Subjects -> EARTH SCIENCES (Total: 771 journals)
    - EARTH SCIENCES (527 journals)
    - GEOLOGY (94 journals)
    - GEOPHYSICS (33 journals)
    - HYDROLOGY (29 journals)
    - OCEANOGRAPHY (88 journals)

HYDROLOGY (29 journals)

Showing 1 - 30 of 30 Journals sorted by number of followers
Journal of Hydrology     Hybrid Journal   (Followers: 68)
Journal of Hydrology and Meteorology     Open Access   (Followers: 39)
Journal of Contaminant Hydrology     Hybrid Journal   (Followers: 22)
Hydrological Sciences Journal - Journal des Sciences Hydrologiques     Full-text available via subscription   (Followers: 21)
Water Environment and Technology     Hybrid Journal   (Followers: 20)
Journal of Hydrology : Regional Studies     Open Access   (Followers: 20)
Ecohydrology     Hybrid Journal   (Followers: 11)
Bulletin of Marine Science     Full-text available via subscription   (Followers: 9)
Journal of Hydrogeology and Hydrologic Engineering     Hybrid Journal   (Followers: 8)
Hydrology     Open Access   (Followers: 6)
Journal of Limnology     Open Access   (Followers: 6)
International Journal of Hydrology Science and Technology     Hybrid Journal   (Followers: 6)
Water Security     Hybrid Journal   (Followers: 6)
Open Journal of Modern Hydrology     Open Access   (Followers: 5)
Ecohydrology & Hydrobiology     Full-text available via subscription   (Followers: 5)
Journal of Hydrology (New Zealand)     Full-text available via subscription   (Followers: 5)
Journal of Hydrology X     Open Access   (Followers: 5)
Journal of Hydrology and Hydromechanics     Open Access   (Followers: 4)
Anais Hidrográficos     Open Access   (Followers: 4)
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Geology, Ecology, and Landscapes     Open Access   (Followers: 2)
Regional Studies in Marine Science     Hybrid Journal   (Followers: 2)
Proceedings of the International Association of Hydrological Sciences     Open Access   (Followers: 2)
Águas Subterrâneas     Open Access   (Followers: 1)
HydroResearch     Open Access   (Followers: 1)
Discover Water     Open Access  
Hydrosphere. Hazard processes and phenomena     Open Access  
International Hydrographic Review     Open Access  
Water Conservation Science and Engineering     Hybrid Journal  
Hidrobiológica     Open Access  
Similar Journals
Journal Cover
Journal of Hydrology and Hydromechanics
Journal Prestige (SJR): 0.599
Citation Impact (citeScore): 2
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 0042-790X - ISSN (Online) 1338-4333
Published by Sciendo Homepage  [371 journals]
  • Changes in organic molecular marker signatures in soils amended with
           biochar during a three-year experiment with maize on a Fluvisol

    • Abstract: Biochar is widely used as a soil amendment to improve soil properties and as a tool to absorb net carbon from the atmosphere. In this study we determined the signatures of organic molecular markers in soil following the incorporation of 5 and 10 t/ha biochar in a Fluvisol, cultivated with maize at the experimental field of the ISSAPP “N. Poushkarov” institute in Bulgaria. The n-alkane distribution in the biochar treated soils was uni- or bimodal maximizing at n-C17 alkane, n-C18 or C18 branched alkanes, i.e. there was an imprint of biomass burning, e.g. from the biochar due to predominance of short chain (< C20) homologues and increased microbial activity (presence of branched alkanes). This is also confirmed by the values for the average chain length (ACL) of n-alkanes which indicated prevalence of homologues of shorter chain (20–21 C atoms) in the variants of longer biochar residence time. There was evidence of trans-13-docosenamide, which originated from biochar. Fatty acids and fatty alcohols distributions also implicate microbial contribution to soil organic matter (SOM), supporting the suggestion that biochar addition can improve soil microbiological status.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Hydrologic recovery after wildfire: A framework of approaches, metrics,
           criteria, trajectories, and timescales

    • Abstract: Deviations in hydrologic processes due to wildfire can alter streamflows across the hydrograph, spanning peak flows to low flows. Fire-enhanced changes in hydrologic processes, including infiltration, interception, and evapotranspiration, and the resulting streamflow responses can affect water supplies, through effects on the quantity, quality, and timing of water availability. Post-fire shifts in hydrologic processes can also alter the timing and magnitude of floods and debris flows. The duration of hydrologic deviations from a pre-fire condition or function, sometimes termed hydrologic recovery, is a critical concern for land, water, and emergency managers. We reviewed and summarized terminology and approaches for defining and assessing hydrologic recovery after wildfire, focusing on statistical and functional definitions. We critically examined advantages and drawbacks of current recovery assessment methods, outline challenges to determining recovery, and call attention to selected opportunities for advancement of post-fire hydrologic recovery assessment. Selected challenges included hydroclimatic variability, post-fire land management, and spatial and temporal variability. The most promising opportunities for advancing assessment of hydrologic recovery include: (1) combining statistical and functional recovery approaches, (2) using a greater diversity of post-fire observations complemented with hydrologic modeling, and (3) defining optimal assemblages of recovery metrics and criteria for common hydrologic concerns and regions.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Heat–induced changes in soil properties: fires as cause for
           remobilization of chemical elements

    • Abstract: Exposure of soil constituents to elevated temperatures during wildfire can significantly affect their properties and consequently, increase the mobility of the bound contaminants. To estimate the potential of wildfires to influence metal remobilization from the burned soil due to the changes in cation exchange capacity (CEC) after organic matter combustion and mineral alteration and degradation, changes in soil properties after exposure to different temperatures was investigated. This was accomplished through analysis of geochemical, mineralogical and surface physicochemical properties of a soil sample exposed to different temperatures in a laboratory. Heating the soil sample at 200 °C, 500 °C and 850 °C resulted in an increase in pH (from 5.9 to 12.3), decrease in cation exchange capacity (from 47.2 to 7.3 cmol+kg−1) and changes in the specific surface area (observed only at 500 °C), that are associated with structural modifications of clay minerals and ferromagnetic minerals. Extraction analysis showed the increase in the concentration of almost all analysed elements (Al, Cd, Co, Cr, Fe, Mn and Zn) in soil eluates. The observed increase, following high– temperature heating (500 °C and 850 °C), was as much as 15 times higher (e.g., Al), compared to the native soil sample (25 °C). This strongly indicates that wildfire can act as a trigger for remobilization of heavy metals.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Variability of soil properties with fire severity in pine forests and
           reforested areas under Mediterranean conditions

    • Abstract: It is well known how fires affect the properties of forest soils depending on its severity. A better understanding of the magnitude of these impacts is essential to setup effective management actions after fire against the losses of soil and biodiversity. However, physical, chemical and biological processes in burnt soils are complex, resulting in a diversity of fire-induced changes, as acknowledged in many literature studies. Moreover, these changes may be even variable between natural forests and reforested areas. This study explores the changes in the most important soil properties with fire severity, from low to high. The main chemical parameters of soils were measured after field sampling in different pine forests (burnt natural stands, reforested areas as well as unburnt sites) of Castilla La Mancha (Central Eastern Spain). In comparison to the unburnt soils, the investigation has shown in the burnt areas: (i) no evident changes in soil pH at all fire severities, except in natural stands burnt at a very high severity (showing an increase of about 10%); (ii) increases in the organic carbon content (by about 70%) of soils burnt at a moderate fire severity under both forest ecosystems, and in reforested areas at very high fire severities (+95%); (iii) small differences in the nitrogen content of soil, except for a significant increase measured in soils burnt at an moderate fire severity under both the natural pine stand and reforested area (about +300%); (iv) a limited variability of the phosphorous content in the soil, with only an increase in soils under natural pine stands burnt at moderate fire severity (by 250%); (v) increases in magnesium and potassium contents in soils burnt at the highest fire severities for both land conditions, and decreases in calcium content in reforested areas burnt at the highest severity. Due to some negative impacts (increase in pH and decrease in organic carbon), the implementation of post-fire management actions at natural pine stands burnt at the highest fire severity should be a priority over reforested areas. Overall, this study did not show a straightforward pattern between soil properties, fire severity and land condition. This means that other parameters (for instance, the hydrological properties of soils) that were not explored in this investigation could have played an important role, and therefore must be taken into consideration when defining post-fire management actions.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • An exploratory study into ash mobilization using lysimeters

    • Abstract: Wildfires burn vegetation and leave the resultant organic and inorganic ash into the soil surface. Depending on the temperatures and burn durations, the quantity and type of ash can vary widely. Ash mobilization following wildfire is a topic of major concern, since it may result in contamination of surface water bodies within and downstream of the burnt areas.The present study aims to analyse the influence of black and white ash on surface runoff, leachate and total erosion and erosion of organic matter by running a field experiment along 6 weeks, using three replicate lysimeters with control soil, soil with addition of black ash and soil with addition of white ash. There was some suggestion but no statistical evidence that black ash reduced overland flow generation during the initial rainfall events, while black ash was found to increase sediment and organic matter losses by overland flow in a statistically significant manner. This was not during the initial rainfall events and, therefore, not directly related to the presence of a homogenous cover of a well-defined ash layer on the soil surface.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Introduction to the special issue on fire impacts on hydrological
           processes

    • PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Intensity and persistence of water repellency at different soil moisture
           contents and depths after a forest wildfire

    • Abstract: The Mediterranean mixed coniferous and broad-leaved forest of Moarda (Palermo) was affected by a large wildfire in summer 2020. In spring 2021, burned and unburned loam soil sites were sampled and the water drop penetration time (WDPT) and ethanol percentage (EP) tests applied to assess the influence of wetting-drying processes and soil water content on post-fire soil water repellency (SWR) as well as its vertical distribution. According to the WDPT test, the surface layer of the natural unburned soils was severely hydrophobic at intermediate soil water contents roughly corresponding to wilting point and SWR reduced either for very dry conditions (air- or oven-dried conditions) or wetter conditions close to field capacity. For these soils, EP test yielded results in agreement with WDPT. An influence of the wetting/drying cycle was detected as, for a given soil water content, WDPT was generally higher for the drying than the wetting process. The surface of burned soils was always wettable independently of the soil water content. The vertical distribution of SWR was modified by wildfire and the maximum hydrophobicity layer, that was located at the surface of the unburned soils, moved to a depth of 2–4 cm in the soils of burned sites. The results confirmed that wildfire can induce destruction of soil water repellency (SWR) naturally occurring at the surface of forest soils and create a shallow hydrophobic layer that may increase overland flow and erosion risk.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Fire-induced changes in soil properties depend on age and type of forests

    • Abstract: Wildfires affect different physical, chemical, and hydraulic soil properties, and the magnitude of their effects varies depending on intrinsic soil properties and wildfire characteristics. The objectives of this study are: to estimate the impact of heating temperature (50–900°C) on the properties of sandy soil (Arenosol) taken in 1) coniferous forests (Scots pine Pinus sylvestris) of different ages (30 and 100 years); and 2) coniferous (Scots pine Pinus sylvestris) and deciduous (alder Alnus glutinosa) forests of the same age (30 years). The forests are located in the central part of the Borská nížina lowland (western Slovakia), and the properties treated were soil organic carbon content (SOC), pH, and soil water repellency (measured in terms of water drop penetration time, WDPT). It was found that the impact of heating temperature on the properties of sandy soil is great and depends on both the age and type of forest. The SOC value decreased unevenly with temperature in all three soils, and it was higher in the 30-year-old deciduous forest soil than in the 30-year-old coniferous forest soil. The value of pH increased monotonously with temperature from 200 °C, and it was higher in 30-year-old coniferous forest soil than in the 100-year-old coniferous forest soil. SOC and WDPT in the 100-year-old coniferous forest soil were higher than SOC and WDPT in the 30-year-old coniferous forest soil. Results obtained (decrease in SOC, disappearance of SWR after heating to 400 °C, and increase in pH from heating temperature 200 °C) bring important information for post-fire vegetation restoration and post-fire management of Central European forests established on sandy soil.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Effects of prescribed fire on topsoil properties: a small-scale straw
           burning experiment

    • Abstract: A grassland was burned to investigate how a short prescribed fire affected soil physical and hydraulic properties, soil water balance, and emergent vegetation. Three years before the experiment at Řisuty, Czech Republic, the grassland was re-established on arable soil. At the experimental site there is a weather station and sensors measuring soil temperature and moisture at three different depths. The 5 m × 5 m burned plot was compared to a nearby unburned reference location. The loamy Cambisol soil was not water-repellent. 250 m2 of sun-dried grass was raked and burned at the burned plot. The fire lasted approximately 15-minute and reached 700 °C. Soil samples were taken immediately after the fire and weekly to monthly thereafter to quantify organic carbon content, soil structure stability, hydraulic conductivity, bulk density, and texture. According to the research results, it appears that temporary burning improved the hydraulic properties of the topsoil. The fire plot’s infiltration capacity was increased, and soil water content was higher than the control plot throughout the year, providing suitable habitat for colonizing vegetation. The results suggest that small-scale controlled biomass burning can be risk-free to the soil ecosystem and may even temporarily improve the hydraulic properties of the upper soil layer.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • Open data application to evaluate exposure of wildfire to water resources:
           A case study in Johor, Malaysia

    • Abstract: Climate change impacts wildfire events as well as water availability. Exposure of water resources to wildfire can reduce water quality supplied to humans and resulting health problems. On the other hand, water resources such as rivers and ponds are essential in wildfire firefighting. This paper intended to assess spatially the exposure of water resources to wildfire. A case study in Johor, Malaysia is utilised to asses and determine locations of water bodies in an area which are vulnerable to wildfire. Post wildfire runoff water can contaminate water resources. Fire data collected by MODIS from 2000–2020 are used to create a hotspot map. Water resources and waterbody data originated from Department of Surveying and Mapping Malaysia used to identify the stream and dams that are exposed to wildfire. 5 class exposure level has been set to show the degree of closeness of water resources to wildfire hotspot area. Using the spatial analysis method, low to high level of potential wildfire-water exposures were able to be locate. Analysis shows, 7% of Johor’s water sources is exposed to medium levels of wildfire, while just 1% is exposed to the highest levels. The majority of the streams have very low levels of exposure. In addition, the wildfire-water exposure map aids in first respondent preparedness and planning.
      PubDate: Wed, 16 Nov 2022 00:00:00 GMT
       
  • The impact of treated wastewater and biosolids from the municipal
           wastewater treatment plant on water and carbon dioxide effluxes from soils
           

    • Abstract: The goal of this study was to evaluate the effect of products from a municipal wastewater treatment plant on the H2O and CO2 effluxes from two soils. The net H2O and CO2 effluxes were measured at the surface of nine beds with two different soils (Cambisol and Arenosol) and two crops (maize or vegetables). Soils in some beds were amended with stabilized sewage sludge (bed with Cambisol and maize) or composted sewage sludge (two beds with Cambisol and both crops) or were irrigated with treated wastewater (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). Remaining beds were irrigated with tap water (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). While stabilized and composted sewage sludge positively affected the CO2 emission, the effect of treated wastewater was not confirmed. Different treatments had negligible effect on the water efflux, which was mainly affected by the plant canopy that influence the temperature of the soil surface. Statistical analyses showed that trends of the CO2 efflux with respect to various scenarios measured on different days changed during the season. No significant correlations were found between the average H2O and CO2 effluxes and measured soil properties.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • The effects of satellite soil moisture data on the parametrization of
           topsoil and root zone soil moisture in a conceptual hydrological model

    • Abstract: In a previous study, the topsoil and root zone ASCAT satellite soil moisture data were implemented into three multi-objective calibration approaches of the TUW hydrological model in 209 Austrian catchments. This paper examines the model parametrization in those catchments, which in the validation of the dual-layer conceptual semi-distributed model showed improvement in the runoff simulation efficiency compared to the single objective runoff calibration. The runoff simulation efficiency of the three multi-objective approaches was separately considered. Inferences about the specific location and the physiographic properties of the catchments where the inclusion of ASCAT data proved beneficial were made. Improvements were primarily observed in the watersheds with lower slopes (median of the catchment slope less than 15 per cent) and a higher proportion of farming land use (median of the proportion of agricultural land above 20 per cent), as well as in catchments where the runoff is not significantly influenced by snowmelt and glacier runoff. Changes in the mean and variability of the field capacity parameter FC of the soil moisture regime were analysed. The values of FC decreased by 20 per cent on average. Consequently, the catchments’ water balance closure generally improved by the increase in catchment evapotranspiration during the validation period. Improvements in model efficiency could be attributed to better runoff simulation in the spring and autumn month. The findings refine recommendations regarding when hydrological modelling could consider satellite soil moisture data added to runoff signatures in calibration useful.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • Long-term soil water content dynamics under different land uses in a small
           agricultural catchment

    • Abstract: Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • How various mulch materials can affect the soil hydro-physical properties

    • Abstract: An application of different mulch materials may lead to changes in soil properties. Our previous study, focused on the impact of various mulches during the 4-year period, showed that the change in some properties can be very rapid (e.g., soil pH), but in other cases such as hydraulic properties, the changes can be gradual. To find out, whether the extension of the mulching period will further affect the studied soil properties, the experiment continued for another 2 years. Differences between values of organic carbon content (Cox), soil physical quality (Sinf), gravitational water (GW) and readily available water (RAW) of soils not covered by any mulch and under various mulches (bark chips; wood chips; wheat straw; Agrotex EKO+ decomposable matting; polypropylene fabric covered bark chips; crushed stone) were much larger than those observed in our previous study. On the other hand, the opposite trend was observed for the water stable aggregates (WSA) index or soil pH. Differences between additionally measured hydraulic conductivities at the pressure head of −2 cm and repellency index (RI) were mostly insignificant. Results indicated that organic mulches can either positively (e.g., increase WSA index and Cox, and decrease GW) or negatively (e.g., decrease Sinf and RAW, and increase RI) affect soil properties.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • Impact of reconfiguration on the flow downstream of a flexible foliated
           plant

    • Abstract: This paper explores the impacts of reconfiguration and leaf morphology on the flow downstream of a flexible foliated plant. 3D acoustic Doppler velocimetry and particle image velocimetry were used to experimentally investigate the hydrodynamic interaction between a foliated plant and the flow, testing two plants with different leaves morphology under different bulk flow velocities. The model vegetation was representative of riparian vegetation species in terms of plants hydrodynamic behavior and leaf to stem area ratio. To explore the effects of the seasonal variability of vegetation on the flow structure, leafless conditions were tested. Reconfiguration resulted in a decrease of the frontal projected area of the plants up to the 80% relative to the undeformed value. Such changes in plant frontal area markedly affected the spatial distributions of mean velocity and turbulence intensities, altering the local exchanges of momentum. At increasing reconfiguration, the different plant morphology influenced the mean and turbulent wake width. The leafless stem exhibited a rigid behavior, with the flow in the wake being comparable to that downstream of a rigid cylinder. The study revealed that the flexibility-induced reconfiguration of plants can markedly affect the local distribution of flow properties in the wake, potentially affecting transport processes at the scale of the plant and its subparts.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • The soil moisture regime and groundwater recharge in aged forests in the
           Sand Ridge region of Hungary after a decline in the groundwater level: an
           experimental case study

    • Abstract: The decline in groundwater levels is a cause of concern in many regions of the world, including the Sand Ridge of Hungary. The causes of the regional depletion range from rising air temperatures, changes in precipitation, domestic and agricultural groundwater use and past amelioration and recent afforestation, including the effects of drilling for crude oil exploration. The relations between the decline, the soil water regime and groundwater recharge under existing aged forests remained unclear thus far. Based on our monitoring of groundwater and soil moisture we aim to clarify this interplay in a new experimental site on the hilltop of the Sand Ridge. We compared three land-uses: a 41-year-old black locust (Robinia Pseudoacacia) offshoot forest, an 83-year-old first generation black pine (Pinus nigra) forest, and a grassland control site. The observed differences in the soil moisture profiles and dynamics were connected to the use of water by the given type of vegetation. We indicated a connection between the disruption of the groundwater recharge and the loss of contact of the rooting system of the forests with the deepening of the unconfined aquifer. Even if the aged forests could locally contribute to the decline, we conclude that the decline at the hilltop site that may be more strongly driven by other regional factors.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • Applied methodology based on HEC-HMS for reservoir filling estimation due
           to soil erosion

    • Abstract:
      Authors propose a beneficial methodology for hydrological planning in their study. Prospective evaluations of the basins’ net capacity can be done using the technique presented. The HEC-HMS (Hydrologic Modelling System) software can be used to estimate in a basin, the sediment emitted. For a certain precipitation, this methodology allows estimating, within a certain range, the gradual blockage of a reservoir, and even a projected date for total blockage. This has some applications to adopt corrective measures that prevent or delay the planned blockage deadlines. The model is of the semi-distributed type, estimating the generation and emission of sediments by sub-basins. The integration of different return periods in HEC-HMS with a semi-distributed model by sub-basins and the application of a mathematical model are the differentiating element of this research. The novelty of this work is to allow prognosing the reservoir sedimentation rate of basins in a local and regional scale with a medium and large temporary framework. The developed methodology allows public institutions to take decisions concerning hydrological planning. It has been applied to the case of “Charco Redondo” reservoir, in Cádiz, Andalusia, in southern Spain. Applying the methodology to this case, an average soil degradation of the reservoir basin has been estimated. Therefore, it is verified that in 50 years the reservoir is expected to lose 8.4% of its capacity.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • Effect of microplastics on silty loam soil properties and radish growth

    • Abstract: Microplastics (particles of plastics <5 mm) affect the physical, biological and hydrological properties of agricultural soil, as well as crop growth. We investigated the effect of the addition of three microplastics (high-density polyethylene (HDPE), polyvinyl chloride (PVC), and polystyrene (PS)) at a concentration of 5% (w/w) to a silty loam soil on selected soil properties and growth of radish (Raphanus sativus L. var. sativus). Changes in the soil properties and radish growth in three microplastic treatments were compared with the control. Soil properties (bulk density, hydraulic conductivity, sorptivity, water repellency) were estimated for each treatment at the beginning and at the end of the radish growing period (GP). The bulk density was significantly lower in the HDPE and PVC treatments compared to the control within the measurement at the beginning of the GP and in all microplastic treatments compared to the control at the end of the GP. The values of hydraulic conductivity and water sorptivity did not show significant differences between any treatments within the measurement at the beginning of GP, but they were significantly higher in the HDPE treatment compared to the control at the end of the GP.The growth of radish was characterized by the plant biomass and effective quantum yield of Photosystem II (Y (II)). We did not find a statistically significant difference in the total biomass of radish between any of the experimental treatments, maybe due to used concentration of microplastics. The mean value of Y (II) was significantly higher in all microplastic treatments compared to control only within the last measurement at the end of the GP. A statistically significant change of Y(II) in all microplastic treatments may indicate functional shift in soil properties; however, the measured values of the soil characteristics have not shown the significant changes (except for the bulk density values in all microplastic treatments and hydraulic conductivity together with sorptivity in HDPE treatment within the measurement at the end of GP).
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • A new small-scale experimental device for testing backward erosion piping

    • Abstract: Backward erosion piping is driven by seepage forces acting on the soil grains at the downstream end of the seepage path. A new device for the laboratory testing of backward erosion progression was developed and tested. The device consists of a plexiglass prism at which the seepage path has been predefined. The prism was equipped with an inflow consisting of gravel separated from tested sand by a strainer. The hydraulic gradient along the seepage pipe was observed by a set of piezometers and pressure cells, and the seepage discharge was measured volumetrically. The transported sediment was trapped in a vertical cone located downstream from the device. The progression of the seepage path, the piezometric heads and the trapped material was observed by two synchronous cameras. 15 trial tests have been carried out to date, and from these, the interim results are presented.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
  • Calibration of an Arduino-based low-cost capacitive soil moisture sensor
           for smart agriculture

    • Abstract: Agriculture faces several challenges to use the available resources in a more environmentally sustainable manner. One of the most significant is to develop sustainable water management. The modern Internet of Things (IoT) techniques with real-time data collection and visualisation can play an important role in monitoring the readily available moisture in the soil. An automated Arduino-based low-cost capacitive soil moisture sensor has been calibrated and developed for data acquisition. A sensor- and soil-specific calibration was performed for the soil moisture sensors (SKU:SEN0193 - DFROBOT, Shanghai, China). A Repeatability and Reproducibility study was conducted by range of mean methods on clay loam, sandy loam and silt loam soil textures. The calibration process was based on the data provided by the capacitive sensors and the continuously and parallelly measured soil moisture content by the thermogravimetric method. It can be stated that the response of the sensors to changes in soil moisture differs from each other, which was also greatly influenced by different soil textures. Therefore, the calibration according to soil texture was required to ensure adequate measurement accuracy. After the calibration, it was found that a polynomial calibration function (R2 ≥ 0.89) was the most appropriate way for modelling the behaviour of the sensors at different soil textures.
      PubDate: Tue, 23 Aug 2022 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.201.99.222
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-