Similar Journals
![]() |
Biology
Journal Prestige (SJR): 1.324 ![]() Citation Impact (citeScore): 3 Number of Followers: 5 ![]() ISSN (Online) 2079-7737 Published by MDPI ![]() |
- Biology, Vol. 13, Pages 552: ZmDST44 Gene Is a Positive Regulator in Plant
Drought Stress Tolerance
Authors: Wenbo Chai, Hongtao Li, Hanyuan Xu, Qing Zhu, Shufen Li, Chao Yuan, Wei Ji, Jun Wang, Lei Sheng
First page: 552
Abstract: Improving drought tolerance in plants is essential for increasing crop yields under water-limited conditions. In this study, we investigated the functional role of the maize gene ZmDST44, which is targeted by the miRNA ZmmiR139. Our results indicate that ZmmiR139 regulates ZmDST44 by cleaving its mRNA, as confirmed by inverse expression patterns and 5′-RACE analysis. Overexpression of ZmDST44 in Arabidopsis, rice, and maize resulted in significant enhancements in drought tolerance. Transgenic plants exhibited reduced malondialdehyde (MDA) levels, increased proline accumulation, and upregulation of drought-responsive genes compared to wild-type plants. Transgenic Arabidopsis and rice showed improved drought resistance and higher post-drought recovery rates, and transgenic maize displayed lower sensitivity to drought stress. These findings suggest that ZmDST44 acts as a positive regulator of drought tolerance across different plant species and holds promise for developing drought-resistant crops through genetic engineering.
Citation: Biology
PubDate: 2024-07-23
DOI: 10.3390/biology13080552
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 553: Investigating the Endophyte Actinomycetota
sp. JW0824 Strain as a Potential Bioinoculant to Enhance the Yield,
Nutritive Value, and Chemical Composition of Different Cultivars of Anise
(Pimpinella anisum L.) Seeds
Authors: Ahmed M. Mahmoud, Ahmed M. Reyad, Maha H. Khalaf, Mohamed S. Sheteiwy, Mona F. A. Dawood, Ahmed M. El-Sawah, Enas Shaban Ahmed, Abdul Malik, Wahidah H. Al-Qahtani, Mostafa A. Abdel-Maksoud, Nermien H. S. Mousa, Mohammed Alyafei, Hamada AbdElgawad
First page: 553
Abstract: Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., β-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.
Citation: Biology
PubDate: 2024-07-23
DOI: 10.3390/biology13080553
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 554: Effect of Nitrogen Application Rate on the
Relationships between Multidimensional Plant Diversity and Ecosystem
Production in a Temperate Steppe
Authors: Gossaye Hailu Debaba, Kunyu Li, Xiaowei Wang, Yanan Wang, Wenming Bai, Guoyong Li
First page: 554
Abstract: Nitrogen (N) deposition, as one of the global change drivers, can alter terrestrial plant diversity and ecosystem function. However, the response of the plant diversity–ecosystem function relationship to N deposition remains unclear. On one hand, in the previous studies, taxonomic diversity (i.e., species richness, SR) was solely considered the common metric of plant diversity, compared to other diversity metrics such as phylogenetic and functional diversity. On the other hand, most previous studies simulating N deposition only included two levels of control versus N enrichment. How various N deposition rates affect multidimensional plant diversity–ecosystem function relationships is poorly understood. Here, a field manipulative experiment with a N addition gradient (0, 1, 2, 4, 8, 16, 32, and 64 g N m−2 yr−1) was carried out to examine the effects of N addition rates on the relationships between plant diversity metrics (taxonomic, phylogenetic, and functional diversity) and ecosystem production in a temperate steppe. Production initially increased and reached the maximum value at the N addition rate of 47 g m−2 yr−1, then decreased along the N-addition gradient in the steppe. SR, functional diversity calculated using plant height (FDis-Height) and leaf chlorophyll content (FDis-Chlorophyll), and phylogenetic diversity (net relatedness index, NRI) were reduced, whereas community-weighted means of plant height (CWMHeight) and leaf chlorophyll content (CWMChlorophyll) were enhanced by N addition. N addition did not affect the relationships of SR, NRI, and FDis-Height with production but significantly affected the strength of the correlation between FDis-Chlorophyll, CWMHeight, and CWMChlorophyll with biomass production across the eight levels of N addition. The findings indicate the robust relationships of taxonomic and phylogenetic diversity and production and the varying correlations between functional diversity and production under increased N deposition in the temperate steppe, highlighting the importance of a trait-based approach in studying the plant diversity–ecosystem function under global change scenarios.
Citation: Biology
PubDate: 2024-07-23
DOI: 10.3390/biology13080554
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 555: Therapeutic Target Identification and Drug
Discovery Driven by Chemical Proteomics
Authors: Mingjie Zou, Haiyuan Zhou, Letian Gu, Jingzi Zhang, Lei Fang
First page: 555
Abstract: Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Citation: Biology
PubDate: 2024-07-23
DOI: 10.3390/biology13080555
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 556: FhMYB108 Regulates the Expression of Linalool
Synthase Gene in Freesia hybrida and Arabidopsis
Authors: Zhongzhou Yang, Wei Jin, Qi Luo, Xiaoli Li, Yunmin Wei, Yunlong Lin
First page: 556
Abstract: Acting as the most abundant and widely distributed volatile secondary metabolites in plants, terpenoids play crucial roles in diverse physiological regulations and metabolic processes. Terpene synthases play a decisive role in determining the composition and diversity of terpenoids. Though the regulation of terpene synthases has been extensively investigated across various plant species, limited studies have focused on the upstream transcriptional regulation of terpene synthases. In this study, we have identified linalool as the predominant volatile compound that is released gradually from Freesia hybrida flowers throughout flower blooming. In the context of the transcriptome, a typical MYB transcription factor, FhMYB108, was screened based on homologous gene comparison. FhMYB108 is capable of regulating the expression of FhTPS1, and both their expression levels showed gradual increase during flower opening. Moreover, FhMYB108 exerts a stimulatory effect on the transcription of Arabidopsis thaliana AtTPS14, while no significant increase in AtTPS14 expression is observed upon the stabilization of FhMYB108 in A. thaliana. The highly expressed AtMYC2 in A. thaliana could interact with FhMYB108 to suppress the activation of AtTPS14 by FhMYB108. The present study not only elucidates the regulatory mechanism underlying linalool synthesis but also discovers the synergistic effect of MYB and bHLH transcription factors in governing the biosynthesis of volatile terpenoids.
Citation: Biology
PubDate: 2024-07-23
DOI: 10.3390/biology13080556
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 557: The Impact of Diabetes on Male Silkworm
Reproductive Health
Authors: Xiaoyan Zeng, Li Tong
First page: 557
Abstract: The increasing prevalence of diabetic reproductive complications has prompted the development of innovative animal models. The use of the silkworm Bombyx mori as a model for diabetic reproductive damage shows potential as a valuable research tool. This study employed silkworms as a novel model to investigate diabetic reproductive damage. The silkworms were fed a high-glucose diet containing 10% glucose to induce a diabetic model. Subsequently, the study concentrated on assessing the influence of diabetes on the reproductive system of male silkworms. The results indicate that diabetes resulted in reduced luteinizing hormone (LH) and testosterone (T) levels, as well as elevated triglyceride (TG) levels in male silkworms. Moreover, diabetes mellitus was associated with pathological testicular damage in male silkworms, accompanied by decreased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels, along with increased malondialdehyde (MDA) levels in the testis. Additionally, diabetes mellitus reduced the expression of siwi1 and siwi2 genes in the testis of male silkworms. Overall, these results support using silkworms as a valuable model for studying diabetic reproductive damage.
Citation: Biology
PubDate: 2024-07-24
DOI: 10.3390/biology13080557
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 558: The Neurotrophin System in the Postnatal
Brain—An Introduction
Authors: von Bohlen und Halbach, Klausch
First page: 558
Abstract: Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Citation: Biology
PubDate: 2024-07-24
DOI: 10.3390/biology13080558
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 559: Acetylome Analyses Provide New Insights into
the Effect of Chronic Intermittent Hypoxia on Hypothalamus-Dependent
Endocrine Metabolism Impairment
Authors: Yaru Kong, Jie Ji, Xiaojun Zhan, Weiheng Yan, Fan Liu, Pengfei Ye, Shan Wang, Jun Tai
First page: 559
Abstract: Paediatric obstructive sleep apnoea (OSA) is a highly prevalent sleep disorder resulting in chronic intermittent hypoxia (CIH) that has been linked to metabolism and endocrine impairment. Protein acetylation, which is a frequently occurring posttranslational modification, plays pivotal roles in the regulation of hypothalamic processes. However, the effects of CIH-induced global protein acetylation on hypothalamic function and endocrine metabolism remain poorly understood. To bridge this knowledge gap, we conducted a study utilizing liquid chromatography–mass spectrometry to analyse the lysine acetylome and proteome of the hypothalamus in healthy infantile mice exposed to 3 weeks of intermittent hypoxia (as a CIH model) compared to normoxic mice (as controls). Our analysis identified and quantified 2699 Kac sites in 2453 proteins. These acetylated proteins exhibited disruptions primarily in endocrine metabolism, the citrate cycle (TCA cycle), synapse function, and circadian entrainment. Additionally, we observed significant down-regulation of proteins that are known to be involved in endocrine hormone secretion. This study aimed to elucidate the molecular mechanisms underlying CIH-induced alterations in protein acetylation within the hypothalamus. By providing valuable insights into the pathophysiological processes associated with CIH and their impacts on hypothalamic function, our findings contribute to a deeper understanding of the consequences stemming from CIH-induced changes in protein acetylation within the hypothalamus as well as its potential role in endocrine impairment.
Citation: Biology
PubDate: 2024-07-24
DOI: 10.3390/biology13080559
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 560: Plasticity Comparison of Two Stem Cell
Sources with Different Hox Gene Expression Profiles in Response to Cobalt
Chloride Treatment during Chondrogenic Differentiation
Authors: Sahar Khajeh, Vahid Razban, Yasaman Naeimzadeh, Elham Nadimi, Reza Asadi-Golshan, Zahra Heidari, Tahereh Talaei-Khozani, Farzaneh Dehghani, Zohreh Mostafavi-Pour, Masoud Shirali
First page: 560
Abstract: The limited self-repair capacity of articular cartilage is a challenge for healing injuries. While mesenchymal stem/stromal cells (MSCs) are a promising approach for tissue regeneration, the criteria for selecting a suitable cell source remain undefined. To propose a molecular criterion, dental pulp stem cells (DPSCs) with a Hox-negative expression pattern and bone marrow mesenchymal stromal cells (BMSCs), which actively express Hox genes, were differentiated towards chondrocytes in 3D pellets, employing a two-step protocol. The MSCs’ response to preconditioning by cobalt chloride (CoCl2), a hypoxia-mimicking agent, was explored in an assessment of the chondrogenic differentiation’s efficiency using morphological, histochemical, immunohistochemical, and biochemical experiments. The preconditioned DPSC pellets exhibited significantly elevated levels of collagen II and glycosaminoglycans (GAGs) and reduced levels of the hypertrophic marker collagen X. No significant effect on GAGs production was observed in the preconditioned BMSC pellets, but collagen II and collagen X levels were elevated. While preconditioning did not modify the ALP specific activity in either cell type, it was notably lower in the DPSCs differentiated pellets compared to their BMSCs counterparts. These results could be interpreted as demonstrating the higher plasticity of DPSCs compared to BMSCs, suggesting the contribution of their unique molecular characteristics, including their negative Hox expression pattern, to promote a chondrogenic differentiation potential. Consequently, DPSCs could be considered compelling candidates for future cartilage cell therapy.
Citation: Biology
PubDate: 2024-07-24
DOI: 10.3390/biology13080560
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 561: Arabidopsis BTB-A2s Play a Key Role in
Drought Stress
Authors: Guohua Cai, Yunxiao Zang, Zhongqian Wang, Shuoshuo Liu, Guodong Wang
First page: 561
Abstract: Drought stress significantly impacts plant growth, productivity, and yield, necessitating a swift fine-tuning of pathways for adaptation to harsh environmental conditions. This study explored the effects of Arabidopsis BTB-A2.1, BTB-A2.2, and BTB-A2.3, distinguished by their exclusive possession of the Broad-complex, Tramtrack, and Bric-à-brac (BTB) domain, on the negative regulation of drought stress mediated by abscisic acid (ABA) signaling. Promoter analysis revealed the presence of numerous ABA-responsive and drought stress-related cis-acting elements within the promoters of AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3. The AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3 transcript abundances increased under drought and ABA induction according to qRT-PCR and GUS staining. Furthermore, the Arabidopsis btb-a2.1/2/3 triple mutant exhibited enhanced drought tolerance, supporting the findings from the overexpression studies. Additionally, we detected a decrease in the stomatal aperture and water loss rate of the Arabidopsis btb-a2.1/2/3 mutant, suggesting the involvement of these genes in repressing stomatal closure. Importantly, the ABA signaling-responsive gene levels within Arabidopsis btb-a2.1/2/3 significantly increased compared with those in the wild type (WT) under drought stress. Based on such findings, Arabidopsis BTB-A2s negatively regulate drought stress via the ABA signaling pathway.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080561
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 562: Sprint Interval Training Improves
Brain-Derived Neurotropic Factor-Induced Benefits in Brain Health—A
Possible Molecular Signaling Intervention
Authors: Xueqiang Zhu, Wenjia Chen, Anand Thirupathi
First page: 562
Abstract: Physical exercise can significantly impact our bodies, affecting our functional capacity, structure establishment, and molecular makeup. The magnitude of these changes depends on the specific exercise protocols used. For instance, low-to-moderate-intensity exercise can activate important molecular targets in the short term, such as BDNF-mediated signaling, while high-intensity exercise can maintain these signaling molecules in the active state for a longer term. This makes it challenging to recommend specific exercises for obtaining BDNF-induced benefits. Additionally, exercise-induced molecular signaling targets can have positive and negative effects, with some exercises blunting these targets and others activating them. For example, increasing BDNF concentration through exercise can be beneficial for brain health, but it may also have a negative impact on conditions such as bipolar disorder. Therefore, a deeper understanding of a specific exercise-mediated mechanistic approach is required. This review will delve into how the sprint exercise-mediated activation of BDNF could help maintain brain health and explore potential molecular interventions.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080562
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 563: D-sORF: Accurate Ab Initio Classification of
Experimentally Detected Small Open Reading Frames (sORFs) Associated with
Translational Machinery
Authors: Nikos Perdikopanis, Antonis Giannakakis, Ioannis Kavakiotis, Artemis G. Hatzigeorgiou
First page: 563
Abstract: Small open reading frames (sORFs; <300 nucleotides or <100 amino acids) are widespread across all genomes, and an increasing variety of them appear to be translating from non-genic regions. Over the past few decades, peptides produced from sORFs have been identified as functional in various organisms, from bacteria to humans. Despite recent advances in next-generation sequencing and proteomics, accurate annotation and classification of sORFs remain a rate-limiting step toward reliable and high-throughput detection of small proteins from non-genic regions. Additionally, the cost of computational methods utilizing machine learning is lower than that of biological experiments, and they can be employed to detect sORFs, laying the groundwork for biological experiments. We present D-sORF, a machine-learning framework that integrates the statistical nucleotide context and motif information around the start codon to predict coding sORFs. D-sORF scores directly for coding identity and requires only the underlying genomic sequence, without incorporating parameters such as the conservation, which, in the case of sORFs, may increase the dispersion of scores within the significantly less conserved non-genic regions. D-sORF achieves 94.74% precision and 92.37% accuracy for small ORFs (using the 99 nt medium length window). When D-sORF is applied to sORFs associated with ribosomes, the identification of transcripts producing peptides (annotated by the Ensembl IDs) is similar to or superior to experimental methodologies based on ribosome-sequencing (Ribo-Seq) profiling. In parallel, the recognition of putative negative data, such as the intron-containing transcripts that associate with ribosomes, remains remarkably low, indicating that D-sORF could be efficiently applied to filter out false-positive sORFs from Ribo-Seq data because of the non-productive ribosomal binding or noise inherent in these protocols.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080563
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 564: Heterogeneous Evolution of Breast Cancer
Cells—An Endogenous Molecular-Cellular Network Study
Authors: Tianqi Li, Yong-Cong Chen, Ping Ao
First page: 564
Abstract: Breast cancer heterogeneity presents a significant challenge in clinical therapy, such as over-treatment and drug resistance. These challenges are largely due to its obscure normal epithelial origins, evolutionary stability, and transitions on the cancer subtypes. This study aims to elucidate the cellular emergence and maintenance of heterogeneous breast cancer via quantitative bio-process modeling, with potential benefit to therapeutic strategies for the disease. An endogenous molecular–cellular hypothesis posits that both pathological and physiological states are phenotypes evolved from and shaped by interactions among a number of conserved modules and cellular factors within a biological network. We hereby developed a model of core endogenous network for breast cancer in accordance with the theory, quantifying its intrinsic dynamic properties with dynamic modeling. The model spontaneously generates cell states that align with molecular classifications at both the molecular and modular level, replicating four widely recognized molecular subtypes of the cancer and validating against data extracted from the TCGA database. Further analysis shows that topologically, a singular progression gateway from normal breast cells to cancerous states is identified as the Luminal A-type breast cancer. Activated positive feedback loops are found to stabilize cellular states, while negative feedback loops facilitate state transitions. Overall, more routes are revealed on the cellular transition between stable states, and a traceable count explains the origin of breast cancer heterogeneity. Ultimately, the research intended to strength the search for therapeutic targets.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080564
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 565: Converging Mechanisms of Vascular and
Cartilaginous Calcification
Authors: Simona R. Gheorghe, Alexandra M. Crăciun, Tamás Ilyés, Ioana Badiu Tisa, Lucia Sur, Iulia Lupan, Gabriel Samasca, Ciprian N. Silaghi
First page: 565
Abstract: Physiological calcification occurs in bones and epiphyseal cartilage as they grow, whereas ectopic calcification occurs in blood vessels, cartilage, and soft tissues. Although it was formerly thought to be a passive and degenerative process associated with aging, ectopic calcification has been identified as an active cell-mediated process resembling osteogenesis, and an increasing number of studies have provided evidence for this paradigm shift. A significant association between vascular calcification and cardiovascular risk has been demonstrated by various studies, which have shown that arterial calcification has predictive value for future coronary events. With respect to cartilaginous calcification, calcium phosphate or hydroxyapatite crystals can form asymptomatic deposits in joints or periarticular tissues, contributing to the pathophysiology of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, and bursitis. The risk factors and sequence of events that initiate ectopic calcification, as well as the mechanisms that prevent the development of this pathology, are still topics of debate. Consequently, in this review, we focus on the nexus of the mechanisms underlying vascular and cartilaginous calcifications, trying to circumscribe the similarities and disparities between them to provide more clarity in this regard.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080565
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 566: Information Load from Neuromediator Diffusion
to Extrasynaptic Space: The Interplay between the Injection Frequency and
Clearance
Authors: Andrey Shuvaev, Olga Belozor, Anton Shuvaev
First page: 566
Abstract: In our study, we simulate the release of glutamate, a neurotransmitter, from the presynaptic cell by modeling the diffusion of glutamate into both synaptic and extrasynaptic space around the synapse. We have also incorporated a new factor into our model: convection. This factor represents the process by which the body clears glutamate from the synapse. Due to this process, the physiological mechanisms that typically prevent glutamate from spreading beyond the synapse are altered. This results in a different distribution of glutamate concentrations, with higher levels outside the synapse than inside it. The variety of biological effects that occur in response to this extrasynaptic glutamate highlights the importance of preventing neurotransmitters from spreading beyond the synapse. We aim to explain the physical reasons behind these biological effects, which are observed as excitotoxicity. Our results show that preventing the spread of glutamate outside the synapse increases the amount of information exchanged within the synapse and its surroundings for frequencies of glutamate release up to 30–50 Hz, followed by a decrease. Additionally, we find that the rate at which glutamate is cleared from the synapse is effective at relatively low levels (≤0.5 nm/μs in our calculation grid) and remains constant at higher levels.
Citation: Biology
PubDate: 2024-07-26
DOI: 10.3390/biology13080566
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 567: Correlation of Adiponectin and Leptin with
Anthropometrics and Behavioral and Physical Performance in Overweight and
Obese Chinese College Students
Authors: Jingyu Sun, Jiajia Chen, Antonio Cicchella
First page: 567
Abstract: The aim of this study is to assess the relationship of leptin (LEP) and adiponectin (ADPN) with other circulating fat markers, physical capacity, behaviors, and anthropometric indices in a population of overweight and obese Chinese university students. LEP and ADPN levels, as well as behavioral, anthropometric, biochemical, and performance characteristics, were measured. Method: A total of 17 anthropometric parameters, 8 questionnaires (investigating quality of life, sleep, eating, perceived functioning, stress, and depression), 9 biochemical parameters, and 12 functional parameters were investigated. Results: In contrast to previous studies, our work found an unusually strong relationship between LEP and ADPN (r = 0.961, p = 0.000) that can be related to ethnicity. We also found that LEP and ADPN were associated with stress and bodily pain. A total of 12 anthropometric measures were also associated with LEP/ADNP levels. Moreover, LEP and ADPN were found to be related to lower limb, hand, and abdominal strength; blood pressure; and basic metabolism. However, we did not find associations with sleep; eating habits; or cardiovascular fitness, which was measured in the form of resting heart rate and VO2max. Conclusion: This study reveals new relationships of LEP and ADPN with selected anthropometric and behavioral parameters in obese Chinese college students.
Citation: Biology
PubDate: 2024-07-27
DOI: 10.3390/biology13080567
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 568: Metabolite Diversity and Carbohydrate
Distribution in Brassica campestris ssp. chinensis L. Cultivars: A
UPLC-MS/MS Approach
Authors: Hafiz Muhammad Mubeen, Ying Li, Chunmei Hu
First page: 568
Abstract: Pak choi exhibits a wide range of phenotypic and morphological variations, significantly impacting its carbohydrate composition. This study aimed to analyze these variations by employing UPLC-MS/MS technology on eight biological replicates of seven Pak choi cultivars. The untargeted metabolic analysis identified 513 metabolites, focusing on 16 key carbohydrates, including monosaccharides, disaccharides, and polysaccharides. Monosaccharides were the most prevalent, which were followed by di-, poly-, and oligosaccharides. Suzhouqing had the highest number of differentially accumulated metabolites (DAMs), while Xiangqingcai had the least. Notably, the cultivars Xiangqingcai, Suzhouqing, and Aijiaohuang showed significant metabolite differentiation. The study found 114 metabolites that differed significantly between Suzhouqing and Aijiaohuang, of which 69 were upregulated and 45 were downregulated. In Xiangqingcai and Aijiaohuang, 66 metabolites were upregulated and 49 were downregulated. Between Xiangqingcai and Suzhouqing, 80 metabolites were downregulated and 53 were upregulated. Key carbohydrate digestion and absorption pathways were identified alongside the most enriched flavonoid biosynthesis pathway in Xiangqingcai and Suzhouqing. The findings highlight the considerable carbohydrate variation among Pak choi cultivars, providing valuable insights for targeted carbohydrate extraction and improving nutritional and agricultural practices.
Citation: Biology
PubDate: 2024-07-27
DOI: 10.3390/biology13080568
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 569: The Correlation of Tooth Sizes and Jaw
Dimensions with Biological Sex and Stature in a Contemporary Central
European Population
Authors: Kurt W. Alt, Nils Honrath, Maximilian Weykamp, Peter Grönebaum, Nicole Nicklisch, Werner Vach
First page: 569
Abstract: Dental anthropology provides a deep insight into biological, ecological and cultural aspects associated with human individuality, behaviour and living conditions and the environment. Our study uses a correlation analysis to test the metric relationships between tooth sizes and jaw dimensions and juxtaposes them with biological sex and stature. A sample of n = 100 dental casts was used to record metric dental data including the mesio-distal and bucco-lingual tooth crown diameters and nine upper and lower jaw dimensions. All crown diameters were highly correlated with both stature and biological sex, with the canines exhibiting the highest correlation. The majority of jaw dimensions exhibited similar correlations. Our results suggest that the differences between the sexes in most crown diameters and some jaw dimensions may be related to the stature of the individuals measured. Two groups of closely correlating features emerged among the jaw dimensions, differing in their degree of correlation with crown diameters and with sex. The results and insights obtained are highly relevant for evolutionary biology, dentistry, craniofacial research, bioarchaeology and forensic odontology.
Citation: Biology
PubDate: 2024-07-28
DOI: 10.3390/biology13080569
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 570: Association between the Maternal Gut
Microbiome and Macrosomia
Authors: Zixin Zhong, Rongjing An, Shujuan Ma, Na Zhang, Xian Zhang, Lizhang Chen, Xinrui Wu, Huijun Lin, Tianyu Xiang, Hongzhuan Tan, Mengshi Chen
First page: 570
Abstract: Fetal macrosomia is defined as a birthweight ≥4000 g and causes harm to pregnant women and fetuses. Studies reported that the maternal intestinal microbiome plays a key role in the establishment, growth, and development of the fetal intestinal microbiome. However, whether there is a relationship between maternal gut microbiota and macrosomia remains unclear. Our study aimed to identify gut microbiota that may be related to the occurrence of macrosomia, explore the possible mechanisms by which it causes macrosomia, and establish a prediction model to determine the feasibility of predicting macrosomia by early maternal gut microbiota. We conducted a nested case-control study based on an early pregnancy cohort (ChiCTR1900020652) in the Maternity and Child Health Hospital of Hunan Province on fecal samples of 93 women (31 delivered macrosomia as the case group and 62 delivered normal birth weight newborns as the control group) collected and included in this study. We performed metagenomic analysis to compare the composition and function of the gut microbiome between cases and controls. Correlation analysis was used to explore the association of differential species and differential functional pathways. A random forest model was used to construct an early pregnancy prediction model for macrosomia. At the species level, there were more Bacteroides salyersiae, Bacteroides plebeius, Ruminococcus lactaris, and Bacteroides ovatus in the intestinal microbiome of macrosomias’ mothers compared with mothers bearing fetuses that had normal birth weight. Functional pathways of the gut microbiome including gondoate biosynthesis, L-histidine degradation III, cis-vaccenate biosynthesis, L-arginine biosynthesis III, tRNA processing, and mannitol cycle, which were more abundant in the macrosomia group. Significant correlations were found between species and functional pathways. Bacteroides plebeius was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.28, p = 0.005) and gondoate biosynthesis (r = 0.28, p < 0.001) and Bacteroides ovatus was positively associated with the pathway of cis-vaccenate biosynthesis (r = 0.29, p = 0.005) and gondoate biosynthesis (r = 0.32, p = 0.002). Bacteroides salyersiae was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.24, p = 0.018), gondoate biosynthesis (r = 0.31, p = 0.003), and L–histidine degradation III (r = 0.22, p = 0.291). Finally, four differential species and four clinical indicators were included in the random forest model for predicting macrosomia. The areas under the working characteristic curves of the training and validation sets were 0.935 (95% CI: 0.851~0.979) and 0.909 (95% CI: 0.679~0.992), respectively. Maternal gut microbiota in early pregnancy may play an important role in the development of macrosomia and can be used as potential predictors to prevent macrosomia.
Citation: Biology
PubDate: 2024-07-28
DOI: 10.3390/biology13080570
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 571: An Annotated Checklist of Invasive Species of
the Phyla Arthropods and Chordates in Panama
Authors: Digna Rodríguez-Gavilanes, Humberto A. Garcés Botacio, Rogemif Fuentes, Louise Rodriguez-Scott, Yostin Añino, Oscar G. López-Chong, Enrique Medianero
First page: 571
Abstract: Invasive species are one of the five main causes of biodiversity loss, along with habitat destruction, overexploitation, pollution, and climate change. Numbers and species of invasive organisms represent one of the first barriers to overcome in ecological conservation programs since they are difficult to control and eradicate. Due to the lack of records of invasive exotic species in Panama, this study was necessary for identifying and registering the documented groups of invasive species of the Chordates and Arthropod groups in Panama. This exhaustive search for invasive species was carried out in different bibliographic databases, electronic portals, and scientific journals which addressed the topic at a global level. The results show that approximately 141 invasive exotic species of the Arthropoda and Chordata phyla have been reported in Panama. Of the 141 species, 50 species belonged to the Arthropoda phylum and 91 species belonged to the Chordate phylum. Panamanian economic activity could facilitate the introduction of alien species into the country. This study provides the first list of invasive exotic chordate and arthropod species reported for the Republic of Panama.
Citation: Biology
PubDate: 2024-07-28
DOI: 10.3390/biology13080571
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 572: The Role of the MCM2-7 Helicase Subunit MCM2
in Epigenetic Inheritance
Authors: Jing Jia, Chuanhe Yu
First page: 572
Abstract: Recycling histone proteins from parental chromatin, a process known as parental histone transfer, is an important component in chromosome replication and is essential for epigenetic inheritance. We review recent advances in our understanding of the recycling mechanism of parental histone H3-H4 tetramers (parH3:H4tet), emphasizing the pivotal role of the DNA replisome. In particular, we highlight the function of the MCM2-7 helicase subunit Mcm2 as a histone H3-H4 tetramer chaperone. Disruption of this histone chaperone’s functions affects mouse embryonic stem cell differentiation and can lead to embryonic lethality in mice, underscoring the crucial role of the replisome in maintaining epigenomic stability.
Citation: Biology
PubDate: 2024-07-29
DOI: 10.3390/biology13080572
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 573: Evaluation of Two Ecosystem Services Provided
by a Pistia stratiotes Population on the Pacific Coast of South America
Authors: Adela Zamora-Aranda, Héctor Aponte
First page: 573
Abstract: One of the most fascinating wetlands on Peru’s central coast is the Santa Rosa wetland (Chancay, Lima), an ecosystem threatened by anthropogenic activities. Some of these impacts have led to the uncontrolled growth of Pistia stratiotes, an invasive aquatic plant. This study sought to quantify the regulation and provisioning of ecosystem services provided by P. stratiotes using carbon storage and the provision of biomass as indicators. To this end, the biomasses of 50 plots measuring 0.0625 m2 were weighed and georeferenced and the percentages of dry biomass (%DB) and total organic carbon in the biomass (%C) were quantified. The biomass and its coordinates were entered into ArcGIS and a Kriging interpolation technique was applied to determine the total amount of biomass (B). It was found that P. stratiotes stored 3942.57 tCO2 and that 2132.41 tons of biomass could be obtained for fodder. The total carbon stored by this aquatic plant represented 28.46% of the total carbon sequestered in the wetland ecosystem by vascular plants, suggesting that its contribution to the carbon cycle is significant. This is the first study to estimate the biomass of a floating aquatic plant population in a coastal Peruvian wetland and is a pioneering study addressing the in situ carbon estimation of Peruvian floating aquatic plants. The results and methods proposed in this research will serve in the evaluation of the potential of ecosystem services among similar populations of floating aquatic species. In addition, the data presented can be used to establish plans for the management and use of this biomass in the production of soil fertilizers and cattle forage.
Citation: Biology
PubDate: 2024-07-29
DOI: 10.3390/biology13080573
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 574: The Association between the Abundance of
Homozygous Deleterious Variants and the Morbidity of Dog Breeds
Authors: Sankar Subramanian, Manoharan Kumar
First page: 574
Abstract: It is well known that highly inbred dogs are more prone to diseases than less inbred or outbred dogs. This is because inbreeding increases the load of recessive deleterious variants. Using the genomes of 392 dogs belonging to 83 breeds, we investigated the association between the abundance of homozygous deleterious variants and dog health. We used the number of non-routine veterinary care events for each breed to assess the level of morbidity. Our results revealed a highly significant positive relationship between the number of homozygous deleterious variants located within the runs of homozygosity (RoH) tracts of the breeds and the level of morbidity. The dog breeds with low morbidity had a mean of 87 deleterious SNVs within the RoH, but those with very high morbidity had 187 SNVs. A highly significant correlation was also observed for the loss-of-function (LoF) SNVs within RoH tracts. The dog breeds that required more veterinary care had 2.3 times more homozygous LoF SNVs than those that required less veterinary care (112 vs. 50). The results of this study could be useful for understanding the disease burden on breed dogs and as a guide for dog breeding programs.
Citation: Biology
PubDate: 2024-07-29
DOI: 10.3390/biology13080574
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 575: Structural Magnetic Resonance Imaging-Based
Surface Morphometry Analysis of Pediatric Down Syndrome
Authors: Jacob Levman, Bernadette McCann, Nicole Baumer, Melanie Y. Lam, Tadashi Shiohama, Liam Cogger, Allissa MacDonald, Emi Takahashi
First page: 575
Abstract: Down syndrome (DS) is a genetic disorder characterized by intellectual disability whose etiology includes an additional partial or full copy of chromosome 21. Brain surface morphometry analyses can potentially assist in providing a better understanding of structural brain differences, and may help characterize DS-specific neurodevelopment. We performed a retrospective surface morphometry study of 73 magnetic resonance imaging (MRI) examinations of DS patients (aged 1 day to 22 years) and compared them to a large cohort of 993 brain MRI examinations of neurotypical participants, aged 1 day to 32 years. Surface curvature measurements, absolute surface area measurements, and surface areas as a percentage of total brain surface area (%TBSA) were extracted from each brain region in each examination. Results demonstrate broad reductions in surface area and abnormalities of surface curvature measurements across the brain in DS. After adjusting our regional surface area measurements as %TBSA, abnormally increased presentation in DS relative to neurotypical controls was observed in the left precentral, bilateral entorhinal, left parahippocampal, and bilateral perirhinal cortices, as well as Brodmann’s area 44 (left), and the right temporal pole. Findings suggest the presence of developmental abnormalities of regional %TBSA in DS that can be characterized from clinical MRI examinations.
Citation: Biology
PubDate: 2024-07-30
DOI: 10.3390/biology13080575
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 576: Statistical Learning of Incidental Perceptual
Regularities Induces Sensory Conditioned Cortical Responses
Authors: Antonino Greco, Marco D’Alessandro, Giuseppe Gallitto, Clara Rastelli, Christoph Braun, Andrea Caria
First page: 576
Abstract: Statistical learning of sensory patterns can lead to predictive neural processes enhancing stimulus perception and enabling fast deviancy detection. Predictive processes have been extensively demonstrated when environmental statistical regularities are relevant to task execution. Preliminary evidence indicates that statistical learning can even occur independently of task relevance and top-down attention, although the temporal profile and neural mechanisms underlying sensory predictions and error signals induced by statistical learning of incidental sensory regularities remain unclear. In our study, we adopted an implicit sensory conditioning paradigm that elicited the generation of specific perceptual priors in relation to task-irrelevant audio–visual associations, while recording Electroencephalography (EEG). Our results showed that learning task-irrelevant associations between audio–visual stimuli resulted in anticipatory neural responses to predictive auditory stimuli conveying anticipatory signals of expected visual stimulus presence or absence. Moreover, we observed specific modulation of cortical responses to probabilistic visual stimulus presentation or omission. Pattern similarity analysis indicated that predictive auditory stimuli tended to resemble the response to expected visual stimulus presence or absence. Remarkably, Hierarchical Gaussian filter modeling estimating dynamic changes of prediction error signals in relation to differential probabilistic occurrences of audio–visual stimuli further demonstrated instantiation of predictive neural signals by showing distinct neural processing of prediction error in relation to violation of expected visual stimulus presence or absence. Overall, our findings indicated that statistical learning of non-salient and task-irrelevant perceptual regularities could induce the generation of neural priors at the time of predictive stimulus presentation, possibly conveying sensory-specific information about the predicted consecutive stimulus.
Citation: Biology
PubDate: 2024-07-30
DOI: 10.3390/biology13080576
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 577: Targeting Hypoxia and HIF1α in
Triple-Negative Breast Cancer: New Insights from Gene Expression Profiling
and Implications for Therapy
Authors: Delong Han, Zeyu Li, Lingjie Luo, Hezhong Jiang
First page: 577
Abstract: Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia is a common feature of tumors and is associated with poor prognosis. Hypoxia can promote tumor growth, invasion, and metastasis by stimulating the production of growth factors, inducing angiogenesis, and suppressing antitumor immune responses. In this study, we used mRNA-seq technology to systematically investigate the gene expression profile of MDA-MB-231 cells under hypoxia. We found that the hypoxia-inducible factor (HIF) signaling pathway is the primary pathway involved in the cellular response to hypoxia. The genes in which expression levels were upregulated in response to hypoxia were regulated mainly by HIF1α. In addition, hypoxia upregulated various genes, including Nim1k, Rimkla, Cpne6, Tpbgl, Kiaa11755, Pla2g4d, and Ism2, suggesting that it regulates cellular processes beyond angiogenesis, metabolism, and known processes. We also found that HIF1α was hyperactivated in MDA-MB-231 cells under normoxia. A HIF1α inhibitor effectively inhibited the invasion, migration, proliferation, and metabolism of MDA-MB-231 cells. Our findings suggest that hypoxia and the HIF signaling pathway play more complex and multifaceted roles in TNBC than previously thought. These findings have important implications for the development of new therapeutic strategies for TNBC.
Citation: Biology
PubDate: 2024-07-31
DOI: 10.3390/biology13080577
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 578: Near-Infrared Spectroscopic Determination of
Pentacyclic Triterpenoid Concentrations in Additives for Animal Food
Authors: Carmen Sugráñez-Pérez, Rafael Sugráñez-Serrano, Marta López-González, Sara Martínez-Vaquero, Daniel Moral-Martos, Sofía Cortés-Jiménez, Juan Peragón-Sánchez
First page: 578
Abstract: The nutritional composition of food for animal production can be enhanced using olive tree and plant by-products due to their high content of bioactive compounds such as pentacyclic triterpenes. Here, we present a novel application of near-infrared spectroscopy (NIRS) for the prediction of the total or individual [maslinic acid (MA), oleanolic acid (OA), and uvaol (UO)] pentacyclic triterpene concentrations in a feed additive obtained from a plant mixture. The oxygen radical absorbance capacity of these types of samples demonstrated the existence of a high antioxidant capacity. The conventional determination methods of pentacyclic triterpene concentration are costly, labor-intensive, and not practical for analyzing several lines within a limited timeframe at the factory level. The optimal regression model developed in our work demonstrated high correlation values for the calibration and validation sets, along with a high residual prediction deviation value. We used 63 samples for the development of the model. The NIRS method can be applied directly to dried powder and makes extraction and high-performance liquid chromatography (HPLC) analysis unnecessary. Our results also demonstrate that NIRS can accurately quantify pentacyclic triterpenes even at low concentrations in food additives. It can be used at the factory level to directly determine the pentacyclic triterpene concentrations in the additive powder at the same time that the powder is produced.
Citation: Biology
PubDate: 2024-07-31
DOI: 10.3390/biology13080578
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 579: Dinoflagellate–Bacteria Interactions:
Physiology, Ecology, and Evolution
Authors: Xiaohong Yang, Zijian Liu, Yanwen Zhang, Xinguo Shi, Zhen Wu
First page: 579
Abstract: Dinoflagellates and heterotrophic bacteria are two major micro-organism groups within marine ecosystems. Their coexistence has led to a co-evolutionary relationship characterized by intricate interactions that not only alter their individual behaviors but also exert a significant influence on the broader biogeochemical cycles. Our review commenced with an analysis of bacterial populations, both free-living and adherent to dinoflagellate surfaces. Members of Alphaproteobacteria, Gammaproteobacteria, and the Cytophaga–Flavobacterium–Bacteroides group are repeatedly found to be associated with dinoflagellates, with representation by relatively few genera, such as Methylophaga, Marinobacter, and Alteromonas. These bacterial taxa engage with dinoflagellates in a limited capacity, involving nutrient exchange, the secretion of pathogenic substances, or participation in chemical production. Furthermore, the genomic evolution of dinoflagellates has been profoundly impacted by the horizontal gene transfer from bacteria. The integration of bacterial genes into dinoflagellates has been instrumental in defining their biological characteristics and nutritional strategies. This review aims to elucidate the nuanced interactions between dinoflagellates and their associated bacteria, offering a detailed perspective on their complex relationship.
Citation: Biology
PubDate: 2024-07-31
DOI: 10.3390/biology13080579
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 580: The Rice YL4 Gene Encoding a Ribosome
Maturation Domain Protein Is Essential for Chloroplast Development
Authors: Yunguang Sun, Yanxia Liu, Youze Zhang, Dongzhi Lin, Xiaobiao Pan, Yanjun Dong
First page: 580
Abstract: Chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are a family of plant-specific proteins associated with RNA binding. In this study, we have conducted a detailed characterization of a novel rice CRM gene (LOC_Os04g39060) mutant, yl4, which showed yellow-green leaves at all the stages, had fewer tillers, and had a decreased plant height. Map-based cloning and CRISPR/Cas9 editing techniques all showed that YL4 encoded a CRM domain protein in rice. In addition, subcellular localization revealed that YL4 was in chloroplasts. YL4 transcripts were highly expressed in all leaves and undetectable in roots and stems, and the mutation of YL4 affected the transcription of chloroplast-development-related genes. This study indicated that YL4 is essential for chloroplast development and affects some agronomic traits.
Citation: Biology
PubDate: 2024-07-31
DOI: 10.3390/biology13080580
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 581: Evaluation of Cytotoxicity and Metabolic
Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and
Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies
Authors: Lamya Azmy, Ibraheem B. M. Ibraheem, Sulaiman A. Alsalamah, Mohammed Ibrahim Alghonaim, Ahmed Zayed, Rehab H. Abd El-Aleam, Soad A. Mohamad, Usama Ramadan Abdelmohsen, Khaled N. M. Elsayed
First page: 581
Abstract: Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from −31.6 mV to −43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from −31.6 mV to −22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1–22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6′-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
Citation: Biology
PubDate: 2024-07-31
DOI: 10.3390/biology13080581
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 582: Exploring a Cheese Ripening Process That
Hinders Ochratoxin A Production by Penicillium nordicum and Penicillium
verrucosum
Authors: Alicia Rodríguez, Naresh Magan, Josué Delgado
First page: 582
Abstract: A lack of control of the technological abiotic parameters apparent during cheese manufacture, including temperature and relative humidity, results in this dairy product being prone to mold contamination. Sometimes, inoculant molds are used to obtain the characteristic sensory properties of this type of product. However, during the maturation process, some unwanted molds can colonize the ripening cheese and produce mycotoxins. Mycotoxigenic molds such as Penicillium nordicum and Penicillium verrucosum can colonize ripened cheeses, contaminating them with ochratoxin A (OTA), a nephrotoxic 2B toxin. Thus, the presence of OTA in cheeses could represent a hazard to consumers’ health. This study has evaluated the growth and OTA production of P. nordicum and P. verrucosum on a cheese analogue under simulated ripening conditions of 10 and 15 °C and 0.96 water activity (aw). Ecophysiological, molecular, and analytical tools assessed the mold growth, gene expression, and OTA production under these environmental conditions. Both species were able to effectively colonize the cheese under these ripening conditions. However, neither species expressed the otapks and otanps biosynthetic genes or produced phenotypic OTA. Therefore, these results suggest a relatively low risk of exposure to OTA for consumers of this type of cheese product. The conditions used were thus appropriate for cheese ripening to minimize the potential for contamination with such mycotoxins. An appropriate adjustment of the technological ripening parameters during such cheese manufacture could contribute to OTA-free cheeses.
Citation: Biology
PubDate: 2024-08-01
DOI: 10.3390/biology13080582
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 583: Molecular Pathways and Potential Therapeutic
Targets of Refractory Asthma
Authors: Leah Ishmael, Thomas Casale, Juan Carlos Cardet
First page: 583
Abstract: Asthma is a chronic inflammatory lung disease. Refractory asthma poses a significant challenge in management due to its resistance to standard therapies. Key molecular pathways of refractory asthma include T2 inflammation mediated by Th2 and ILC2 cells, eosinophils, and cytokines including IL-4, IL-5, and IL-13. Additionally, non-T2 mechanisms involving neutrophils, macrophages, IL-1, IL-6, and IL-17 mediate a corticosteroid resistant phenotype. Mediators including alarmins (IL-25, IL-33, TSLP) and OX40L have overlap between T2 and non-T2 inflammation and may signify unique pathways of asthma inflammation. Therapies that target these pathways and mediators have proven to be effective in reducing exacerbations and improving lung function in subsets of severe asthma patients. However, there are patients with severe asthma who do not respond to approved therapies. Small molecule inhibitors, such as JAK-inhibitors, and monoclonal antibodies targeting mast cells, IL-1, IL-6, IL-33, TNFα, and OX40L are under investigation for their potential to modulate inflammation involved in refractory asthma. Understanding refractory asthma heterogeneity and identifying mediators involved are essential in developing therapeutic interventions for patients unresponsive to currently approved biologics. Further investigation is needed to develop personalized treatments based on these molecular insights to potentially offer more effective treatments for this complex disease.
Citation: Biology
PubDate: 2024-08-01
DOI: 10.3390/biology13080583
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 584: Proteomic Profile of Endometrial Cancer: A
Scoping Review
Authors: Beatriz Serambeque, Catarina Mestre, Kristina Hundarova, Carlos Miguel Marto, Bárbara Oliveiros, Ana Rita Gomes, Ricardo Teixo, Ana Sofia Carvalho, Maria Filomena Botelho, Rune Matthiesen, Maria João Carvalho, Mafalda Laranjo
First page: 584
Abstract: Proteomics can be a robust tool in protein identification and regulation, allowing the discovery of potential biomarkers. In clinical practice, the management of endometrial cancer can be challenging. Thus, identifying promising markers could be beneficial, helping both in diagnosis and prognostic stratification, even predicting the response to therapy. Therefore, this manuscript systematically reviews the existing evidence of the proteomic profile of human endometrial cancer. The literature search was conducted via Medline (through PubMed) and the Web of Science. The inclusion criteria were clinical, in vitro, and in vivo original studies reporting proteomic analysis using all types of samples to map the human endometrial cancer proteome. A total of 55 publications were included in this review. Most of the articles carried out a proteomic analysis on endometrial tissue, serum and plasma samples, which enabled the identification of several potential diagnostic and prognostic biomarkers. In addition, eight articles were analyzed regarding the identified proteins, where three studies showed a strong correlation, sharing forty-five proteins. This analysis also allowed the identification of the 10 most frequently reported proteins in these studies: EGFR, PGRMC1, CSE1L, MYDGF, STMN1, CASP3 ANXA2, YBX1, ANXA1, and MYH11. Proteomics-based approaches pointed out potential diagnostic and prognostic candidates for endometrial cancer. However, there is a lack of studies exploring novel therapeutic targets.
Citation: Biology
PubDate: 2024-08-01
DOI: 10.3390/biology13080584
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 585: Using Citizen Science and Field Surveys to
Document the Introduction, Establishment, and Rapid Spread of the
Bare-Eyed Pigeon, Patagioenas corensis, on the Island of
Saint-Martin, West Indies
Authors: Christopher Cambrone, Anthony Levesque, Frank Cézilly
First page: 585
Abstract: Early reporting of the introduction and establishment of exotic species is of paramount importance for successful management. Here, we report the introduction and rapid spread of the Bare-eyed Pigeon, Patagioenas corensis, on the binational island of Saint-Martin, the West Indies. This range-restricted species naturally occurs in arid coastal areas of Columbia and Venezuela and nearby islands. Its introduction on Saint-Martin represents an expansion of about 1000 km beyond its established native range. Using observations recorded in eBird and results from a recent field survey, we show that since its introduction, most probably between late 2012 and early 2013, the species has expanded fast in Saint-Martin and has recently broadened its habitat to include anthropized, built areas. The expansion of Bare-eyed Pigeon on Saint-Martin and the neighboring Leeward Islands, possibly facilitated by climate change in the future, could be a threat to both native columbid species and other bird species through competition for resources. We therefore recommend that local authorities and stakeholders rapidly eradicate the species or at least prevent its further spread on Saint-Martin, possibly though listing it as a game species, while it is still possible to do so.
Citation: Biology
PubDate: 2024-08-01
DOI: 10.3390/biology13080585
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 586: Role of Extracellular Vesicles in the
Progression of Brain Tumors
Authors: Gabriella Schiera, Carlo Maria Di Liegro, Francesco Vento, Italia Di Liegro
First page: 586
Abstract: Brain tumors, and, in particular, glioblastoma (GBM), are among the most aggressive forms of cancer. In spite of the advancement in the available therapies, both diagnosis and treatments are still unable to ensure pathology-free survival of the GBM patients for more than 12–15 months. At the basis of the still poor ability to cope with brain tumors, we can consider: (i) intra-tumor heterogeneity; (ii) heterogeneity of the tumor properties when we compare different patients; (iii) the blood–brain barrier (BBB), which makes difficult both isolation of tumor-specific biomarkers and delivering of therapeutic drugs to the brain. Recently, it is becoming increasingly clear that cancer cells release large amounts of extracellular vesicles (EVs) that transport metabolites, proteins, different classes of RNAs, DNA, and lipids. These structures are involved in the pathological process and characterize any particular form of cancer. Moreover, EVs are able to cross the BBB in both directions. Starting from these observations, researchers are now evaluating the possibility to use EVs purified from organic fluids (first of all, blood and saliva), in order to obtain, through non-invasive methods (liquid biopsy), tumor biomarkers, and, perhaps, also for obtaining nanocarriers for the targeted delivering of drugs.
Citation: Biology
PubDate: 2024-08-02
DOI: 10.3390/biology13080586
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 587: Investigating Development and Defense Systems
in Early Reproductive Stages of Male and Female Gonads in Black
Scorpionfish Scorpaena porcus (Linnaeus, 1758)
Authors: Alessio Alesci, Sebastian Marino, Claudio D’Iglio, Silvana Morgante, Anthea Miller, Gabriele Rigano, Josipa Ferri, Jorge M. O. Fernandes, Gioele Capillo
First page: 587
Abstract: One of the most crucial biological indicators in tracking long-term variations in the reproductive cycle is sexual development. Scorpaena porcus (Linnaeus, 1758), commonly known as the black scorpionfish, is a small teleost from the family Scorpaenidae. Much is known about its ecology, but data on its reproductive and defense systems are still lacking. Antimicrobial peptides (AMPs), such as piscidins, are integral components of the innate immune system in fish. These peptides exhibit a wide range of activity against bacteria, fungi, viruses, and protozoa and act as the first line of host defense. This study aims to investigate the primary sexual development stages in male and female gonads of black scorpionfish, providing additional knowledge on the reproductive biology of this teleost while evaluating concomitant changes in the expression of a Piscidin-1 antimicrobial peptide. The results show a histological, morpho-structural change from the immature stage to the developing virgin stage. Immunohistochemical analyses show that germinal and somatic cells are strongly reactive to Piscidin-1 in both gonads at an early ontogeny stage. These data suggest that Piscidin-1 may play a key role in the local defense system of scorpionfish gonads at this delicate stage, which is critical for the continuation and maintenance of the species. The present findings are potentially useful for a better understanding of the reproductive cycle of this fish, improving our knowledge of the interaction between the immune system and reproduction.
Citation: Biology
PubDate: 2024-08-02
DOI: 10.3390/biology13080587
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 588: Fresh Tomato (Lycopersicon Esculentum Mill)
in the Diet Improves the Features of the Metabolic Syndrome: A Randomized
Study in Postmenopausal Women
Authors: Chein-Yin Chen, Yi-Wen Chien
First page: 588
Abstract: (1) Background: According to the 2005~2008 Nutrition and Health Survey in Taiwan (NAHSIT), more than half of Taiwanese women (57.3%) had metabolic syndrome during menopause. Metabolic syndrome is a set of risk factors for cardiovascular disease (CVD) that increase the risk of cardiovascular disease, diabetes, and mortality. Epidemiological studies suggest that the consumption of tomato-based foods might reduce the risk factors for CVD. The aim of this study is to examine the effects of tomato consumption on lowering the metabolic syndrome risk factors among overweight postmenopausal women. (2) Methods: We conducted a randomized controlled trial using 8-week open-label dietary intervention. Overweight postmenopausal women aged 45–70 years old were recruited from Taipei Medical University in October 2013. They were randomly assigned into two groups (a control diet vs. a tomato diet). Blood samples were collected at the baseline and at the 4th and 8th weeks. The lipid profile, blood sugar, and antioxidant biomarkers, i.e., the ferric-reducing ability of plasma (FRAP) and serum carotenoids, were analyzed. Blood pressure, body weight, and body fat were also measured every week. (3) Results: After the 8-week dietary intervention, body weight, body mass index, waist circumference, and hip circumference were significantly lower in both groups (p < 0.05). Body fat mass, body fat percentage, waist circumference, and hip circumference were significantly lower in the tomato diet group than in the control diet group. The tomato diet group had significantly lower serum total cholesterol, triglyceride, systolic blood pressure and blood sugar, and higher high-density lipoprotein cholesterol than the control diet group. The antioxidant biomarkers, FRAP, beta-carotenoids, and lycopene were significantly higher in the tomato diet group than in the control diet group. (4) Conclusions: Fresh tomato consumption can increase antioxidant biomarkers to reduce risks of metabolic syndrome in postmenopausal women.
Citation: Biology
PubDate: 2024-08-03
DOI: 10.3390/biology13080588
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 589: Effects of Ammonia Concentration on Sperm
Vitality, Motility Rates, and Morphology in Three Marine Bivalve Species:
A Comparative Study of the Noble Scallop Mimachlamys nobilis, Chinese
Pearl Oyster Pinctada fucata martensii, and Small Rock Oyster Saccostrea
mordax
Authors: Minghao Li, Jiong Wu, Rui Yang, Zhengyi Fu, Gang Yu, Zhenhua Ma
First page: 589
Abstract: Ammonium (NH4+) plays a crucial role in the reproductive processes of key biotic groups in aquatic ecosystems—bivalves. This study aims to elucidate the effects of three different ammonium ion concentrations on sperm vitality, swimming kinematics, and morphology of Mimachlamys nobilis, Pinctada fucata martensii, and Saccostrea mordax. The results indicate that the sperm vitality and motility rates of M.nobilis and S. mordax are inversely proportional to the ammonium concentration, especially in the treatment group with an ammonium concentration of 3 mmol/L, where the decrease in sperm vitality and motility is most significant. In contrast, the sperm of P. fucata martensii reacted differently to increasing ammonium concentrations. After the addition of 2 mmol/L of ammonium, the sperm vitality and motility of P. fucata martensii reached a peak, showing a significant stimulatory effect. Additionally, as the ammonium concentration increased, the curling of the sperm flagella in M.nobilis and S. mordax increased. However, sperm flagella curling in P. fucata martensii showed no change compared to the control group. This study provides insights into the effects of ammonium concentrations on the sperm vitality and motility of three marine bivalve species and highlights the importance of sperm flagella curling as a factor affecting sperm.
Citation: Biology
PubDate: 2024-08-03
DOI: 10.3390/biology13080589
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 590: Three New Species and a New Record of the
Lichen Genus Peltula (Peltulaceae) from Helan Mountain in China
Authors: Siying Wang, Gege Zhao, Dongling Niu, Liang Wang, Xia Ren, Jinai Wu, Hongbin Qu
First page: 590
Abstract: In this study, a systematic taxonomic analysis was carried out on the lichen genus Peltula, collected from Helan Mountain in China; three new species (Peltula helanense, P. overlappine, and P. reticulata) and a new record (P. crispatula (Nyl.) Egea) for China were identified. Four species were identified by morph-anatomical, chemical, and phylogenetic analyses by combining two gene loci (ITS and LSU). Peltula helanense is with tiny individual thalli up to 1mm, attached by creamy-white cylindrical rhizoids and apothecia filling the whole squamule. Peltula overlappine is characterized by thallus squamulose forming rosette-shaped patches and squamules with distinctive thickened margins. Peltula reticulata is characterized by brownish brown thallus and squamules with densely reticulate upper surface. P. crispatula is characterized by irregular squamules attached to a tuft of hyphae. The four species are described in detail, compared, and discussed with similar species, and images of morpho-anatomical structures of the four species are also provided. Moreover, a key to the species of Peltula from Helan Mountain is provided. The results enrich the data of the genus Peltula and also indicate that the rich diversity of lichen species in Helan Mountain is worthy of in-depth study.
Citation: Biology
PubDate: 2024-08-05
DOI: 10.3390/biology13080590
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 591: Utilizing Mixed Cultures of Microalgae to
Up-Cycle and Remove Nutrients from Dairy Wastewater
Authors: Amira K. Hajri, Ifat Alsharif, Marzough A. Albalawi, Shareefa A. Alshareef, Raghad K. Albalawi, Bassem Jamoussi
First page: 591
Abstract: This study explores the novel use of mixed cultures of microalgae—Spirulina platensis, Micractinium, and Chlorella—for nutrient removal from dairy wastewater (DW). Microalgae were isolated from a local wastewater treatment plant and cultivated under various light conditions. The results showed significant biomass production, with mixed cultures achieving the highest biomass (2.51 g/L), followed by Spirulina (1.98 g/L) and Chlorella (1.92 g/L). Supplementing DW (75%) with BG medium (25%) significantly enhanced biomass and pH levels, improving pathogenic bacteria removal. Spirulina and mixed cultures exhibited high nitrogen removal efficiencies of 92.56% and 93.34%, respectively, while Chlorella achieved 86.85% nitrogen and 83.45% phosphorus removal. Although growth rates were lower under phosphorus-limited conditions, the microalgae adapted well to real DW, which is essential for effective algal harvesting. Phosphorus removal efficiencies ranged from 69.56% to 86.67%, with mixed cultures achieving the highest removal. Microbial and coliform removal efficiencies reached 97.81%, with elevated pH levels contributing to significant reductions in fecal E. coli and coliform levels. These findings suggest that integrating microalgae cultivation into DW treatment systems can significantly enhance nutrient and pathogen removal, providing a sustainable solution for wastewater management.
Citation: Biology
PubDate: 2024-08-06
DOI: 10.3390/biology13080591
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 592: ClpL Chaperone as a Possible Component of the
Disaggregase Activity of Limosilactobacillus fermentum U-21
Authors: Rahaf N. Al Ebrahim, Maria G. Alekseeva, Sergey V. Bazhenov, Vadim V. Fomin, Dilara A. Mavletova, Andrey A. Nesterov, Elena U. Poluektova, Valeriy N. Danilenko, Ilya V. Manukhov
First page: 592
Abstract: The L. fermentum U-21 strain, known for secreting chaperones into the extracellular milieu, emerges as a promising candidate for the development of novel therapeutics termed disaggregases for Parkinson’s disease. Our study focuses on characterizing the secreted protein encoded by the C0965_000195 locus in the genome of this strain. Through sequence analysis and structural predictions, the protein encoded by C0965_000195 is identified as ClpL, homologs of which are known for their chaperone functions. The chaperone activity of ClpL from L. fermentum U-21 is investigated in vivo by assessing the refolding of luciferases with varying thermostabilities from Aliivibrio fischeri and Photorhabdus luminescens within Escherichia coli cells. The results indicate that the clpL gene from L. fermentum U-21 can compensate for the absence of the clpB gene, enhancing the refolding capacity of thermodenatured proteins in clpB-deficient cells. In vitro experiments demonstrate that both spent culture medium containing proteins secreted by L. fermentum U-21 cells, including ClpL, and purified heterologically expressed ClpL partially prevent the thermodenaturation of luciferases. The findings suggest that the ClpL protein from L. fermentum U-21, exhibiting disaggregase properties against aggregating proteins, may represent a key component contributing to the pharmabiotic attributes of this strain.
Citation: Biology
PubDate: 2024-08-06
DOI: 10.3390/biology13080592
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 593: Seasonal Effects of Constructed Wetlands on
Water Quality Characteristics in Jinshan Lake: A Gate Dam Lake (Zhenjiang
City, China)
Authors: Xiao Li, Xinlin Liu, Yulong Zhang, Jing Liu, Yang Huang, Jian Li
First page: 593
Abstract: Urban lakes commonly suffer from nutrient over-enrichment, resulting in water quality deterioration and eutrophication. Constructed wetlands are widely employed for ecological restoration in such lakes but their efficacy in water purification noticeably fluctuates with the seasons. This study takes the constructed wetland of Jinshan Lake as an example. By analyzing the water quality parameters at three depths during both summer and winter, this study explores the influence of the constructed wetland on the water quality of each layer during different seasons and elucidates the potential mechanisms underlying these seasonal effects. The results indicate that the constructed wetland significantly enhances total nitrogen (TN) concentration during summer and exhibits the capacity for nitrate–nitrogen removal in winter. However, its efficacy in removing total phosphorus (TP) is limited, and may even serve as a potential phosphorus (P) source for the lake during winter. Water quality test results of different samples indicated they belong to Class III or IV. Restrictive factors varied across seasons: nitrate–nitrogen and BOD5 jointly affected water quality in winter, whereas TP predominantly constrained water quality in summer. These results could provide a reference for water quality monitoring and management strategies of constructed wetlands in different seasons in Jiangsu Province.
Citation: Biology
PubDate: 2024-08-06
DOI: 10.3390/biology13080593
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 594: Suitable Habitat Distribution and Niche
Overlap of the Sable (Martes zibellina) and Yellow-Throated Marten (Martes
flavigula) in Taipinggou National Nature Reserve, Heilongjiang Province,
China
Authors: Yang Hong, Xinxin Liu, Ning Zhang, Ziwen Wang, Changzhi Zhang, Minghai Zhang
First page: 594
Abstract: The global focus on fostering harmonious interactions and promoting rational coexistence among wildlife species to uphold or reinstate biodiversity remains a prominent area of interest. We conducted a study on the sable and yellow-throated marten in Taipinggou National Nature Reserve, Heilongjiang, China, using the line transect method and infrared camera traps from 2022 to 2023. We then analyzed the overlap of their suitable habitats and niches with the aim of gaining insight into the interspecific competition between these two species. We found that the suitable habitat areas for the sable and yellow-throated marten were 55.20 km2 and 23.28 km2, accounting for 24.86% and 10.48% of the total area of this study, respectively. The overlap between the suitable habitats for the sable and yellow-throated marten was 15.73 km2, accounting for 28.5% and 67.6% of their suitable habitat, supporting our Hypothesis 1. The first principal component (Dim1) of the niche explained 35.4% of the overall variability, which is mainly related to the environmental variables “Distance from Settlements” and “Distance from Roads”. Overall, 25.5% of the total variability was explained by the second principal component (Dim2), associated with “Slope” and “Distance from Coniferous and Broadleaved Mixed Forest”. The niches occupied by the sable and yellow-throated marten were both off-center of the environmental background space, with the niches of the sable being larger than those of the yellow-throated marten. Schoener’s D index was 0.56, indicating a high degree of niche overlap between the sable and yellow-throated marten, supporting our Hypothesis 2. Our study is helpful in terms of formulating conservation and management policies for the sable and yellow-throated marten.
Citation: Biology
PubDate: 2024-08-07
DOI: 10.3390/biology13080594
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 595: Transcriptome Profiling and Weighted Gene
Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the
Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus
Rootstocks
Authors: Emanuele Scialò, Angelo Sicilia, Alberto Continella, Alessandra Gentile, Angela Roberta Lo Piero
First page: 595
Abstract: Agriculture faces the dual challenge of increasing food production and safeguarding the environment. Climate change exacerbates this challenge, reducing crop yield and biomass due to drought stress, especially in semi-arid regions where Citrus plants are cultivated. Understanding the molecular mechanisms underlying drought tolerance in Citrus is crucial for developing adaptive strategies. Plants of two citrus rootstocks, Carrizo Citrange and Bitters (C22), were grown in aerated half-strength Hoagland’s nutrient solution. Post-acclimation, the plants were exposed to a solution containing 0% (control) or 15% PEG-8000 for 10 days. Leaf malonyl dialdehyde (MDA) and hydrogen peroxide (H2O2) content were measured to assess the reached oxidative stress level. Total RNA was extracted, sequenced, and de novo-assembled. Weighted Gene Correlation Network Analysis (WGCNA) was conducted to examine the relationship between gene expression patterns and the levels of MDA and H2O2 used as oxidative stress indicators. Plant visual inspection and MDA and H2O2 contents clearly indicate that Bitters is more tolerant than Carrizo towards PEG-induced drought stress. RNA-Seq analysis revealed a significantly higher number of differentially expressed genes (DEGs) in Carrizo (6092) than in Bitters (320), with most being associated with drought sensing, ROS scavenging, osmolyte biosynthesis, and cell wall metabolism. Moreover, the WGCNA identified transcription factors significantly correlated with MDA and H2O2 levels, thus providing insights into drought-coping strategies and offering candidate genes for enhancing citrus drought tolerance.
Citation: Biology
PubDate: 2024-08-07
DOI: 10.3390/biology13080595
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 596: Response Characteristics and Community
Assembly Mechanisms of nirS-Type Denitrifiers in the Alpine Wetland under
Simulated Precipitation Conditions
Authors: Ni Zhang, Kelong Chen, Ji Chen, Wei Ji, Ziwei Yang, Zhirong Chen
First page: 596
Abstract: The nitrogen cycling process in alpine wetlands is profoundly affected by precipitation changes, yet the dynamic response mechanism of denitrifiers to long-term precipitation shifts in the alpine wetland of the Qinghai-Tibet Plateau remains enigmatic. Utilizing high-throughput sequencing analysis of nirS-type functional genes, this study delved into the dynamic response mechanism of nirS-type denitrifiers to precipitation changes in the alpine wetland of Qinghai Lake. The findings revealed that nirS-type denitrifiers in the alpine wetland of Qinghai Lake were primarily Proteobacteria, and Alpha diversity exhibited a negative correlation with the precipitation gradient, with deterministic processes predominating in the community assembly of denitrifying microbes. A 50% increase in rainfall shifted the community assembly process of denitrifiers from deterministic to stochastic. Dominant microflora at the genus level responded significantly to precipitation changes, with aerobic bacteria comprising the majority of differentially abundant taxa (55.56%). As precipitation increased, the complexity of the microbial interaction network decreased, and a 25% reduction in precipitation notably elevated the relative abundance of three key functional groups: chemoheterotrophic, aerobic chemoheterotrophic, and nitrogen fixation. Precipitation notably emerged as the primary regulator of nirS-type denitrifiers in the alpine wetland of Qinghai Lake, accounting for 51% of the variation in community composition. In summary, this study offers a fresh perspective for investigating the ecological processes of nitrogen cycling in alpine ecosystems by examining the diversity and community composition of nirS-type denitrifiers in response to precipitation changes.
Citation: Biology
PubDate: 2024-08-07
DOI: 10.3390/biology13080596
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 597: Schisandrin A Attenuates Diabetic Nephropathy
via EGFR/AKT/GSK3β Signaling Pathway Based on Network Pharmacology
and Experimental Validation
Authors: Pengyu Wang, Qing Lan, Qi Huang, Ruyi Zhang, Shuo Zhang, Leiming Yang, Yan Song, Tong Wang, Guandi Ma, Xiufen Liu, Xiying Guo, Youzhi Zhang, Chao Liu
First page: 597
Abstract: Diabetic nephropathy (DN) is one of the common complications of diabetes and the main cause of end-stage renal disease (ESRD) in clinical practice. Schisandrin A (Sch A) has multiple pharmacological activities, including inhibiting fibrosis, reducing apoptosis and oxidative stress, and regulating immunity, but its pharmacological mechanism for the treatment of DN is still unclear. In vivo, streptozotocin (STZ) and a high-fat diet were used to induce type 2 diabetic rats, and Sch A was administered for 4 weeks. At the same time, protein–protein interaction (PPI) networks were established to analyze the overlapping genes of DN and Sch A. Subsequently, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to determine the hub pathway. In addition, molecular docking was used to preliminarily verify the affinity of hub proteins and Sch A. Further, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, and western blot analysis were used to detect the location and expression of related proteins in DN. This study revealed the multi-target and multi-pathway characteristics of Sch A in the treatment of DN. First, Sch A could effectively improve glucose tolerance, reduce urine microprotein and urine creatinine levels, and alleviate renal pathological damage in DN rats. Second, EGFR was the hub gene screened in overlapping genes (43) of Sch A (100) and DN (2524). Finally, it was revealed that Sch A could inhibit the protein expression levels of EGFR and PTRF and reduced the expression of apoptosis-related proteins, and this effect was related to the modulation of the AKT/GSK-3β signaling pathway. In summary, Sch A has a protective effect in DN rats, EGFR may be a potential therapeutic target, throughout modulating AKT/GSK-3β pathway.
Citation: Biology
PubDate: 2024-08-08
DOI: 10.3390/biology13080597
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 598: Hypoxia-Induced Adaptations of Embryonic
Fibroblasts: Implications for Developmental Processes
Authors: Zeyu Li, Delong Han, Zhenchi Li, Lingjie Luo
First page: 598
Abstract: Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. However, the adaptations of embryonic fibroblasts under hypoxia remain poorly understood. In this study, we investigated the effects of hypoxia on mouse embryonic fibroblasts (MEFs). We found that hypoxia can induce migration, promote metabolic reprogramming, induce the production of ROS and apoptosis, and trigger the activation of multiple signaling pathways of MEFs. Additionally, we identified several hypoxia-inducible genes, including Proser2, Bean1, Dpf1, Rnf128, and Fam71f1, which are regulated by HIF1α. Furthermore, we demonstrated that CoCl2 partially mimics the effects of low oxygen on MEFs. However, we found that the mechanisms underlying the production of ROS and apoptosis differ between hypoxia and CoCl2 treatment. These findings provide insights into the complex interplay between hypoxia, fibroblasts, and embryonic developmental processes.
Citation: Biology
PubDate: 2024-08-08
DOI: 10.3390/biology13080598
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 599: Impact of BMI and Cardiorespiratory Fitness
on Oxidative Stress in Plasma and Circulating Exosomes Following Acute
Exercise
Authors: Aaron L. Slusher, Nishant P. Visavadiya, Brandon G. Fico, Brisamar Estébanez, Edmund O. Acevedo, Chun-Jung Huang
First page: 599
Abstract: The impact of cardiorespiratory fitness (VO2max) and obesity on indices of oxidative stress in plasma and circulating exosome-like extracellular vesicles (ELVs) were examined following acute exercise. Indices of oxidative stress in plasma and isolated plasma ELVs were examined in aerobically trained (NW-Tr; n = 15) and untrained (NW-UTr; n = 18) normal-weight individuals and aerobically untrained individuals with obesity (Ob-Utr; n = 10) prior to and immediately following acute maximal treadmill running. Following exercise, ELV flotillin-1 expression (p = 0.008) and plasma total antioxidant capacity (TAC; p = 0.010) increased more in NW-UTr compared to NW-Tr and Ob-UTr participants, whereas plasma protein carbonyls (PC) decreased more in Ob-UTr compared to NW-Tr and NW-UTr groups. ELV glutathione (GSH) concentrations decreased more in NW-Tr compared to NW-UTr and Ob-UTr participants (p = 0.009), whereas lipid peroxidase (LPO) concentrations increased more in Ob-UTr compared to NW-Tr and NW-UTr participants (p = 0.003). Body mass index (BMI) was associated negatively with plasma TAC and PC (p < 0.05) and positively with ELV LPO concentration responses (p = 0.009). Finally, plasma-to-total (plasma + ELV) GSH ratios decreased in Ob-UTr compared to NW-Tr and NW-UTr participants (p = 0.006), PC ratios increased in NW-Tr and NW-UTr compared to Ob-UTr subjects (p = 0.008), and reactive oxygen/nitrogen species ratios increased in NW-UTr and decreased in Ob-UTr participants (p < 0.001). BMI, independently of VO2max, differentially regulates indices of oxidative stress within plasma and circulating ELVs prior to and immediately following acute maximal treadmill exercise.
Citation: Biology
PubDate: 2024-08-08
DOI: 10.3390/biology13080599
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 600: The A226D Mutation of OmpC Leads to Increased
Susceptibility to β-Lactam Antibiotics in Escherichia coli
Authors: Jiaming Zhu, Peng Guo, Yuting Zheng, Shiqing Xiang, Yang Zhao, Xinyu Liu, Chengzhang Fu, Youming Zhang, Hai Xu, Ling Li, Wenjia Wang, Mingyu Wang
First page: 600
Abstract: Bacterial resistance to antibiotics can lead to long-lasting, hard-to-cure infections that pose significant threats to human health. One key mechanism of antimicrobial resistance (AMR) is to reduce the antibiotic permeation of cellular membranes. For instance, the lack of outer membrane porins (OMPs) can lead to elevated AMR levels. However, knowledge on whether mutations of OMPs can also influence antibiotic susceptibility is limited. This work aims to address this question and identified an A226D mutation in OmpC, a trimeric OMP, in Escherichia coli. Surveillance studies found that this mutation is present in 50 E. coli strains for which whole genomic sequences are available. Measurement of minimum inhibition concentrations (MICs) found that this mutation leads to a 2-fold decrease in MICs for β-lactams ampicillin and piperacillin. Further survival assays confirmed the role this mutation plays in β-lactam susceptibility. With molecular dynamics, we found that the A226D mutation led to increased overall flexibility of the protein, thus facilitating antibiotic uptake, and that binding with piperacillin was weakened, leading to easier antibiotic penetration. This work reports a novel mutation that plays a role in antibiotic susceptibility, along with mechanistic studies, and further confirms the role of OMPs in bacterial tolerance to antibiotics.
Citation: Biology
PubDate: 2024-08-09
DOI: 10.3390/biology13080600
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 601: Evolutionary Fate of the Opine Synthesis
Genes in the Arachis L. Genomes
Authors: Olesja D. Bogomaz, Victoria D. Bemova, Nikita A. Mirgorodskii, Tatiana V. Matveeva
First page: 601
Abstract: Naturally transgenic plants are plants that have undergone Agrobacterium-mediated transformation under natural conditions without human involvement. Among Arachis hypogaea L., A. duranensis Krapov. & W.C. Greg, A. ipaensis Krapov. & W.C. Greg, A. monticola Krapov. & Rigoni, and A. stenosperma Krapov. & W.C. Greg are known to contain sequences derived from the T-DNA of “Agrobacterium”. In the present study, using molecular genetics and bioinformatic methods, we characterized natural transgenes in 18 new species from six sections of the genus Arachis. We found that small fragments of genes for enzymes of the agropine synthesis pathway were preserved only in some of the studied samples and were lost in the majority of the species during evolution. At the same time, genes, similar to cucumopine synthases (cus-like), remained intact in almost all of the investigated species. In cultivated peanuts, they are expressed in a tissue-specific manner. We demonstrated the intraspecific variability of the structure and expression of the cus-like gene in cultivated peanuts. The described diversity of gene sequences horizontally transferred from Agrobacterium to plants helps to shed light on the phylogeny of species of the genus Arachis and track possible hybridization events. Data on the ability of certain species to hybridize are useful for planning breeding schemes aimed at transferring valuable traits from wild species into cultivated peanuts.
Citation: Biology
PubDate: 2024-08-09
DOI: 10.3390/biology13080601
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 602: Raphanus sativus Linne Protects Human Nucleus
Pulposus Cells against H2O2-Induced Damage by Inhibiting TREM2
Authors: Hyunseong Kim, Changhwan Yeo, Jin Young Hong, Wan-Jin Jeon, Hyun Kim, Junseon Lee, Yoon Jae Lee, Seung Ho Baek, In-Hyuk Ha
First page: 602
Abstract: Intervertebral disc degeneration (IDD) progresses owing to damage and depletion of nucleus pulposus (NP) cells. Cytoprotection mitigates oxidative stress, nutrient deprivation, and mechanical stress, which lead to cell damage and necrosis. We aimed to examine the protective effect of Raphanus sativus Linne (RSL), common radish, against oxidative stress by H2O2 in human NP cells and whether the RSL extracts can inhibit triggering receptor expressed on myeloid cells 2 (TREM2), an inducer of apoptosis and degeneration in NP cells. We administered hydrogen peroxide (H2O2) to cultured human NP cells treated with RSL extracts. We used immunoblotting and quantitative PCR to investigate expression of the apoptosis-associated proteins in cultured cells. RSL significantly enhanced cell survival by suppressing the activation of cleaved caspase-3 and Bax. In contrast, RSL extract increased Bcl2 concentration to downregulate apoptosis. Additionally, RSL treatment notably enhanced the mRNA levels of ACAN and Col2a1 while significantly reducing those of ADAMTS-4, ADAMTS-5, MMP3, and MMP13, key genes involved in NP degeneration. While H2O2 elevated TREM2 expression, causing disc degeneration, RSL downregulated TREM2 expression. Thus, our findings imply that RSL supports human NP cells under oxidative stress and regulates the pathways underlying disc degeneration, particularly TREM2, and that RSL extracts may potentially prevent IDD.
Citation: Biology
PubDate: 2024-08-09
DOI: 10.3390/biology13080602
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 603: Effects of Probiotic Supplementation on Body
Weight, Growth Performance, Immune Function, Intestinal Microbiota and
Metabolites in Fallow Deer
Authors: Meihui Wang, Qingyun Guo, Yunfang Shan, Zhibin Cheng, Qingxun Zhang, Jiade Bai, Yulan Dong, Zhenyu Zhong
First page: 603
Abstract: Intestinal diseases are one of the diseases that affect the growth and immunity of deer. Currently, more lactic acid bacteria (LAB) are available as feed additives to improve the intestinal ecological balance of ruminants in production practices. In this study, Enterococcus faecalis was supplemented in the feed of fallow deer for 170 d, and body weights, blood indices and immune levels of fallow deer were counted at 35, 65 and 170 d. The effects of Enterococcus faecalis on the intestinal microbiota and the metabolism of fallow deer were analysed using 16S rDNA and UPLC-MS/MS methods. The results showed that the addition of Enterococcus faecalis to the diet improved body weight and immune function and increased the aggregation of gut microbiota in fallow deer. The addition of Enterococcus faecalis altered the community structure of intestinal microorganisms in fallow deer and increased the number of beneficial bacteria. In addition, combined with metabolomics analysis, it was found that supplementation with Enterococcus faecalis significantly altered the metabolites of fallow deer, mainly regulating lipid metabolism, carbohydrate metabolism and phospholipid metabolism. In conclusion, this study presents, for the first time, evidence that the LAB strain Enterococcus faecalis can be used as a potential probiotic for deer and points to a new direction for the treatment of intestinal disorders in the deer family.
Citation: Biology
PubDate: 2024-08-09
DOI: 10.3390/biology13080603
Issue No: Vol. 13, No. 8 (2024)
- Biology, Vol. 13, Pages 504: Limbic Network and Papez Circuit Involvement
in ALS: Imaging and Clinical Profiles in GGGGCC Hexanucleotide Carriers in
C9orf72 and C9orf72-Negative Patients
Authors: Foteini Christidi, Jana Kleinerova, Ee Tan, Siobhan Delaney, Asya Tacheva, Jennifer Hengeveld, Mark Doherty, Russell McLaughlin, Orla Hardiman, We Siah, Kai Chang, Jasmin Lope, Peter Bede
First page: 504
Abstract: Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and 111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A deep-learning-based segmentation approach was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical and white matter components of the Papez circuit were also systematically evaluated. Results: Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reductions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix, cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological findings were consistent with neuropsychological observations and highlighted the importance of comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype.
Citation: Biology
PubDate: 2024-07-06
DOI: 10.3390/biology13070504
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 505: The Involvement of microRNAs in Bone
Remodeling Signaling Pathways and Their Role in the Development of
Osteoporosis
Authors: Rogelio F. Jiménez-Ortega, Alejandra I. Ortega-Meléndez, Nelly Patiño, Berenice Rivera-Paredez, Alberto Hidalgo-Bravo, Rafael Velázquez-Cruz
First page: 505
Abstract: Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3’ untranslated region (3′UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Citation: Biology
PubDate: 2024-07-07
DOI: 10.3390/biology13070505
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 506: Biosynthesis and Pharmacological Activities
of the Bioactive Compounds of White Mulberry (Morus alba): Current
Paradigms and Future Challenges
Authors: Maryam Fatima, Mudasir A. Dar, Maruti J. Dhanavade, Syed Zaghum Abbas, Mohd Nadeem Bukhari, Abdullah Arsalan, Yangzhen Liao, Jingqiong Wan, Jehangir Shah Syed Bukhari, Zhen Ouyang
First page: 506
Abstract: Traditional natural products have been the focus of research to explore their medicinal properties. One such medicinally important plant is the white mulberry, Morus alba, widely distributed in the Asian subcontinent. It is one of the most cultivated species of mulberry tree and has attracted more focus from researchers because of its abundance in phytochemicals as well as multipurpose uses. The leaves, fruits and other parts of the white mulberry plant act as a source of valuable bioactive compounds like flavonoids, phenolic acids, terpenoids and alkaloids. These secondary metabolites have manifold healthy uses as they possess antioxidant, anti-inflammatory, antidiabetic, neutrotrophic, and anticancer properties. Despite the increasing scientific interest in this plant, there are very few reviews that highlight the phytochemistry and biological potential of white mulberry for biomedical research. To this end, this review elaborates the phytochemistry, biosynthetic pathways and pharmacological activities of the glycoside flavonoids of Morus alba. A comprehensive analysis of the available literature indicates that Morus alba could emerge as a promising natural agent to combat diverse conditions including diabetes, cancer, inflammation and infectious diseases. To achieve such important objectives, it is crucial to elucidate the biosynthesis and regulation mechanisms of the bioactive compounds in white mulberry as well as the multifaceted pharmacological effects attributed to this plant resource. The present review paper is intended to present a summary of existing scientific data and a guide for further research in the phytochemistry and pharmacology of white mulberry. Further, a biosynthetic pathway analysis of the glycoside flavonoid in mulberry is also given. Lastly, we discuss the pros and cons of the current research to ensure the prudent and effective therapeutic value of mulberry for promoting human and animal health.
Citation: Biology
PubDate: 2024-07-07
DOI: 10.3390/biology13070506
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 507: Pan-Evo: The Evolution of Information and
Biology’s Part in This
Authors: William B. Sherwin
First page: 507
Abstract: Many people wonder whether biology, including humans, will benefit or experience harm from new developments in information such as artificial intelligence (AI). Here, it is proposed that biological and non-biological information might be components of a unified process, ‘Panevolution’ or ‘Pan-Evo’, based on four basic operations—innovation, transmission, adaptation, and movement. Pan-Evo contains many types of variable objects, from molecules to ecosystems. Biological innovation includes mutations and behavioural changes; non-biological innovation includes naturally occurring physical innovations and innovation in software. Replication is commonplace in and outside biology, including autocatalytic chemicals and autonomous software replication. Adaptation includes biological selection, autocatalytic chemicals, and ‘evolutionary programming’, which is used in AI. The extension of biological speciation to non-biological information creates a concept called ‘Panspeciation’. Panevolution might benefit or harm biology, but the harm might be minimal if AI and humans behave intelligently because humans and the machines in which an AI resides might split into vastly different environments that suit them. That is a possible example of Panspeciation and would be the first speciation event involving humans for thousands of years. This event will not be particularly hostile to humans if humans learn to evaluate information and cooperate better to minimise both human stupidity and artificial simulated stupidity (ASS—a failure of AI).
Citation: Biology
PubDate: 2024-07-08
DOI: 10.3390/biology13070507
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 508: Post-Translational Modifications (PTMs) of
mutp53 and Epigenetic Changes Induced by mutp53
Authors: Rossella Benedetti, Michele Di Crosta, Gabriella D’Orazi, Mara Cirone
First page: 508
Abstract: Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
Citation: Biology
PubDate: 2024-07-08
DOI: 10.3390/biology13070508
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 509: Neural Delays in Processing Speech in
Background Noise Minimized after Short-Term Auditory Training
Authors: Erika Skoe, Nina Kraus
First page: 509
Abstract: Background noise disrupts the neural processing of sound, resulting in delayed and diminished far-field auditory-evoked responses. In young adults, we previously provided evidence that cognitively based short-term auditory training can ameliorate the impact of background noise on the frequency-following response (FFR), leading to greater neural synchrony to the speech fundamental frequency(F0) in noisy listening conditions. In this same dataset (55 healthy young adults), we now examine whether training-related changes extend to the latency of the FFR, with the prediction of faster neural timing after training. FFRs were measured on two days separated by ~8 weeks. FFRs were elicited by the syllable “da” presented at a signal-to-noise ratio (SNR) of +10 dB SPL relative to a background of multi-talker noise. Half of the participants participated in 20 sessions of computerized training (Listening and Communication Enhancement Program, LACE) between test sessions, while the other half served as Controls. In both groups, half of the participants were non-native speakers of English. In the Control Group, response latencies were unchanged at retest, but for the training group, response latencies were earlier. Findings suggest that auditory training can improve how the adult nervous system responds in noisy listening conditions, as demonstrated by decreased response latencies.
Citation: Biology
PubDate: 2024-07-08
DOI: 10.3390/biology13070509
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 510: Reverse Vaccinology Approach to Identify
Novel and Immunogenic Targets against Streptococcus gordonii
Authors: Aneeqa Abid, Badr Alzahrani, Shumaila Naz, Amina Basheer, Syeda Marriam Bakhtiar, Fahad Al-Asmari, Syed Babar Jamal, Muhammad Faheem
First page: 510
Abstract: Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. Streptococci are the most prevalent inhabitants of oral microbial communities, and are typical oral commensals found in the human oral cavity. These streptococci, along with many other oral microbes, produce multispecies biofilms that can attach to salivary pellicle components and other oral bacteria via adhesin proteins expressed on the cell surface. Antibiotics are effective against this bacterium, but resistance against antibodies is increasing. Therefore, a more effective treatment is needed. Vaccines offer a promising method for preventing this issue. This study generated a multi-epitope vaccine against Streptococcus gordonii by targeting the completely sequenced proteomes of five strains. The vaccine targets are identified using a pangenome and subtractive proteomic approach. In the present study, 13 complete strains out of 91 strains of S. gordonii are selected. The pangenomics results revealed that out of 2835 pan genes, 1225 are core genes. Out of these 1225 core genes, 643 identified as non-homologous proteins by subtractive proteomics. A total of 20 essential proteins are predicted from non-homologous proteins. Among these 20 essential proteins, only five are identified as surface proteins. The vaccine construct is designed based on selected B- and T-cell epitopes of the antigenic proteins with the help of linkers and adjuvants. The designed vaccine is docked against TLR2. The expression of the protein is determined using in silico gene cloning. Findings concluded that Vaccine I with adjuvant shows higher interactions with TLR2, suggesting that the vaccine has the ability to induce a humoral and cell-mediated response to treat and prevent infection; this makes it promising as a vaccine against infectious diseases caused by S. gordonii. Furthermore, validation of the vaccine construct is required by in vitro and in vivo trials to check its actual potency and safety for use to prevent infectious diseases caused by S. gordonii.
Citation: Biology
PubDate: 2024-07-09
DOI: 10.3390/biology13070510
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 511: Metabolic Profiling Changes Induced by
Fermented Blackberries in High-Fat-Diet-Fed Mice utilizing Gas
Chromatography–Mass Spectrometry Analysis
Authors: Park, Kim, Lee, Lee, Sin, Kim, Park
First page: 511
Abstract: The aim of this study was to investigate the metabolic changes associated with the anti-obesity effects of fermented blackberry extracts in the liver tissues of high-fat-diet-fed mice using mass spectrometry-based metabolomics analysis. C57BL/6J mice were divided into eight groups: normal-diet-fed mice, high-fat-diet-fed mice, high-fat diet treated with blackberry extract, high-fat-diet mice treated with blackberry fermented by L. plantarum, and high-fat diet with blackberry fermented by L. brevis. After 12 weeks, the high-fat-diet group exhibited a greater increase in liver weight compared to the control group, and among the groups, the group administered with blackberry fermented with L. plantarum showed the most pronounced reduction in liver weight. As the primary organ responsible for amino acid metabolism, the liver is crucial for maintaining amino acid homeostasis. In our study, we observed that the levels of several essential amino acids, including isoleucine and valine, were decreased by the high-fat diet, and were recovered by administration of blackberry extract fermented with L. plantarum. Our results demonstrated the potential of blackberry extract fermented with L. plantarum as a functional material for metabolic disorders by restoring some of the amino acid metabolism disturbances induced by a high-fat diet.
Citation: Biology
PubDate: 2024-07-09
DOI: 10.3390/biology13070511
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 512: Diffusion on PCA-UMAP Manifold: The Impact of
Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA
Sequencing Data
Authors: Padron-Manrique Cristian, Vázquez-Jiménez Aarón, Esquivel-Hernandez Diego Armando, Martinez-Lopez Yoscelina Estrella, Neri-Rosario Daniel, Giron-Villalobos David, Mixcoha Edgar, Sánchez-Castañeda Jean Paul, Resendis-Antonio Osbaldo
First page: 512
Abstract: Single-cell transcriptomics (scRNA-seq) is revolutionizing biological research, yet it faces challenges such as inefficient transcript capture and noise. To address these challenges, methods like neighbor averaging or graph diffusion are used. These methods often rely on k-nearest neighbor graphs from low-dimensional manifolds. However, scRNA-seq data suffer from the ‘curse of dimensionality’, leading to the over-smoothing of data when using imputation methods. To overcome this, sc-PHENIX employs a PCA-UMAP diffusion method, which enhances the preservation of data structures and allows for a refined use of PCA dimensions and diffusion parameters (e.g., k-nearest neighbors, exponentiation of the Markov matrix) to minimize noise introduction. This approach enables a more accurate construction of the exponentiated Markov matrix (cell neighborhood graph), surpassing methods like MAGIC. sc-PHENIX significantly mitigates over-smoothing, as validated through various scRNA-seq datasets, demonstrating improved cell phenotype representation. Applied to a multicellular tumor spheroid dataset, sc-PHENIX identified known extreme phenotype states, showcasing its effectiveness. sc-PHENIX is open-source and available for use and modification.
Citation: Biology
PubDate: 2024-07-09
DOI: 10.3390/biology13070512
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 513: Effects of Organic Xenobiotics on Tenebrio
molitor Larvae and Their Parasite Gregarina polymorpha
Authors: Viktoriia Lazurska, Viktor Brygadyrenko
First page: 513
Abstract: Environmental contamination with xenobiotics affects organisms and the symbiotic relations between them. A convenient object to study relationships between parasites and their hosts is the host–parasite system “Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae)—Gregarina polymorpha (Hammerschmidt, 1838) Stein, 1848 (Eugregarinorida, Gregarinidae)”. For this experiment, we took 390 T. molitor larvae and 24 organic compounds. Groups of mealworms, 15 in each, were subjected to those compounds for 10 days. Then, we recorded the vitality of both the larvae of T. molitor and G. polymorpha. To assess how G. polymorpha had affected the hosts’ wellbeing, we looked for changes in the larvae’s body mass and compared them to the number of gregarines in their intestines. The vitality of the larvae was inhibited by cyclopentanol and 2-naphthol. The intensity of gregarine invasion was reduced by diphenyl ether, benzyl alcohol, catechol, and 3-aminobenzoic acid. No effect on the number of gregarines was produced by 3,4,5-trihydroxybenzoic acid, cyclohexanemethanol, phenol, benzalkonium chloride, maleic anhydride, cyclohexanol, resorcin, benzoic acid, 2-methylfuran, terpinen-4-ol, 1-phenylethylamine, dibutyl phthalate, 3-furancarboxylic acid, 5-methyl furfural, 6-aminohexanoic acid, succinic anhydride, o-xylene, and benzaldehyde. In the infected T. molitor individuals, the mean number of G. polymorpha equaled 45 specimens per host. The groups of smaller mealworms had fewer gregarines. Positive correlation was seen between growth rates of T. molitor larvae and the intensity of invasion by gregarines.
Citation: Biology
PubDate: 2024-07-10
DOI: 10.3390/biology13070513
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 514: Mapping the Future: Revealing Habitat
Preferences and Patterns of the Endangered Chilean Dolphin in Seno
Skyring, Patagonia
Authors: Liliana Perez, Yenny Cuellar, Jorge Gibbons, Elias Pinilla Matamala, Simon Demers, Juan Capella
First page: 514
Abstract: Species distribution modeling helps understand how environmental factors influence species distribution, creating profiles to predict presence in unexplored areas and assess ecological impacts. This study examined the habitat use and population ecology of the Chilean dolphin in Seno Skyring, Chilean Patagonia. We used three models—random forest (RF), generalized linear model (GLM), and artificial neural network (ANN)—to predict dolphin distribution based on environmental and biotic data like water temperature, salinity, and fish farm density. Our research has determined that the RF model is the most precise tool for predicting the habitat preferences of Chilean dolphins. The results indicate that these dolphins are primarily located within six kilometers of the coast, strongly correlating with areas featuring numerous fish farms, sheltered waters close to the shore with river inputs, and shallow productive zones. This suggests a potential association between dolphin presence and fish-farming activities. These findings can guide targeted conservation measures, such as regulating fish-farming practices and protecting vital coastal areas to improve the survival prospects of the Chilean dolphin. Given the extensive fish-farming industry in Chile, this research highlights the need for greater knowledge and comprehensive conservation efforts to ensure the species’ long-term survival. By understanding and mitigating the impacts of fish farming and other human activities, we can better protect the habitat and well-being of Chilean dolphins.
Citation: Biology
PubDate: 2024-07-10
DOI: 10.3390/biology13070514
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 515: Using Stable Isotope Techniques to Analyze
the Trophic Relationship between Argentine Hake (Merluccius hubbsi) and
Anisakidae
Authors: Yue Shu, Feiyu Wu, Zhou Fang
First page: 515
Abstract: The Argentine hake (Merluccius hubbsi) is a vital fishery species in the Southwest Atlantic, recognized for its substantial economic importance. Previous studies have identified Anisakidae larvae as common parasites of M. hubbsi. However, the nutritional relationships between these parasites and their host remain poorly understood. This study employs stable isotope techniques to investigate the specific nutritional relationships between Anisakidae larvae and different tissues of M. hubbsi. The findings reveal notable differences in δ13C and δ15N compositions between the parasites and their host. The lower δ13C values in parasites compared to host tissues indicate the utilization of different carbon sources. The δ15N values of the parasites partially overlap with those of the host’s stomach, indicating that the parasites primarily derive nutrients from the host’s stomach. Nutritional niche indicators show that parasites have a broad carbon range (CR) and nitrogen range (NR), suggesting a high diversity in nutritional sources. The trophic discrimination factor (ΔTDF), which represents the difference in stable isotope values between host tissues and parasites, was analyzed for both δ13C and δ15N. The ΔTDFδ13C between the host liver and the parasites showed the greatest variation, indicating a strong dependence of the parasites on the liver’s carbon sources. In contrast, variations in ΔTDFδ15N between host tissues and parasites were minimal. Analyzing ΔTDF across different stages of gonadal maturity in the host fish indicates that, as the gonads of the host fish mature, ΔTDFδ13C between host tissues and parasites significantly decreases (p < 0.01). The Kruskal–Wallis test showed significant differences in ΔTDFδ13C values among different parasite infection levels in muscle, liver, and stomach tissues, while no significant differences were found for ΔTDFδ15N values. These findings offer valuable insights into the nutritional relationships between parasites and hosts, aiding in a better understanding of the growth conditions and habitats of M. hubbsi.
Citation: Biology
PubDate: 2024-07-10
DOI: 10.3390/biology13070515
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 516: Regional Changes in Brain Biomolecular
Markers in a Collagen-Induced Arthritis Rat Model
Authors: Aletta M. E. Millen, Tshiamo T. Maluleke, Leandrie Pienaar, Farhanah N. Sallie, Radhini Veerappan, Per E. Andrén, Sooraj Baijnath
First page: 516
Abstract: Background: The effects of collagen-induced arthritis (CIA), a model of systemic inflammation, on brain regional molecular markers associated with neurological disorders are uncertain. Objective: This study investigated the brain regional molecular changes in markers associated with inflammation and neuronal dysfunction in a CIA model. Methods: Fourteen male Sprague Dawley rats were divided into control (n = 5) or CIA (n = 9) groups. 10 weeks after CIA induction, brain tissue was collected. Brain regional mRNA expression of inflammatory markers (IL-1β and IL-6), apoptotic markers (BAX and Bcl2) and neurotrophic factors (BDNF, CREB and TrkB) was determined. Monoamine distribution and abundance in different brain regions were determine by mass spectrometry imaging (MSI). Results: Neuroinflammation was confirmed in the CIA group by increased IL-β mRNA expression, concurrent with an increased BAX/Bcl2 ratio. The mRNA expression of CREB was increased in the midbrain and hippocampus while BDNF was increased and TrkB was decreased across all brain regions in CIA compared to control animals. Serotonin was decreased in the midbrain and hippocampus while dopamine was decreased in the striatum of CIA rats, compared to controls. Conclusion: CIA resulted in neuroinflammation concurrent with an apoptotic state and aberrant expression of neurotrophic factors and monoamines in the brain, suggestive of neurodegeneration.
Citation: Biology
PubDate: 2024-07-10
DOI: 10.3390/biology13070516
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 517: The Evolution of Three Schizothoracinae
Species from Two Major River Systems in Northwest China Based on Otolith
Morphology and Skeletal Structure
Authors: Chengxin Wang, Linghui Hu, Yong Song, Haoyang Xie, Liting Yang, Gulden Serekbol, Bin Huo, Shengao Chen
First page: 517
Abstract: Schizothoracinae species are the largest group of Cypriniformes that readily adapt to the natural conditions of the Qinghai-Tibet Plateau. This group has habitat characteristics and distribution patterns centered on the Qinghai-Tibet Plateau. To study the evolution of three Schizothoracinae species in Northwest China, the evolutionary characteristics of these species were explored based on differences in otolith morphology and skeletal morphology. From 2020 to 2022, 138 samples (63 Aspiorhynchus laticeps, 35 Diptychus maculatus and 40 Schizothorax pseudaksaiensis) were collected from the Tarim River and Ili River, 6 basic morphological parameters of otoliths were measured and converted into 6 morphological factors and 7 morphological indices. A total of 77 Fourier transform coefficients of each otolith were selected The first three principal components accounted for 92.834% of the total variation in 13 otolith morphological indices of the three Schizothoracinae species, and the overall discrimination rate was 94.20%. According to the principal component analysis of 77 Fourier harmonic values of otoliths, the first 20 principal components explained 97.233% of the total variation, and the overall discrimination rate was 100%. The results of the cluster analysis directly reflected the relationships between related species. The differences in the bone morphology of the three Schizothoracinae species were particularly reflected in the number of whiskers, pharyngeal teeth and vertebrae, and there were also significant differences in the shapes of the sphenotic (SP), pterotic (PTE), preoperculum (PO), branchiostegal ray (BRA) and basibranchial (BB) bones. Their unique morphological and skeletal characteristics are closely related to geological changes and water system evolutionary trends. This study contributes to the understanding of species identification and the evolutionary status of plateau fishes, provides a reference for further evolutionary classification and for assessing the evolutionary mechanisms of plateau fishes, and provides a scientific basis for phylogeny and germplasm resource protection.
Citation: Biology
PubDate: 2024-07-11
DOI: 10.3390/biology13070517
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 518: Huperzine A Regulates the Physiological
Homeostasis of Amyloid Precursor Protein Proteolysis and Tau Protein
Conformation—A Computational and Experimental Investigation
Authors: Suwakon Wongjaikam, Chutikorn Nopparat, Parichart Boontem, Jiraporn Panmanee, Nopporn Thasana, Mayuri Shukla, Piyarat Govitrapong
First page: 518
Abstract: The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer’s disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aβ). Toxic Aβ oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain. In the present study, we investigated the effects of Hup A on amyloid precursor protein (APP) proteolysis in SH-SY5Y neuroblastoma cells. Hup A downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) levels but augmented the levels of A disintegrin and metalloproteinase 10 (ADAM10) with significant decrement in the Aβ levels. We herein report for the first time an in silico molecular docking analysis that revealed that Hup A binds to the functionally active site of BACE1. We further analyzed the effect of Hup A on glycogen synthase kinase-3 β (GSK3β) and phosphorylation status of tau. In this scenario, based on the current observations, we propose that Hup A is a potent regulator of APP processing and capable of modulating tau homeostasis under physiological conditions holding immense potential in preventing and treating AD like disorders.
Citation: Biology
PubDate: 2024-07-12
DOI: 10.3390/biology13070518
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 519: Glycolipid Metabolic Disorders,
Metainflammation, Oxidative Stress, and Cardiovascular Diseases:
Unraveling Pathways
Authors: Enzo Pereira de Lima, Renato Cesar Moretti, Karina Torres Pomini, Lucas Fornari Laurindo, Kátia Portero Sloan, Lance Alan Sloan, Marcela Vialogo Marques de Castro, Edgar Baldi, Bruna Fidencio Rahal Ferraz, Eliana de Souza Bastos Mazuqueli Pereira, Virgínia Maria Cavallari Strozze Catharin, Carolina Haber Mellen, Flávia Cristina Castilho Caracio, Caio Sérgio Galina Spilla, Jesselina F. S. Haber, Sandra Maria Barbalho
First page: 519
Abstract: Glycolipid metabolic disorders (GLMDs) are various metabolic disorders resulting from dysregulation in glycolipid levels, consequently leading to an increased risk of obesity, diabetes, liver dysfunction, neuromuscular complications, and cardiorenal vascular diseases (CRVDs). In patients with GLMDs, excess caloric intake and a lack of physical activity may contribute to oxidative stress (OxS) and systemic inflammation. This study aimed to review the connection between GLMD, OxS, metainflammation, and the onset of CRVD. GLMD is due to various metabolic disorders causing dysfunction in the synthesis, breakdown, and absorption of glucose and lipids in the body, resulting in excessive ectopic accumulation of these molecules. This is mainly due to neuroendocrine dysregulation, insulin resistance, OxS, and metainflammation. In GLMD, many inflammatory markers and defense cells play a vital role in related tissues and organs, such as blood vessels, pancreatic islets, the liver, muscle, the kidneys, and adipocytes, promoting inflammatory lesions that affect various interconnected organs through their signaling pathways. Advanced glycation end products, ATP-binding cassette transporter 1, Glucagon-like peptide-1, Toll-like receptor-4, and sphingosine-1-phosphate (S1P) play a crucial role in GLMD since they are related to glucolipid metabolism. The consequences of this is system organ damage and increased morbidity and mortality.
Citation: Biology
PubDate: 2024-07-12
DOI: 10.3390/biology13070519
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 520: Dynamic Analysis of Stool Microbiota of
Simmental Calves and Effects of Diarrhea on Their Gut Microbiota
Authors: Qianxun Wang, Mula Na, Shiyu Jia, Miao Sun, Song Gao, Shiwei Pan, Wu Dong, Yang Song, Jingfeng Yang
First page: 520
Abstract: The objective of this study was to explore the dynamic changes in the gut microbiota of Simmental calves before weaning and to compare the microbial composition and functionality between healthy calves and those with diarrhea. Fourteen neonatal Simmental calves were divided into a healthy group (n = 8) and a diarrhea group (n = 6). Rectal stool samples were collected from each calf on days 1, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, and 40. High-throughput sequencing of the 16S rRNA gene V1–V9 region was conducted to examine changes in the gut microbiota over time in both groups and to assess the influence of diarrhea on microbiota structure and function. Escherichia coli, Bacteroides fragilis, and B. vulgatus were the top three bacterial species in preweaning Simmental calves. Meanwhile, the major functions of the fecal microbiota included “metabolic pathways”, “biosynthesis of secondary metabolites”, “biosynthesis of antibiotics”, “microbial metabolism in diverse environments”, and “biosynthesis of amino acids”. For calves in the healthy group, PCoA revealed that the bacterial profiles on days 1, 3, 5, 7, and 9 differed from those on days 15, 18, 22, 26, 30, 35, and 40. The profiles on day 12 clustered with both groups, indicating that microbial structure changes increased with age. When comparing the relative abundance of bacteria between healthy and diarrheic calves, the beneficial Lactobacillus johnsonii, Faecalibacterium prausnitzii, and Limosilactobacillus were significantly more abundant in the healthy group than those in the diarrhea group (p < 0.05). This study provides fundamental insights into the gut microbiota composition of Simmental calves before weaning, potentially facilitating early interventions for calf diarrhea and probiotic development.
Citation: Biology
PubDate: 2024-07-13
DOI: 10.3390/biology13070520
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 521: The Role of TRAIL Signaling in Cancer:
Searching for New Therapeutic Strategies
Authors: Cheng Luo, Shan He, Feng Shi, Jianhua Zhou, Li Shang
First page: 521
Abstract: Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL’s intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL’s capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL’s capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Citation: Biology
PubDate: 2024-07-15
DOI: 10.3390/biology13070521
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 522: Status of Cassava Witches’ Broom
Disease in the Philippines and Identification of Potential Pathogens by
Metagenomic Analysis
Authors: Darwin Magsino Landicho, Ray Jerome Mojica Montañez, Maurizio Camagna, Sokty Neang, Abriel Salaria Bulasag, Peter Magan Magdaraog, Ikuo Sato, Daigo Takemoto, Kensaku Maejima, Marita Sanfuego Pinili, Sotaro Chiba
First page: 522
Abstract: Cassava witches’ broom disease (CWBD) is one of the most devastating diseases of cassava (Manihot esculenta Crantz), and it threatens global production of the crop. In 2017, a phytoplasma, Candidatus Phytoplasma luffae (Ca. P. luffae), was reported in the Philippines, and it has been considered as the causal agent, despite unknown etiology and transmission of CWBD. In this study, the nationwide occurrence of CWBD was assessed, and detection of CWBD’s pathogen was attempted using polymerase chain reaction (PCR) and next-generation sequencing (NGS) techniques. The results showed that CWBD has spread and become severe, exhibiting symptoms such as small leaf proliferation, shortened internodes, and vascular necrosis. PCR analysis revealed a low phytoplasma detection rate, possibly due to low titer, uneven distribution, or absence in the CWBD-symptomatic cassava. In addition, NGS techniques confirm the PCR results, revealing the absence or extremely low phytoplasma read counts, but a surprisingly high abundance of fastidious and xylem-limited fungus, Ceratobasidium sp. in CWBD-symptomatic plants. These findings cast doubt over the involvement of phytoplasma in CWBD and instead highlight the potential association of Ceratobasidium sp., strongly supporting the recent findings in mainland Southeast Asia. Further investigations are needed to verify the etiology of CWBD and identify infection mechanisms of Ceratobasidium sp. to develop effective diagnostic and control methods for disease management.
Citation: Biology
PubDate: 2024-07-15
DOI: 10.3390/biology13070522
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 523: The Utility of the Koala Scat: A Scoping
Review
Authors: Stephen D. Johnston, Lyndal Hulse, Tamara Keeley, Albano Mucci, Jennifer Seddon, Sam Maynard
First page: 523
Abstract: The use of samples or scats to provide important ecological, genetic, disease and physiology details on free-range populations is gaining popularity as an alternative non-invasive methodology. Koala populations in SE Queensland and NSW have recently been listed as endangered and continue to face anthropomorphic and stochastic environmental impacts that could potentially lead to their extinction. This scoping review examines the current and potential utility of the koala scat to contribute data relevant to the assessment of koala conservation status and decision making. Although we demonstrate that there is great potential for this methodology in providing details for both individual wild animal and population biology (distribution, abundance, sex ratio, immigration/emigration, genetic diversity, evolutionary significant unit, disease epidemiology, nutrition, reproductive status and stress physiology), the calibre of this information is likely to be a function of the quality of the scat that is sampled.
Citation: Biology
PubDate: 2024-07-15
DOI: 10.3390/biology13070523
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 524: Arbovirus Transmission in Australia from 2002
to 2017
Authors: Elvina Viennet, Francesca D. Frentiu, Emilie McKenna, Flavia Torres Vasconcelos, Robert L. P. Flower, Helen M. Faddy
First page: 524
Abstract: Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space–time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors’ importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention.
Citation: Biology
PubDate: 2024-07-15
DOI: 10.3390/biology13070524
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 525: The Cytotoxic Effects of Human Mesenchymal
Stem Cells Induced by Uranium
Authors: Yi Quan, Xiaofang Yu
First page: 525
Abstract: Bone is a major tissue for uranium deposition in human body. Considering mesenchymal stem cells (MSCs) play a vital role in bone formation and injury recovery, studying the mechanism of MSCs responding to uranium poisoning can benefit the understanding of bone damage and repair after uranium exposure. Cellular structural alterations were analyzed via transmission electron microscopy (TEM). Changes in cellular behaviors were assessed through cellular viability, apoptosis, and the production of DNA double-strand breaks (DSBs). In addition, the influence of gap junctional intercellular communication (GJIC) on uranium toxicity was assessed. The disruption of MSCs was elevated with the increase in uranyl nitrate concentration, as shown by TEM micrograph. This was verified by the results of cellular viability and DSB production. Interestingly, the results of apoptosis assay indicated significant apoptosis occurred, which was accompanied with an obvious disruption of cellular membranes. Furthermore, closely contacted cell confluence groups exhibited resistant to uranium poisoning in contrast to sparse growth groups, which can be eliminated with the pretreatment of a GJIC inhibitor in the close connection group. To verify the association between GJIC and cytotoxic effects of uranyl nitrate, GJIC function was evaluated by wound healing and cellular migration. The results showed an inhibition of the healing ratio and migration ability induced by the exposure of uranyl nitrate. The low transfer efficiency of the dye coupling experiment and depressed expression of gap functional protein connexins confirmed the impairment of GJIC function. These results suggest that uranium toxicity is involved with GJIC dysfunction.
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070525
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 526: Jaboticaba Peel Extract Attenuates
Ovariectomy-Induced Bone Loss by Preserving Osteoblast Activity
Authors: Letícia Faustino Adolpho, Maria Paula Oliveira Gomes, Gileade Pereira Freitas, Rayana Longo Bighetti-Trevisan, Jaqueline Isadora Reis Ramos, Gabriela Hernandes Campeoti, Guilherme Crepi Zatta, Adriana Luisa Gonçalves Almeida, Adriana Gadioli Tarone, Mario Roberto Marostica-Junior, Adalberto Luiz Rosa, Marcio Mateus Beloti
First page: 526
Abstract: Therapies to prevent osteoporosis are relevant since it is one of the most common non-communicable human diseases in the world and the most prevalent bone disorder in adults. Since jaboticaba peel extract (JPE) added to the culture medium enhanced the osteogenic potential of mesenchymal stem cells (MSCs) derived from osteoporotic rats, we hypothesized that JPE prevents the development of ovariectomy-induced osteoporosis. Ovariectomized rats were treated with either JPE (30 mg/kg of body weight) or its vehicle for 90 days, starting 7 days after the ovariectomy. Then, the femurs were subjected to microcomputed tomography and histological analyses, and the osteoblast and adipocyte differentiation of MSCs was evaluated. JPE attenuated ovariectomy-induced bone loss, as evidenced by higher bone volume/total volume and trabecular number, along with lower trabecular separation and bone marrow adiposity. These protective effects of JPE on bone tissue are due to its ability to prevent the imbalance between osteoblast and adipocyte differentiation of MSCs, since, compared with MSCs derived from ovariectomized rats treated with vehicle, MSCs treated with JPE exhibited higher gene and protein expression of osteogenic markers and extracellular matrix mineralization, as well as lower gene expression of adipogenic markers. These data highlight the potential therapeutic use of JPE to prevent osteoporosis.
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070526
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 527: Correction: Shawky et al. The Biological
Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes
Mellitus: Drug Interactions with Metformin. Biology 2020, 9, 6
Authors: Lamiaa M. Shawky, Ahmed A. Morsi, Eman El Bana, Safaa Masoud Hanafy
First page: 527
Abstract: In the original publication [...]
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070527
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 528: Yadanziolide A Inhibits Proliferation and
Induces Apoptosis of Hepatocellular Carcinoma via JAK-STAT Pathway: A
Preclinical Study
Authors: Lili Lin, Qi Chen
First page: 528
Abstract: Liver cancer is a significant global health concern, prompting the search for innovative therapeutic solutions. Yadanziolide A (Y-A), a natural derivative of Brucea javanica, has emerged as a promising candidate for cancer treatment; however, its efficacy and underlying mechanisms in liver cancer remain incompletely understood. In this study, we conducted a comprehensive evaluation of Y-A’s effects on liver cancer cells using a range of in vitro assays and an orthotopic liver cancer mouse model. Our findings reveal that Y-A exerts dose-dependent cytotoxic effects on liver cancer cells, significantly inhibiting proliferation, migration, and invasion at concentrations ≥ 0.1 μM. Furthermore, Y-A induces apoptosis, as evidenced by increased apoptotic cell populations and apoptosome formation. In vivo studies confirm that Y-A inhibits tumor growth and reduces liver damage in mouse models. Mechanistically, Y-A targets the TNF-α/STAT3 pathway, inhibiting STAT3 and JAK2 phosphorylation, thereby activating apoptotic pathways and suppressing tumor cell growth. These results suggest that Y-A has promising anticancer activity and potential utility in liver cancer therapy.
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070528
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 529: Retrospective Single-Center Case Study of
Clinical Variables and the Degree of Actinic Elastosis Associated with
Rare Skin Cancers
Authors: Konstantin Drexler, Lara Bollmann, Sigrid Karrer, Mark Berneburg, Sebastian Haferkamp, Dennis Niebel
First page: 529
Abstract: (1) Background: Rare skin cancers include epithelial, neuroendocrine, and hematopoietic neoplasias as well as cutaneous sarcomas. Ultraviolet (UV) radiation and sunburns are important drivers for the incidence of certain cutaneous sarcomas; however, the pathogenetic role of UV light is less clear in rare skin cancers compared to keratinocyte cancer and melanoma. In this study, we compared the degree of actinic elastosis (AE) as a surrogate for lifetime UV exposure among selected rare skin cancers (atypical fibroxanthoma [AFX], pleomorphic dermal sarcoma [PDS], dermatofibrosarcoma protuberans [DFSP], Kaposi sarcoma [KS], Merkel cell carcinoma [MCC], and leiomyosarcoma [LMS]) while taking into account relevant clinical variables (age, sex, and body site). (2) Methods: We newly established a semi-quantitative score for the degree of AE ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration) and multiplied it by the perilesional vertical extent (depth), measured histometrically (tumor-associated elastosis grade (TEG)). We matched the TEG of n = 210 rare skin cancers from 210 patients with their clinical variables. (3) Results: TEG values were correlated with age and whether tumors arose on UV-exposed body sites. TEG values were significantly higher in AFX and PDS cases compared to all other analyzed rare skin cancer types. As expected, TEG values were low in DFSP and KS, while MCC cases exhibited intermediate TEG values. (4) Conclusions: High cumulative UV exposure is more strongly associated with AFX/PDS and MCC than with other rare skin cancers. These important results expand the available data associated with rare skin cancers while also offering insight into the value of differentiating among these tumor types based on their relationship with sun exposure, potentially informing preventative, diagnostic and/or therapeutic approaches.
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070529
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 530: Effects of Different Salinity Stress on the
Transcriptomic Responses of Freshwater Crayfish (Procambarus clarkii,
Girard, 1852)
Authors: Lei Luo, Li-Shi Yang, Jian-Hua Huang, Shi-Gui Jiang, Fa-Lin Zhou, Yun-Dong Li, Song Jiang, Qi-Bin Yang
First page: 530
Abstract: Salinization of freshwater ecosystems is a pressing global issue. Changes in salinity can exert severe pressure on aquatic animals and jeopardize their survival. Procambarus clarkii is a valuable freshwater aquaculture species that exhibits some degree of salinity tolerance, making it an excellent research model for freshwater aquaculture species facing salinity stress. In the present study, crayfish were exposed to acute low salt (6 ppt) and high salt (18 ppt) conditions. The organisms were continuously monitored at 6, 24, and 72 h using RNA-Seq to investigate the mechanisms of salt stress resistance. Transcriptome analysis revealed that the crayfish responded to salinity stress with numerous differentially expressed genes, and most of different expression genes was observed in high salinity group for 24h. GO and KEGG enrichment analyses indicated that metabolic pathways were the primary response pathways in crayfish under salinity stress. This suggests that crayfish may use metabolic pathways to compensate for energy loss caused by osmotic stress. Furthermore, gene expression analysis revealed the differential expression of immune and antioxidant-related pathway genes under salinity stress, implying that salinity stress induces immune disorders in crayfish. More genes related to cell proliferation, differentiation, and apoptosis, such as the Foxo, Wnt, Hippo, and Notch signaling pathways, responded to high-salinity stress. This suggests that regulating the cellular replication cycle and accelerating apoptosis may be necessary for crayfish to cope with high-salinity stress. Additionally, we identified 36 solute carrier family (SLC) genes related to ion transport, depicting possible ion exchange mechanisms in crayfish under salinity stress. These findings aimed to establish a foundation for understanding crustacean responses to salinity stress and their osmoregulatory mechanisms.
Citation: Biology
PubDate: 2024-07-16
DOI: 10.3390/biology13070530
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 531: Effect of Dietary Supplementation with
Organic Silicon on the Growth Performance, Blood Biochemistry, Digestive
Enzymes, Morphohistology, Intestinal Microbiota and Stress Resistance in
Juvenile Hybrid Tilapia (Oreochromis mossambicus × Oreochromis
niloticus)
Authors: Yuniel Méndez-Martínez, Helen A. Valensuela-Barros, Yanis Cruz-Quintana, Aroldo Botello-León, Roberto D. Muñoz-Mestanza, Grace L. Orellana-Castro, Carlos Angulo
First page: 531
Abstract: In recent decades, interest has been aroused worldwide in the use of silicon in nutrition; however, information on its effect on nutrition and metabolism of fish is limited. The objective of the research was to evaluate the effect of dietary supplementation with organic silicon on the growth performance, blood biochemistry, digestive enzymes, morphohistology and intestinal microbiota and stress resistance in hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus). Methodologically, six levels of organic silicon (DOS) [control (0), 10, 20, 30, 40 and 50 mg·kg−1] were used to feed juvenile fish (initial weight 7.51 ± 0.25 g) grown for eight weeks in 18 aquariums (15 fish/aquarium). The results indicated that growth performance showed differences (p < 0.05) for specific growth rate, feed conversion and survival. Triglycerides, cholesterol and glucose, transaminases and digestive enzymes were significantly influenced by DOS levels. The histological study confirmed that the administered diets did not cause damage and induced significant morphological changes in the proximal intestine. The 16S rRNA gene sequencing analysis of the gut microbiota showed a high diversity and richness of OTU/Chao-1, with Fusobacteria, Proteobacteria, Bacteroidetes and Acidobacteria predominating in the DOS treatments compared to the control (p < 0.05). Induction of hypoxia stress after the feeding period showed a significant relative survival rate of 83.33% in fish fed 50 mg·kg−1. It is concluded that the DOS treatments performed better than the control treatment in most of the variables analysed. DOS had no negative effects on the fish. The results showed that up to 50 mg·kg−1 DOS improved digestive, metabolic and growth performance in hybrid Tilapia.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070531
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 532: Prolonged Sleep Deprivation Induces a
Reprogramming of Circadian Rhythmicity with the Hepatic Metabolic
Transcriptomic Profile
Authors: Shiyan Liu, Kailin Zhuo, Yiming Wang, Xiaomei Wang, Yingying Zhao
First page: 532
Abstract: Sleep disturbances can disrupt the overall circadian rhythm. However, the impact of sleep deprivation on the circadian rhythm of the liver and its underlying mechanisms still requires further exploration. In this study, we subjected male mice to 5 days of sleep deprivation and performed liver transcriptome sequencing analysis at various time points within a 24-h period. Subsequently, we monitored the autonomic activity and food intake in these male mice for six days post-sleep deprivation. We observed alterations in sleep-wake and feeding rhythms in the first two days following sleep deprivation. Additionally, we also observed a decrease in 24-h serum-glucose levels. Liver transcriptome sequencing has shown that sleep deprivation induces the rhythmic transcription of a large number of genes, or alters the rhythmic properties of genes, which were then significantly enriched in the carbohydrate, lipid, and protein metabolism pathways. Our findings suggest that under conditions of prolonged sleep deprivation, the expression of metabolic-related genes in the liver was reset, leading to changes in the organism’s metabolic state to ensure energy supply to sustain prolonged wakefulness.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070532
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 533: Early Peri-Implant Bone Healing on
Laser-Modified Surfaces with and without Hydroxyapatite Coating: An In
Vivo Study
Authors: Ana Flávia Piquera Santos, Rodrigo Capalbo da Silva, Henrique Hadad, Laís Kawamata de Jesus, Maísa Pereira-Silva, Heloisa Helena Nímia, Sandra Helena Penha Oliveira, Antônio Carlos Guastaldi, Thallita Pereira Queiroz, Pier Paolo Poli, Debora de Barros Barbosa, André Luis da Silva Fabris, Idelmo Rangel Garcia Júnior, Reinhard Gruber, Francisley Ávila Souza
First page: 533
Abstract: (1) Objective: The aim of this study was to assess the biological behavior of bone tissue on a machined surface (MS) and modifications made by a laser beam (LS) and by a laser beam incorporated with hydroxyapatite (HA) using a biomimetic method without thermic treatment (LHS). (2) Methods: Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDX) was performed before and after installation in the rabbit tibiae. A total of 20 Albinus rabbits randomly received 30 implants of 3.75 × 10 mm in the right and left tibias, with two implants on each surface in each tibia. In the animals belonging to the 4-week euthanasia period group, intramuscular application of the fluorochromes calcein and alizarin was performed. In implants placed mesially in the tibiofemoral joint, biomechanical analysis was performed by means of a removal torque (N/cm). The tibias with the implants located distally to the joint were submitted for analysis by confocal laser microscopy (mineral apposition rate) and for histometric analysis by bone contact implant (%BIC) and newly formed bone area (%NBA). (3) Results: The SEM showed differences between the surfaces. The biomechanical analysis revealed significant differences in removal torque values between the MSs and LHSs over a 2-week period. Over a 4-week period, both the LSs and LHSs demonstrated removal torque values statistically higher than the MSs. BIC of the LHS implants were statistically superior to MS at the 2-week period and LHS and LS surfaces were statistically superior to MS at the 4-week period. Statistical analysis of the NBA of the implants showed difference between the LHS and MS in the period of 2 weeks. (4) Conclusions: The modifications of the LSs and LHSs provided important physicochemical modifications that favored the deposition of bone tissue on the surface of the implants.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070533
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 534: Soil Microbial Community Structure and Carbon
Stocks Following Fertilization with Organic Fertilizers and Biological
Inputs
Authors: Diana Sivojienė, Aistė Masevičienė, Lina Žičkienė, Almantas Ražukas, Audrius Kačergius
First page: 534
Abstract: The application of organic fertilizers and biological inputs to soil inevitably affects its quality, agrochemical indicators, and microbiota. Sustainable agriculture is based on continuously learning about how to properly manage available soil, water, and biological resources. The aim of the study was to determine changes in microorganism communities and carbon stocks in infertile soils for fertilization using different organic fertilizers and their combinations with bio-inputs. Genetic analysis of microorganism populations was performed using the NGS approach. Our study showed that the application of organic fertilizers affects the soil microbiota and the taxonomic structure of its communities. Specific groups of bacteria, such as Bacillota, were promoted by organic fertilization, meanwhile the abundance of Pseudomonadota and Ascomycota decreased in most treatments after the application of poultry manure. Metagenomic analysis confirmed that the use of bio-inputs increased the relative abundance of Trichoderma spp. fungi; meanwhile, a significant change was not found in the representatives of Azotobacter compared to the treatments where the bio-inputs were not used. The positive influence of fertilization appeared on all the studied agrochemical indicators. Higher concentrations of Corg and Nmin accumulated in the soil when we used granulated poultry manure, and pHKCl when we used cattle manure.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070534
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 535: Effect of Liposomal Protium heptaphyllum
(Alb.) March Extract in the Treatment of Obesity Induced by High-Calorie
Diet
Authors: Naiéle Sartori Patias, Eveline Aparecida Isquierdo Fonseca de Queiroz, Stela Regina Ferrarini, Gisele Facholi Bomfim, Danilo Henrique Aguiar, Adilson Paulo Sinhorin, Alexandre Aymberé Bello, Geovana Vicentini Fazolo da Silva, Larissa Cavalheiro, Valéria Dornelles Gindri Sinhorin
First page: 535
Abstract: Obesity, a chronic disease, resulted from excessive consumption of high-calorie foods, leading to an energy imbalance. Protium heptaphyllum (P. heptaphyllum) was used in folk medicine for its analgesic, anti-inflammatory, and healing properties. The association of the extract from P. heptaphyllum with nanotechnology was innovative for combining high technology with active ingredients that are easily accessible in the Amazon region. This study evaluated the effect of liposomes containing the ethyl acetate fraction of the crude extract of P. heptaphyllum leaves on obesity. Male Wistar rats treated with a high-calorie diet for 8 weeks to induce obesity received treatment with the liposome formulation containing P. heptaphyllum extract (1 mg/kg/day, via gavage) for 14 days. Morphological, metabolic, redox status, immunological, and histological parameters were evaluated in the adipose and liver tissue of the animals. The groups were divided as follows: C: control; P: liposomes containing extract; O: obese, and OP: obese + liposomes containing extract. The obesity model resulted in increases in body weight, caloric intake, body fat weight, and in the lipid profile. In adipose tissue, P decreased SOD (superoxide dismutase) activity in obese animals. In the liver, a positive modulation of the extract was observed in relation to glucose, amino acids, lactate, hepatoprotective action, and anti-inflammatory activity, with a decrease in interleukin 1β (IL-1β) in obese animals. The results showed an improvement in the functional and inflammatory aspects, but the treatment was not effective in alleviating general changes related to obesity, such as weight gain, fat, glucose, triglycerides, and inflammation in adipose tissue, highlighting the complexity of responses in different organs during obesity and treatment with P. heptaphyllum.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070535
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 536: Impact of Iron Oxide on Anaerobic Digestion
of Frass in Biogas and Methanogenic Archaeal Communities’ Analysis
Authors: Xiaoying Dong, Aoqi Dong, Juhao Liu, Kamran Qadir, Tianping Xu, Xiya Fan, Haiyan Liu, Fengyun Ji, Weiping Xu
First page: 536
Abstract: With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070536
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 537: Research Progress on Starfish Outbreaks and
Their Prevention and Utilization: Lessons from Northern China
Authors: Liang Qu, Yongxin Sun, Chong Zhao, Maurice R. Elphick, Qingzhi Wang
First page: 537
Abstract: Starfish are keystone species as predators in benthic ecosystems, but when population outbreaks occur, this can have devastating consequences ecologically. Furthermore, starfish outbreaks and invasions can have adverse impact economically by impacting shellfish aquaculture. For example, an infestation of starfish in Qingdao led to a 50% reduction in sea cucumber production and an 80% reduction in scallop production, resulting in an economic loss of approximately RMB 100 million to oyster and other shellfish industries. Addressing the imperative need to proactively mitigate starfish invasions requires comprehensive research on their behavior and the underlying mechanisms of outbreaks. This review scrutinizes the historical patterns of outbreaks among diverse starfish species across various regions, delineates the factors contributing to the proliferation of Asterias amurensis in Chinese waters, articulates preventive and remedial strategies, and outlines the potential for the sustainable utilization of starfish.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070537
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 538: Analysis of the Distribution Pattern of
Phenacoccus manihoti in China under Climate Change Based on the Biomod2
Model
Authors: Yumeng Huang, Tong Li, Weijia Chen, Yuan Zhang, Yanling Xu, Tengda Guo, Shuping Wang, Jingyuan Liu, Yujia Qin
First page: 538
Abstract: The changing global climate has significantly impacted the spread of plant pests. The cassava mealybug (Phenacoccus manihoti) is among the most dangerous quarantine pests affecting cassavas worldwide, causing substantial losses in agricultural production and food security across several regions. Although China is currently free of the cassava mealybug, its proximity to affected countries and extensive trade with these regions necessitate a detailed understanding of the pest’s distribution pattern and dynamic ecological niche changes. Using the Biomod2 model, we selected two historical climate scenarios and two future climate scenarios (SSP1-2.6 and SSP5-8.5) to investigate the distribution patterns, potential habitats, distribution centers, and dynamic ecological niches of cassava mealybugs in China. Key environmental variables influencing the distribution were identified, including bio4, bio8, bio12, bio18, and bio19. The potential habitat of cassava mealybugs is mainly located in several provinces in southern China. In the future, the suitable habitat is projected to expand slightly under the influence of climate change, maintaining the overall trend, but the distribution center of suitable areas will shift northward. Dynamic ecological niche prediction results indicate the potential for further expansion; however, the ecological niches may be unequal and dissimilar in the invaded areas. The predictions could serve as a valuable reference for early warning systems and management strategies to control the introduction of cassava mealybugs.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070538
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 539: The Assessment of Sperm DNA Integrity:
Implications for Assisted Reproductive Technology Fertility Outcomes
across Livestock Species
Authors: Maya J. Robertson, Caitlin Chambers, Eloise A. Spanner, Simon P. de Graaf, Jessica P. Rickard
First page: 539
Abstract: Sperm DNA integrity is increasingly considered a useful measure of semen quality in mammalian reproduction. However, the definition of DNA integrity, the ideal means by which it should be measured, and its predictive value for fertility remain a topic of much discussion. With an emphasis on livestock species, this review discusses the assays that have been developed to measure DNA integrity as well as their correlation with in vitro and in vivo fertility.
Citation: Biology
PubDate: 2024-07-17
DOI: 10.3390/biology13070539
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 540: Understanding the Foreign Body Response via
Single-Cell Meta-Analysis
Authors: Norah E. Liang, Jennifer B. Parker, John M. Lu, Michael Januszyk, Derrick C. Wan, Michelle Griffin, Michael T. Longaker
First page: 540
Abstract: Foreign body response (FBR) is a universal reaction to implanted biomaterial that can affect the function and longevity of the implant. A few studies have attempted to identify targets for treating FBR through the use of single-cell RNA sequencing (scRNA-seq), though the generalizability of these findings from an individual study may be limited. In our study, we perform a meta-analysis of scRNA-seq data from all available FBR mouse studies and integrate these data to identify gene signatures specific to FBR across different models and anatomic locations. We identify subclusters of fibroblasts and macrophages that emerge in response to foreign bodies and characterize their signaling pathways, gene ontology terms, and downstream mediators. The fibroblast subpopulations enriched in the setting of FBR demonstrated significant signaling interactions in the transforming growth factor-beta (TGF-β) signaling pathway, with known pro-fibrotic mediators identified as top expressed genes in these FBR-derived fibroblasts. In contrast, FBR-enriched macrophage subclusters highly expressed pro-fibrotic and pro-inflammatory mediators downstream of tumor necrosis factor (TNF) signaling. Cell–cell interactions were additionally interrogated using CellChat, with identification of key signaling interactions enriched between fibroblasts and macrophages in FBR. By combining multiple FBR datasets, our meta-analysis study identifies common cell-specific gene signatures enriched in foreign body reactions, providing potential therapeutic targets for patients requiring medical implants across a myriad of devices and indications.
Citation: Biology
PubDate: 2024-07-18
DOI: 10.3390/biology13070540
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 541: Persistence of Correlations in
Neurotransmitter Transport through the Synaptic Cleft
Authors: Masroor Khonkhodzhaev, Shota Maglakelidze, Yonatan Dubi, Lev Mourokh
First page: 541
Abstract: The “quantum brain” proposal can revolutionize our understanding of cognition if proven valid. The core of the most common “quantum brain” mechanism is the appearance of correlated neuron triggering induced by quantum correlations between ions. In this work, we examine the preservation of the correlations created in the pre-synaptic neurons through the transfer of neurotransmitters across the synaptic cleft, a critical ingredient for the validity of the “quantum brain” hypothesis. We simulated the transport of two neurotransmitters at two different clefts, with the only assumption that they start simultaneously, and determined the difference in their first passage times. We show that in physiological conditions, the correlations are persistent even if the parameters of the two neurons are different.
Citation: Biology
PubDate: 2024-07-18
DOI: 10.3390/biology13070541
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 542: The Low Survivability of Transplanted Gonadal
Grafts: The Impact of Cryopreservation and Transplantation Conditions on
Mitochondrial Function
Authors: Inês Moniz, Maria Soares, Ana Paula Sousa, João Ramalho-Santos, Ana Branco
First page: 542
Abstract: Advances in tissue preservation techniques have allowed reproductive medicine and assisted reproductive technologies (ARTs) to flourish in recent years. Because radio- and chemotherapy procedures are often gonadotoxic, irreversible damage can preclude future gamete production and endocrine support. Accordingly, in recent years, the freezing and storage of gonadal tissue fragments prior to the first oncological treatment appointment and autologous transplantation post-recovery have been considered improved solutions for fertility recovery in cancer survivors. Nevertheless, the cryopreservation and transplantation of thawed tissues is still very limited, and positive outcomes are relatively low. This review aims to discuss the limitations of oncofertility protocols with a focus on the impacts of mitochondrial dysfunction, oxidative stress, and the loss of antioxidant defense in graft integrity.
Citation: Biology
PubDate: 2024-07-18
DOI: 10.3390/biology13070542
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 543: The Emerging Role of Ferroptosis in
EBV-Associated Cancer: Implications for Cancer Therapy
Authors: Shan He, Cheng Luo, Feng Shi, Jianhua Zhou, Li Shang
First page: 543
Abstract: Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Citation: Biology
PubDate: 2024-07-18
DOI: 10.3390/biology13070543
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 544: The Therapeutic Potential of Dalbergia
pinnata (Lour.) Prain Essential Oil in Alzheimer’s Disease: EEG
Signal Analysis In Vivo, SH-SY5Y Cell Model In Vitro, and Network
Pharmacology
Authors: Sheng Qin, Jiayi Fang, Xin He, Genfa Yu, Fengping Yi, Guangyong Zhu
First page: 544
Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that is projected by the WHO to affect over 100 million people by 2050. Clinically, AD patients undergoing long-term antipsychotic treatment often experience severe anxiety or depression in later stages. Furthermore, early-stage AD manifests with weakened α waves in the brain, progressing to diminished α and β waves in late-stage disease, reflecting changes in emotional states and disease progression. In this study, EEG signal analysis revealed that inhalation of Dalbergia pinnata (Lour.) Prain essential oil (DPEO) enhanced δ, θ, α and β wave powers in the frontal and parietal lobes, with a rising trend in the β/α ratio in the temporal lobe. These findings suggest an alleviation of anxiety and an enhancement of cognitive functions. Treatment of the AD SH-SY5Y (human neuroblastoma cells) cell model with DPEO resulted in decreased intracellular levels of Aβ, GSK-3β, P-Tau, IL-1β, TNF-α, IL-6, COX-2, OFR, and HFR, alongside reduced AchE and BchE activities and increased SOD activity. Network pharmacology analysis indicated a potential pharmacological mechanism involving the JAK-STAT pathway. Our study provides evidence supporting DPEO’s role in modulating anxiety and slowing AD pathological progression.
Citation: Biology
PubDate: 2024-07-18
DOI: 10.3390/biology13070544
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 545: Transcriptome Analysis of Transiently
Reversible Cell Vacuolization Caused by Excessive Serum Concentration in
Scophthalmus maximus
Authors: Yuting Song, Lijun Shao, Xiaoli Yu
First page: 545
Abstract: As an important research tool, cell lines play a vital role in life science research, medical research, and drug development. During the culture of the Scophthalmus maximus head kidney (TK) cell line, we found a phenomenon of cell vacuolization caused by excessive serum concentration. Moreover, the vacuolization of the cells gradually disappeared after passage by trypsin digestion. In clarifying the formation mechanism of this reversible cellular vacuolation, transcriptomics was utilized to explore the mechanism of cell vacuolization caused by excessive serum concentration. Transcriptome analysis indicated that excessive serum concentration could cause the up-regulated expression of PORCN and other genes to promote cell proliferation. Compared with cells whose vacuolization disappeared after trypsin digestion and passage, the expression of mitosis-related genes (BUB1, ttk, Mad2, Cdc20, CDK1, CCNB1), nuclear stability-related genes LMNB1 and tissue stress and repair-related genes HMMR in vacuolated cells caused by excessive serum concentration was significantly up-regulated. There is a regulatory system related to adaptation and stress repair in the cells, which can maintain cell stability to a certain extent. This study provides a theoretical basis for the stable culture of fish cell lines and the solution to the problem of cell vacuolation.
Citation: Biology
PubDate: 2024-07-19
DOI: 10.3390/biology13070545
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 546: Multifaceted Roles of Nerve Growth Factor: A
Comprehensive Review with a Special Insight into Pediatric Perspectives
Authors: Lavinia Capossela, Antonio Gatto, Serena Ferretti, Lorenzo Di Sarno, Benedetta Graglia, Miriam Massese, Marzia Soligo, Antonio Chiaretti
First page: 546
Abstract: Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic–ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF’s therapeutic potential.
Citation: Biology
PubDate: 2024-07-19
DOI: 10.3390/biology13070546
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 547: Effects of Prenatal Dexamethasone Treatment
and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and
Behavior in Adult Male Wistar Rat Offspring
Authors: Đurđica Ignjatović, Nataša Nestorović, Mirko Tomić, Nataša Ristić, Nataša Veličković, Milka Perović, Milica Manojlović-Stojanoski
First page: 547
Abstract: Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation and male offspring were supplemented with a moderate dose of fructose. Recognition memory, locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95, calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally, protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in reactions to novel situations in male Wistar rats.
Citation: Biology
PubDate: 2024-07-19
DOI: 10.3390/biology13070547
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 548: Evidence of Potential Anammox Activities from
Rice Paddy Soils in Microaerobic and Anaerobic Conditions
Authors: Anamika Khanal, Hyung-Geun Song, Yu-Sung Cho, Seo-Yeon Yang, Won-Seok Kim, Alpana Joshi, Jiho Min, Ji-Hoon Lee
First page: 548
Abstract: Anammox, a reaction in which microorganisms oxidize ammonia under anaerobic conditions, is used in the industry to remove ammonium from wastewater in an environmentally friendly manner. This process does not produce intermediate products such as nitrite or nitrate, which can act as secondary pollutants in soil and water environments. For industrial applications, anammox bacteria should be obtained from the environment and cultivated. Anammox bacteria generally exhibit a slow growth rate and may not produce a large number of cells due to their anaerobic metabolism. Additionally, their habitats appear to be limited to specific environments, such as oxidation-reduction transition zones. Consequently, most of the anammox bacteria that are used or studied originate from marine environments. In this study, anammox bacterial evidence was found in rice paddy soil and cultured under various conditions of aerobic, microaerobic, and anaerobic batch incubations to determine whether enrichment was possible. The anammox-specific gene (hzsA) and microbial community analyses were performed on the incubated soils. Although it was not easy to enrich anammox bacteria due to co-occurrence of denitrification and nitrification based on the chemistry data, potential existence of anammox bacteria was assumed in the terrestrial paddy soil environment. For potential industrial uses, anammox bacteria could be searched for in rice paddy soils by applying optimal enrichment conditions.
Citation: Biology
PubDate: 2024-07-19
DOI: 10.3390/biology13070548
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 549: Effect of Pond-Based Rice Floating Bed on the
Microbial Community Structure and Quality of Water in Pond of Mandarin
Fish Fed Using Artificial Diet
Authors: Lijin Jiang, Mengmeng Yi, Zhiyong Jiang, Yuli Wu, Jianmeng Cao, Zhigang Liu, Zhang Wang, Maixin Lu, Xiaoli Ke, Miao Wang
First page: 549
Abstract: The culture of mandarin fish using artificial feed has been gaining increasing attention in China. Ensuring good water quality in the ponds is crucial for successful aquaculture. Recently, the trial of pond-based rice floating beds (PRFBs) in aquaculture ponds has shown promising results. This research assessed the impact of PRFBs on the microbial community structure and overall quality of the aquaculture pond, thereby enhancing our understanding of its functions. The results revealed that the PRFB group exhibited lower levels of NH4+-N, NO2−-N, NO3−-N, TN, TP, and Alk in pond water compared to the control group. The microbial diversity indices in the PRFB group showed a declining trend, while these indices were increasing in the control group. At the phylum level, there was a considerable increase in Proteobacteria abundance in the PRFB group throughout the culture period, suggesting that PRFBs may promote the proliferation of Proteobacteria. In the PRFB group, there was a remarkable decrease in bacterial populations related to carbon, nitrogen, and phosphorus metabolism, including genera Rhodobacter, Rhizorhapis, Dinghuibacter, Candidatus Aquiluna, and Chryseomicrobium as well as the CL500_29_marine_group. Overall, the research findings will provide a basis for the application of aquaculture of mandarin fish fed an artificial diet and rice floating beds.
Citation: Biology
PubDate: 2024-07-21
DOI: 10.3390/biology13070549
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 550: Phytoplankton Diversity, Spatial Patterns,
and Photosynthetic Characteristics Under Environmental Gradients and
Anthropogenic Influence in the Pearl River Estuary
Authors: Jing Xia, Haojie Hu, Xiu Gao, Jinjun Kan, Yonghui Gao, Ji Li
First page: 550
Abstract: The Pearl River Estuary (PRE) is one of the world’s most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities’ dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm) of phytoplankton in different salinity habitats of PRE (oceanic, estuarine, and freshwater zones) was studied, revealing a complex correlation with the environment. Fv/Fm of phytoplankton ranged from 0.16 to 0.45, with taxa in the upper Lingdingyang found to be more stressed. Community composition and structure were analyzed using 18S rRNA, accompanied by a pigment analysis utilized as a supplementary method. Nonmetric multidimensional scaling analysis indicated differences in the phytoplankton spatial distribution along the estuarine gradients. Specificity-occupancy plots identified different specialist taxa for each salinity habitat. Dinophyta and Haptophyta were the predominant taxa in oceanic areas, while Chlorophyta and Cryptophyta dominated freshwater. Bacillariophyta prevailed across all salinity gradients. Canonical correlation analysis and Mantel tests revealed that temperature, salinity, and elevated nutrient levels (i.e., NO3−-N, PO43−-P, and SiO32−-Si) associated with anthropogenic activities significantly influenced the heterogeneity of community structure. The spatial distribution of phytoplankton, along with in situ photosynthetic characteristics, serves as a foundational basis to access estuarine primary productivity, as well as community function and ecosystem health.
Citation: Biology
PubDate: 2024-07-22
DOI: 10.3390/biology13070550
Issue No: Vol. 13, No. 7 (2024)
- Biology, Vol. 13, Pages 551: Immortalization of Mesenchymal Stem Cell
Lines from Sheep Umbilical Cord Tissue
Authors: Jinwei Yang, Yitong Dong, Lixinyi Hu, Weihai Wang, Yajun Li, Shujie Wang, Chunsheng Wang
First page: 551
Abstract: Mesenchymal stem cells (MSCs) possess significant differentiation potential, making them highly promising in medicine and immunotherapy due to their regenerative capabilities and exosome secretion. However, challenges such as limited cell divisions and complex testing hinder large-scale MSC production. In this study, we successfully established an immortalized MSC line by transfecting the human telomerase reverse transcriptase (TERT) gene into MSCs isolated from pregnant sheep umbilical cords. This approach effectively inhibits cell senescence and promotes cell proliferation, enabling the generation of umbilical cord mesenchymal stem cells (UCMSCs) on a larger scale. Our findings demonstrate that these transfected TERT-UCMSCs exhibit enhanced proliferative capacity and a reduced aging rate compared to regular UCMSCs while maintaining their stemness without tumorigenicity concerns. Consequently, they hold great potential for medical applications requiring large quantities of functional MSCs.
Citation: Biology
PubDate: 2024-07-22
DOI: 10.3390/biology13070551
Issue No: Vol. 13, No. 7 (2024)