact of pitch ratio and inclination angle on the thermal enhancement factor. In particular, compared to single segmental baffle plates working under similar operating conditions. The result indicates that an inclination angle of 30° and a pitch ratio of 1 exhibited an average 41.49% augmentation in thermal-fluidic performance compared with an exchanger with a segmental baffle plate.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • New Thermodynamic Equation of State for Refrigerant HFO-1243zf

    • Authors: I Made ASTİNA; Hilmy Ilham ALFİSAHRİ
      Abstract: R-1243zf is a new refrigerant that could replace R-134a. Its thermodynamic properties represented in the equation of state (EOS) play an essential role in analyzing and designing thermal systems. The EOS exists without including caloric property data due to unavailable data during the development time. New EOS was developed explicitly in Helmholtz free energy and optimized to represent the experimental data accurately and maintain thermodynamic consistency. The optimization process undergoes using a genetic algorithm and weighted-least squares regression. The experimental data used in the optimization have a range of 233–430 K and 0.106–34.6 MPa and were validated from the extrapolation and consistency to confirm the reliability. The average absolute deviation from the data is 0.48% for the ideal gas isobaric specific heat, 1.7% for the isochoric specific heat, 0.33% for the speed of sound, 0.22% for the liquid density in single-phase, 0.49% for the vapor density in single-phase, 0.96% for the vapor pressure, 2.2% for the saturated liquid density, and 3.2% for the saturated vapor density. The EOS has a reasonable extrapolation behavior from the triple point up to 700 K and 100 MPa.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • Phase Transition Thermodynamic Properties Of 2-Methylquinoline,
           2-Chloroquinoline And 2-Phenylquinoline

    • Authors: Rawand ABDULLAH; Boris SOLOMONOV
      Abstract: Derivatives of quinoline are widely utilized in both industries and in healthcare. To understand the quinolines' quality and stability in usage, it is crucial to study their phase transition chemical thermodynamic characteristics. In this work, the phase transition thermodynamic characters of 2-methylquinoline (quinaldine), 2-chloroquinoline, and 2-phenylquinoline were investigated. Moreover, the sublimation/vaporization enthalpy of the compounds were determined the solution calorimetry-additivity scheme approach at 298.15 K. The solution calorimetry was applied to measure solution enthalpies of the compounds in benzene solvent at 298.15 K. While, the solvation enthalpy of the compounds were calculated additivity scheme approach. In addition, the transpiration method applied to estimate vapor pressure to temperature dependency to 2-Chloroquinoline. In consequence, the vapor pressure values with respect to temperature variation was determined to 2-Chloroquinoline compound for the first time. As a result, the phase transition chemical thermodynamic properties; enthalpy, entropy, and Gibbs energy for 2-methylquinoline, 2-chloroquinoline and 2-phenylquinoline were determined from crystalline/liquid to gas phase. Furthermore, in this work the thermochemical characteristics values of the studied compounds exhibited higher accuracy to those in literature data. Finally, the phase transition thermodynamically studied on 2-position of the quinoline compound, where it substituted to methyl, chloro and phenyl groups.
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
  • The Potential of Using the Incorporation of Concentrated Solar Power and
           Gas Turbines in the South of Libya

    • Authors: Sami EHTİWESH; Asya GABBASA, Ismael EHTİWESH
      Abstract: In the southern part of Libya, there are a number of power plants and other large industrial developments using their power systems, such as petroleum fields. Gas turbines are frequently employed due to water scarcity in the region, such as the Asrir field power plant. However, fuel transportation is ‎one ‎of the main difficulties regarding cost and safety. The annual cost of fuel operation and ‎transportation ‎is admitted to be very high; therefore, this work ‎aims to utilize ‎solar energy potential to reduce fuel consumption. In this context, a power plant that is currently in operation in Libya, which is ‎located close to the Sahara Desert in the southwestern region, was selected as a case study. The ‎region was chosen because it offers extraordinary conditions for the establishment of concentrated power plants. Simulations studies were carried out at full load considering the nature of the solar flux that varies with the ‎meteorological conditions and the thermodynamic calculations were made based on algebraic equations describing the power cycle and the ‎solar field. In addition, the feasibility of fulfilling the power cycle's energy required using the ‎CSPs system was also analyzed‎. The annual behavior of the solar field was determined using hourly data within the system advisor model (SAM) software. In order to examine the possibility of fuel reduction, the cost of fuel was linked with an exergy analysis from an economic perspective. The ‎findings revelated ‎that the plant ‎efficiency could be increased and the fuel mass rate ratio could be reduced by preheating the air temperature entering the combustion chamber.‎ The air/fuel ratio at the combustor was found 43, the design heat energy required to deliver to the combustion chamber is 414.4MW, and the energetic thermal efficiency of the power cycle is 32.6%. The thermal power design of the solar field is 532MW when average direct irradiation is equal to 1000kWh/m².
      PubDate: Fri, 01 Dec 2023 00:00:00 +030
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.175.107.142
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-