Subjects -> BIOLOGY (Total: 3174 journals)
    - BIOCHEMISTRY (239 journals)
    - BIOENGINEERING (143 journals)
    - BIOLOGY (1491 journals)
    - BIOPHYSICS (53 journals)
    - BIOTECHNOLOGY (243 journals)
    - BOTANY (233 journals)
    - CYTOLOGY AND HISTOLOGY (32 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (165 journals)
    - MICROBIOLOGY (279 journals)
    - MICROSCOPY (13 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (117 journals)

BIOLOGY (1491 journals)            First | 1 2 3 4 5 6 7 8 | Last

Showing 1401 - 1600 of 1720 Journals sorted alphabetically
The Condor     Full-text available via subscription   (Followers: 28)
The Enzymes     Full-text available via subscription   (Followers: 2)
The FASEB Journal     Hybrid Journal   (Followers: 23)
The Herpetological Journal     Full-text available via subscription   (Followers: 6)
The International Journal of Advanced Manufacturing Technology     Hybrid Journal   (Followers: 6)
The Journal of Technology Transfer     Hybrid Journal   (Followers: 15)
The Knee     Hybrid Journal   (Followers: 13)
The Lancet Microbe     Open Access   (Followers: 1)
The Lichenologist     Hybrid Journal   (Followers: 4)
The Nucleus     Hybrid Journal  
The Plant Cell     Full-text available via subscription   (Followers: 23)
The Protein Journal     Hybrid Journal   (Followers: 5)
Theoretical Biology and Medical Modelling     Open Access   (Followers: 1)
Theoretical Population Biology     Hybrid Journal   (Followers: 10)
Therya     Open Access  
Tissue and Cell     Hybrid Journal  
Tissue Engineering and Regenerative Medicine     Hybrid Journal   (Followers: 10)
Tissue Engineering Part A     Hybrid Journal   (Followers: 10)
Tissue Engineering Part B: Reviews     Hybrid Journal   (Followers: 8)
Tissue Engineering Part C: Methods     Hybrid Journal   (Followers: 8)
Toxicological Research     Hybrid Journal  
Toxicology in Vitro     Hybrid Journal   (Followers: 11)
Toxicon     Hybrid Journal   (Followers: 5)
Toxicon : X     Open Access  
Traffic     Hybrid Journal   (Followers: 5)
Transactions of the Royal Society of South Australia     Hybrid Journal  
Transcription     Full-text available via subscription   (Followers: 2)
Transgenic Research     Hybrid Journal   (Followers: 1)
Translational Psychiatry     Open Access   (Followers: 14)
Transportation Planning and Technology     Hybrid Journal   (Followers: 8)
Tree Genetics & Genomes     Hybrid Journal   (Followers: 4)
Trees     Hybrid Journal   (Followers: 3)
Trends in Bioinformatics     Open Access   (Followers: 17)
Trends in Biotechnology     Hybrid Journal   (Followers: 141)
Trends in Cell Biology     Full-text available via subscription   (Followers: 37)
Trends in Microbiology     Full-text available via subscription   (Followers: 42)
Trends in Molecular Sciences     Open Access   (Followers: 2)
Trends in Parasitology     Full-text available via subscription   (Followers: 10)
Trends in Plant Science     Full-text available via subscription   (Followers: 20)
Tropical Drylands     Open Access  
Tropical Ecology     Hybrid Journal  
Tropical Freshwater Biology     Full-text available via subscription  
Tunnelling and Underground Space Technology     Hybrid Journal   (Followers: 10)
Turkish Journal of Agricultural and Natural Science / Türk Tarım ve Doğa Bilimleri Dergisi     Open Access  
Ukrainian Journal of Ecology     Open Access  
Ultrasound in Medicine & Biology     Hybrid Journal   (Followers: 10)
UNED Research Journal / Cuadernos de Investigación UNED     Open Access  
Uniciencia     Open Access  
Universal Journal of Biomedical Engineering     Open Access  
UNM Journal of Biological Education     Open Access  
Unnes Journal of Biology Education     Open Access  
Vakuum in Forschung und Praxis     Hybrid Journal   (Followers: 2)
Vascular Cell     Open Access  
Vegetation Classification and Survey     Open Access  
Victorian Naturalist, The     Full-text available via subscription   (Followers: 2)
View     Open Access   (Followers: 3)
Virchows Archiv     Hybrid Journal   (Followers: 3)
Virologica Sinica     Hybrid Journal  
Virology Journal     Open Access   (Followers: 5)
Virulence     Open Access   (Followers: 1)
Virus Evolution     Open Access   (Followers: 3)
Virus Genes     Hybrid Journal   (Followers: 1)
Virus Research     Hybrid Journal   (Followers: 1)
Visnyk of Dnipropetrovsk University. Biology, ecology     Open Access   (Followers: 1)
Visnyk of Dnipropetrovsk University. Biology, medicine     Open Access  
VITIS : Journal of Grapevine Research     Open Access   (Followers: 1)
Walailak Journal of Science and Technology     Open Access  
Water Biology and Security     Full-text available via subscription   (Followers: 5)
Web Ecology     Open Access   (Followers: 3)
Webbia : Journal of Plant Taxonomy and Geography     Hybrid Journal  
West African Journal of Applied Ecology     Open Access  
Western Undergraduate Research Journal : Health and Natural Sciences     Open Access  
Wetlands     Hybrid Journal   (Followers: 25)
Wildlife Biology     Open Access   (Followers: 16)
Wildlife Research     Hybrid Journal   (Followers: 17)
Wiley Interdisciplinary Reviews - System Biology and Medicine     Hybrid Journal   (Followers: 2)
Wiley Interdisciplinary Reviews : Developmental Biology     Hybrid Journal   (Followers: 2)
Wiley Interdisciplinary Reviews : Membrane Transport and Signaling     Hybrid Journal  
Wiley Interdisciplinary Reviews : RNA     Hybrid Journal   (Followers: 3)
World Mycotoxin Journal     Hybrid Journal   (Followers: 3)
Xenobiotica     Hybrid Journal   (Followers: 7)
Yeast     Hybrid Journal   (Followers: 8)
Zebrafish     Hybrid Journal  
Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen     Hybrid Journal   (Followers: 6)
Zitteliana     Open Access  
Zygote     Hybrid Journal  

  First | 1 2 3 4 5 6 7 8 | Last

Similar Journals
Journal Cover
Virus Genes
Journal Prestige (SJR): 0.711
Citation Impact (citeScore): 2
Number of Followers: 1  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1572-994X - ISSN (Online) 0920-8569
Published by Springer-Verlag Homepage  [2469 journals]
  • Foreign gene expression attenuates a virulent Newcastle disease virus in
           chickens

    • Free pre-print version: Loading...

      Abstract: Abstract Newcastle disease virus (NDV) is an important pathogen for poultry and is used as a vector for developing novel poultry vaccines. Previous studies showed that foreign gene insertion in NDV vector decreases virulence determined by in vitro assays; however, the impact of foreign gene expression on the pathogenicity of NDV in susceptible chickens is not fully investigated. In this study, a recombinant NDV based on a velogenic strain carrying the orange fluorescent protein (OFP) gene between the phosphoprotein (P) and matrix (M) genes was generated using reverse genetics. Biological characteristics, including virus replication, virulence, and OFP expression, and the pathogenicity in chickens were evaluated. The recombinant NDV showed comparable replication capacity in eggs and cells as the parental virus, whereas OFP insertion resulted in a mild impairment of virulence, evidenced by longer mean death time in embryos. High OFP expression was detected in the cells inoculated with the recombinant NDV. In addition, the recombinant NDV induced delayed onset of disease, lower severity of clinical signs, and lower mortality in chickens compared to the parental virus. Moreover, high titers of the parental virus were detected in the spleen, lung, and intestinal tract, while no recombinant NDV was recovered from these tissues. Our findings suggest that in vitro characteristics related to the insertion of the OFP gene in a virulent NDV do not correlate to alteration of the pathogenicity in chickens. Our results provided new information regarding assessment of the impact of foreign gene expression on the pathogenicity of NDV.
      PubDate: 2022-06-25
       
  • Characterization of a ToMV isolate overcoming Tm-22 resistance gene in
           tomato

    • Free pre-print version: Loading...

      Abstract: Abstract Tomato mosaic virus (ToMV) is easily transmitted in soil and by contact. By these reasons, it is relatively difficult to control ToMV disease in tomato. Incorporation of the Tm-22 gene has been widely used as a control method for ToMV, but ToMV isolates that overcome this resistance gene have been reported worldwide in recent years. In this study, we determined the entire nucleotide sequences of ToMV isolate [named ToMV-KMT (LC650928)], which was isolated from tomato plants showing symptoms of systemic necrosis in Kumamoto prefecture, Japan. We also analyzed the viral gene of ToMV-KMT that overcome the Tm-22 gene by constructing its infectious cDNA clone and by generating chimeric viruses with a non-breaking strain. According to previous research, Tm-22 recognizes the viral movement protein (MP) and exerts resistance by inducing hypersensitive reaction or hypersensitive cell death. We discovered that a mutation in the 240th amino acid (aspartic acid to tyrosine) of the MP of ToMV-KMT, which may stabilize the protein’s structure, is responsible for the ability of this isolate to overcome the resistance of Tm-22.
      PubDate: 2022-06-21
       
  • Isolation and characterization of a novel Escherichia coli phage
           Kayfunavirus ZH4

    • Free pre-print version: Loading...

      Abstract: Abstract Escherichia coli, a gram-negative bacterium, was generally considered conditional pathogenic bacteria and the proportion of bacteria resistant to commonly used specified antibacterial drugs exceeded 50%. Phage therapeutic application has been revitalized since antibiotic resistance in bacteria was increasing. Compared with antibiotics, phage is the virus specific to bacterial hosts. However, further understanding of phage–host interactions is required. In this study, a novel phage specific to a E. coli strain, named as phage Kayfunavirus ZH4, was isolated and characterized. Transmission electron microscopy showed that phage ZH4 belongs to the family Autographiviridae. The whole-genome analysis showed that the length of phage ZH4 genome was 39,496 bp with 49 coding domain sequence (CDS) and no tRNA was detected. Comparative genome and phylogenetic analysis demonstrated that phage ZH4 was highly similar to phages belonging to the genus Kayfunavirus. Moreover, the highest average nucleotide identity (ANI) values of phage ZH4 with all the known phages was 0.86, suggesting that ZH4 was a relatively novel phage. Temperature and pH stability tests showed that phage ZH4 was stable from 4° to 50 °C and pH range from 3 to 11. Host range of phage ZH4 showed that there were only 2 out of 17 strains lysed by phage ZH4. Taken together, phage ZH4 was considered as a novel phage with the potential for applications in the food and pharmaceutical industries.
      PubDate: 2022-06-18
       
  • Duck sewage source coliphage P762 can lyse STEC and APEC

    • Free pre-print version: Loading...

      Abstract: Abstract Multiple pathogenic types or serotypes restrict treatment for colibacillosis. In addition, rising antibiotic resistance has heightened public awareness to prevent and control pathogenic Escherichia coli. The bacteriophage is a viable technique to treat colibacillosis as an alternative to antibiotics. P762, a coliphage isolated from duck farm sewage, was demonstrated to cloud lyse Shiga toxin-producing Escherichia Coli serotypes O157 and non-O157 (17/39), Avian pathogenic E. coli covered serotype O78, O83, and O9 (5/19), and other pathogenic Escherichia coli (5/17). Additional fundamental biological characteristics analysis revealed that P762 is stable at pH 3 ~ 11 and temperature between 4 °C and 60 °C, and its optimum multiplicity of infection (MOI) is 0.1. The one-step curve of P762 exhibited three bursts of growth stage: two rapid and one slow stage. Furthermore, the first rapid burst size is 80 CFU/PFU, the burst size of the slow stage is 10 CFU/PFU, and the second rapid burst size is about 990 CFU/PFU. In addition, P762 can form a "halo" on a double agar plate, implying that the phage secretes depolymerase. With 95.14% identity and 90% query coverage, genome sequence analysis revealed that P762 is most closely related to Escherichia phage DY1, which belongs to the genus Kayfunavirus. After screening using RAST and VFDB, no virulence factors were discovered in P762. In vitro antibacterial tests revealed that P762 has high bactericidal activity in lettuce leaves contaminated with STEC. In conclusion, phage P762 might be employed in the future to prevent and control pathogenic Escherichia coli.
      PubDate: 2022-06-16
       
  • Correction to: Complete genome sequencing and characterization of
           single-stranded DNA Vibrio parahaemolyticus phage from inland saline
           aquaculture environment

    • Free pre-print version: Loading...

      PubDate: 2022-06-15
       
  • An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic
           acute diarrhea in children in Nizhny Novgorod, Russia, 2018–2021

    • Free pre-print version: Loading...

      Abstract: Abstract Noroviruses are important etiological agents causing acute intestinal infection in humans. In the last decades, the most common norovirus genotype was GII.4 despite a significant genetic diversity among strains, while the active circulation of noroviruses with other genotypes was observed periodically. This study shows an increase in the detection rate of recombinant GII.3[P12] norovirus in Nizhny Novgorod, Russia, from 6.8% in 2018–2019 to 34.9% in 2020–2021. We performed a phylogenetic analysis based on the nucleotide sequences of noroviruses possessing this genotype obtained in this work, as well as presented in the GenBank database. It has been shown that the circulation of GII.3[P12] noroviruses in the study area was the result of several independent introductions, either directly from the Western Pacific region, or through the Asian part of Russia. The polyphyletic origin, the geographical expansion, and the growth of the epidemic significance of the recombinant GII.3[P12] noroviruses were noted.
      PubDate: 2022-06-09
       
  • Diversity of mycoviruses in edible fungi

    • Free pre-print version: Loading...

      Abstract: Abstract Mycoviruses (fungal viruses) are widespread in all major taxonomic groups of fungi. Although most mycovirus infections are latent, some mycoviruses, such as La France isometric virus, mushroom virus X, and oyster mushroom spherical virus, can cause severe diseases in edible fungi and lead to significant production losses. Recently, deep sequencing has been employed as a powerful research tool to identify new mycoviruses and to enhance our understanding of virus diversity and evolution. An increasing number of novel mycoviruses that can infect edible fungi have been reported, including double-stranded (ds) RNA, positive-sense ( +)ssRNA, and negative-sense (−)ssRNA viruses. To date, approximately 60 mycoviruses have been reported in edible fungi. In this review, we summarize the recent advances in the diversity and evolution of mycoviruses that can infect edible fungi. We also discuss mycovirus transmission, co-infections, and genetic variations, as well as the methods used to detect and control of mycoviruses in edible fungi, and provide insights for future research on mushroom viral diseases.
      PubDate: 2022-06-06
       
  • Complete genome sequencing and characterization of single-stranded DNA
           Vibrio parahaemolyticus phage from inland saline aquaculture environment

    • Free pre-print version: Loading...

      Abstract: Abstract Despite their evolutionary, molecular biology and biotechnological significance, relatively fewer numbers of single-stranded DNA (ssDNA) filamentous phages belonging to the family Inoviridae have been discovered and characterized to date. The present study focused on genome sequencing and characterization of an ssDNA Vibrio parahaemolyticus phage V5 previously isolated from an inland saline shrimp culture farm. The complete circular genome of phage V5 consisted of 6658 bp with GC content of 43.7%. During BLASTn analysis, only 36% of phage V5 genome matched with other Vibrio phage genomes in the NCBI database with a sequence identity value of 79%. During the phylogenetic analysis, phage V5 formed a separate branch in the minor clade. These features indicate the novel nature of the phage V5 genome. Among 10 predicted open reading frames (ORFs) in the phage V5 genome, 6 encoded for the proteins of known biological functions, whereas the rest were classified as hypotheticals. Proteins involved in replication and structural assembly were encoded by the phage genome. However, the absence of genes encoding for DNA/RNA polymerases and tRNAs signified that phage V5 is dependent on the host`s molecular machinery for its propagation. As per our knowledge, this is the first study describing the novel genome sequence of an ssDNA V. parahaemolyticus phage from the inland saline environment.
      PubDate: 2022-05-30
       
  • Isolation and characterization of the novel bacteriophage vB_SmaS_BUCT626
           against Stenotrophomonas maltophilia

    • Free pre-print version: Loading...

      Abstract: Abstract Stenotrophomonas maltophilia has been recognized as an emerging global opportunistic pathogen, and it is intrinsically resistant to most antibiotics, which makes the limited choice for treating S. maltophilia infections. Bacteriophage with the proper characterization is considered as a promising alternative treatment option to control S. maltophilia infections. In this study, we isolated a novel Siphoviridae bacteriophage vB_SmaS_BUCT626 with lytic activity against S. maltophilia. Phage vB_SmaS_BUCT626 can lysis 10 of 20 S. maltophilia and was relatively stable at a wide range of temperatures (4–70 °C) and pH values (3.0–13.0) and exhibited good tolerance to chloroform. The genome of phage vB_SmaS_BUCT626 was a 61,662-bp linear double-stranded DNA molecule with a GC content of 56.2%, and contained 100 open-reading frames. It carried no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters. Together, these characteristics make phage vB_SmaS_BUCT626, a viable candidate as a biocontrol agent against S. maltophilia infection.
      PubDate: 2022-05-28
       
  • Increased virulence of a novel reassortant H1N3 avian influenza virus in
           mice as a result of adaptive amino acid substitutions

    • Free pre-print version: Loading...

      Abstract: Abstract In this study, a novel multiple-gene reassortant H1N3 subtype avian influenza virus (AIV) (A/chicken/Zhejiang/81213/2017, CK81213) was isolated in Eastern China, whose genes were derived from H1 (H1N3), H7 (H7N3 and H7N9), and H10 (H10N3 and H10N8) AIVs. This AIV belongs to the avian Eurasian-lineage and exhibits low pathogenicity. Serial lung-to-lung passages of CK81213 in mice was performed to study the amino acid substitutions potentially related to the adaptation of H1 AIVs in mammals. And the mouse-adapted H1N3 virus showed greater virulence than wild-type H1N3 AIV in mice and the genomic analysis revealed a total of two amino acid substitutions in the PB2 (E627K) and HA (L67V) proteins. Additionally, the results of the animal study indicate that CK81213 could infect mice without prior adaption and become highly pathogenic to mice after continuous passage. Our findings show that routine surveillance of H1 AIVs is important for the prediction of influenza epidemics.
      PubDate: 2022-05-26
       
  • Non-structural proteins of bovine viral diarrhea virus

    • Free pre-print version: Loading...

      Abstract: Abstract Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae genus pestivirus. The viral genome is a single-stranded, positive-sense RNA that encodes four structural proteins (i.e., C, Erns, E1, and E2) and eight non-structural proteins (NSPs) (i.e., Npro, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Cattle infected with BVDV exhibit a number of different clinical signs including diarrhea, abortion, and other reproductive disorders which have a serious impact on the cattle industry worldwide. Research on BVDV mainly focuses on its structural protein, however, progress in understanding the functions of the NSPs of BVDV has also been made in recent decades. The knowledge gained on the BVDV non-structural proteins is helpful to more fully understand the viral replication process and the molecular mechanism of viral persistent infection. This review focuses on the functions of BVDV NSPs and provides references for the identification of BVDV, the diagnosis and prevention of Bovine viral diarrhea mucosal disease (BVD-MD), and the development of vaccines.
      PubDate: 2022-05-25
       
  • A review on structural genomics approach applied for drug discovery
           against three vector-borne viral diseases: Dengue, Chikungunya and Zika

    • Free pre-print version: Loading...

      Abstract: Abstract Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
      PubDate: 2022-04-08
      DOI: 10.1007/s11262-022-01898-5
       
  • The complete genome sequence of an alphabaculovirus from the brown tussock
           moth, Olene mendosa Hübner, expands our knowledge of lymantriine
           baculovirus diversity and evolution

    • Free pre-print version: Loading...

      Abstract: Abstract The complete genome sequence was determined for an apparent alphabaculovirus isolated from larval cadavers of the brown tussock moth, Olene mendosa Hübner, collected during an epizootic in Coimbatore, India. The genome was determined to be a circular 142,291 bp molecule, and 147 ORFs and nine homologous regions were annotated for the sequence. Analysis of the sequence confirmed that this virus, Olene mendosa nucleopolyhedrovirus (OlmeNPV), was a member of genus Alphabaculovirus in family Baculoviridae. Phylogenies inferred from nucleotide and amino acid alignments indicated that OlmeNPV was part of a group of viruses that infect moths of genus Lymantria, suggesting that OlmeNPV may have shifted hosts from a Lymantria species to an ancestral Olene species at some point during its evolutionary history. OlmeNPV was most closely related to Lymantria xylina multiple nucleopolyhedrovirus isolate 5 (LyxyMNPV-5). The genomes of OlmeNPV and LyxyMNPV-5 were distinguished not only by differences in ORF content, but by a 27 kbp region of the genome that is inverted in LyxyMNPV-5 relative to OlmeNPV. Pairwise nucleotide distances between OlmeNPV and other Lymantria spp. alphabaculoviruses indicate that OlmeNPV represents a new baculovirus species.
      PubDate: 2022-04-05
      DOI: 10.1007/s11262-022-01899-4
       
  • The virome of the white-winged vampire bat Diaemus youngi is rich in
           circular DNA viruses

    • Free pre-print version: Loading...

      Abstract: Abstract In the Neotropical region, the white-winged vampire bat (Diaemus youngi) is the rarest of the three species of vampire bats. This bat species feeds preferentially on bird blood, and there is limited information on the viruses infecting D. youngi. Hence, this study aimed to expand the knowledge about the viral diversity associated with D. youngi by sampling and pooling the lungs, liver, kidneys, heart, and intestines of all animals using high-throughput sequencing (HTS) on the Illumina MiSeq platform. A total of three complete and 10 nearly complete circular virus genomes were closely related to gemykrogvirus (Genomoviridae family), smacovirus (Smacoviridae family), and torque teno viruses (TTVs) (Anelloviridae family). In addition, three sequences of bat paramyxovirus were detected and found to be closely related to viruses reported in Pomona roundleaf bats and rodents. The present study provides a snapshot of the viral diversity associated with white-winged vampire bats and provides a baseline for comparison to viruses detected in future outbreaks.
      PubDate: 2022-04-02
      DOI: 10.1007/s11262-022-01897-6
       
  • Exploration of plant transcriptomes reveals five putative novel
           poleroviruses and an enamovirus

    • Free pre-print version: Loading...

      Abstract: Abstract Transcriptome datasets available in public domain serve as valuable resource for identification and characterization of novel viral genomes. Poleroviruses are economically important plant-infecting RNA viruses belonging to the family Solemoviridae. In the present study, we explored the plant transcriptomes available in public domain and identified five putative novel poleroviruses tentatively named as Foeniculum vulgare polerovirus (FvPV), Kalanchoe marnieriana polerovirus (KmPV), Paspalum notatum polerovirus (PnPV), Piper methysticum polerovirus (PmPV), Trachyspermum ammi polerovirus (TaPV) and a novel enamovirus named as Celmisia lyallii enamovirus (ClEV) in Foeniculum vulgare, Kalanchoe marnieriana, Paspalum notatum, Piper methysticum, Trachyspermum ammi and Celmisia lyallii, respectively. Coding-complete genomes (5.56–5.74 kb) of CIEV, KmPV, PnPV, PmPV and TaPV were recovered while only the partial genome of FvPV could be recovered. The genome organization of identified viruses except ClEV is 5’–ORF0–ORF1–ORF2–ORF3a–ORF3–ORF4–ORF5–3’ while that of ClEV is 5’–ORF0–ORF1–ORF2–ORF3–ORF5–3’. Phylogenetic analysis revealed that poleroviruses of apiaceous plants formed a monophyletic clade within the genus Polerovirus.
      PubDate: 2022-03-26
      DOI: 10.1007/s11262-022-01896-7
       
  • CHIKV strains Brazil (wt) and Ross (lab-adapted) differ with regard to
           cell host range and antiviral sensitivity and show CPE in human
           glioblastoma cell lines U138 and U251

    • Free pre-print version: Loading...

      Abstract: Abstract Chikungunya virus (CHIKV), a (re)emerging arbovirus, is the causative agent of chikungunya fever. To date, no approved vaccine or specific antiviral therapy are available. CHIKV has repeatedly been responsible for serious economic and public health impacts in countries where CHIKV epidemics occurred. Antiviral tests in vitro are generally performed in Vero-B4 cells, a well characterised cell line derived from the kidney of an African green monkey. In this work we characterised a CHIKV patient isolate from Brazil (CHIKVBrazil) with regard to cell affinity, infectivity, propagation and cell damage and compared it with a high-passage lab strain (CHIKVRoss). Infecting various cell lines (Vero-B4, A549, Huh-7, DBTRG, U251, and U138) with both virus strains, we found distinct differences between the two viruses. CHIKVBrazil does not cause cytopathic effects (CPE) in the human hepatocarcinoma cell line Huh-7. Neither CHIKVBrazil nor CHIKVRoss caused CPE on A549 human lung epithelial cells. The human astrocyte derived glioblastoma cell lines U138 and U251 were found to be effective models for lytic infection with both virus strains and we discuss their predictive potential for neurogenic CHIKV disease. We also detected significant differences in antiviral efficacies regarding the two CHIKV strains. Generally, the antivirals ribavirin, hydroxychloroquine (HCQ) and T-1105 seem to work better against CHIKVBrazil in glioblastoma cells than in Vero-B4. Finally, full genome analyses of the CHIKV isolates were done in order to determine their lineage and possibly explain differences in tissue range and antiviral compound efficacies.
      PubDate: 2022-03-26
      DOI: 10.1007/s11262-022-01892-x
       
  • Construction of SARS-CoV-2 spike-pseudotyped retroviral vector inducing
           syncytia formation

    • Free pre-print version: Loading...

      Abstract: Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is handled in biosafety level 3 (BSL-3) facilities, whereas the antiviral screening of pseudotype virus is conducted in BSL-2 facilities. In this study, we developed a SARS-CoV-2 spike-pseudotyped virus based on a semi-replication-competent retroviral (s-RCR) vector system. The s-RCR vector system was divided into two packageable vectors, each with gag-pol and env genes. For env vector construction, SARS-CoV-2 SΔ19 env was inserted into the pCLXSN-IRES-EGFP retroviral vector to generate pCLXSN-SΔ19 env-EGFP. When pCLXSN-gag-pol and pCLXSN-SΔ19env-EGFP were co-transfected into HEK293 T cells to generate an s-RCR virus, titers of the s-RCR virus were consistently low in this transient transfection system (1 × 104 TU/mL). However, a three-fold higher amounts of MLV-based SARS-CoV-2 pseudotyped viruses (3 × 104 TU/mL) were released from stable producer cells, and the spike proteins induced syncytia formation in HEK293-hACE2 cells. Furthermore, s-RCR stocks collected from stable producer cells induced more substantial syncytia formation in the Vero E6-TMPRSS2 cell line than in the Vero E6 cell line. Therefore, a combination of the s-RCR vector and the two cell lines (HEK293-hACE2 or Vero E6-TMPRSS2) that induce syncytia formation can be useful for the rapid screening of novel fusion inhibitor drugs.
      PubDate: 2022-03-23
      DOI: 10.1007/s11262-022-01890-z
       
  • VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in
           Nigeria, 2014/2015: partial sequence characterization and biophysical
           analysis of NSP4 (enterotoxin)

    • Free pre-print version: Loading...

      Abstract: Abstract Species A rotavirus are an important cause of childhood gastroenteritis, and the main contributor to its pathogenicity is the enterotoxin (NSP4) protein. Some biophysical properties of partial NSP4 genes of RVAs isolated from sewage in Nigeria during 2014/2015 were investigated. Samples were typed by RT-PCR and Sanger sequencing of partial VP4, VP7 and NSP4 genes. Phylogeny identified lineages within genotypes, predicted glycosylation sites; hydrophobicity profiles and amino acid alignments were employed to determine some biophysical properties of the NSP4 protein. The VP7 sequences of our isolates were the most diversified, the majority of the isolates carried NSP4 genes of the E1 genotype. Genotype specific variations both in hydrophobicity and potential glycosylation were identified, mutations were highest within the H3 hydrophobic domain and VP4 binding domain. The study of RVA NSP4 genes from non-clinical samples revealed that there were structural consistencies with those of reference genes.
      PubDate: 2022-03-18
      DOI: 10.1007/s11262-022-01895-8
       
  • Comparative trachea transcriptome analysis in SPF broiler chickens
           infected with avian infectious bronchitis and avian influenza viruses

    • Free pre-print version: Loading...

      Abstract: Abstract Infectious bronchitis virus (IBV) and avian influenza virus (AIV) are two major respiratory infections in chickens. The coinfection of these viruses can cause significant financial losses and severe complications in the poultry industry across the world. To examine transcriptome profile changes during the early stages of infection, differential transcriptional profiles in tracheal tissue of three infected groups (i.e., IBV, AIV, and coinfected) were compared with the control group. Specific-pathogen-free chickens were challenged with Iranian variant-2-like IBV (IS/1494), UT-Barin isolates of H9N2 (A/chicken/Mashhad/UT-Barin/2017), and IBV-AIV coinfection; then, RNA was extracted from tracheal tissue. The Illumina RNA-sequencing (RNA-seq) technique was employed to investigate changes in the Transcriptome. Up- and downregulated differentially expressed genes (DEGs) were detected in the trachea transcriptome of all groups. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology databases were examined to identify possible relationships between DEGs. In the experimental groups, upregulated genes were higher compared to downregulated genes. A more severe immune response was observed in the coinfected group; further, cytokine-cytokine receptor interaction, RIG-I-like receptor signaling, Toll-like receptor signaling, NOD-like receptor signaling, Janus kinase/signal transducer, and activator of transcription, and apoptotic pathways were important upregulated genes in this group. The findings of this paper may give a better understanding of transcriptome changes in the trachea during the early stages of infection with these viruses.
      PubDate: 2022-03-17
      DOI: 10.1007/s11262-022-01893-w
       
  • Molecular characterization of picobirnaviruses in small ruminants with
           diarrhea in Turkey

    • Free pre-print version: Loading...

      Abstract: Abstract Picobirnaviruses (PBVs), detected in a wide range of host species, are viruses of which limited information is available about their pathogenic potential, ecology, or evolutionary characteristics. In this study, a molecular analysis of segment 2 encoding the PBV RNA-dependent RNA-polymerase (RdRp) in small ruminants with diarrhea in Turkey was undertaken. A total of 66 fecal samples or gut contents from diarrheic small ruminants including 55 sheep and 11 goats were screened. Four samples (6.06%), obtained from sheep in different farms, yielded the expected amplicon size for the genogroup I RdRp gene fragment, whereas no positivity was detected for genogroup II PBVs. Phylogenetic analysis revealed high levels of genetic diversity among the genogroup I PBVs. Additionally, all PBV infected sheep were also positive for rotavirus A. This study, reporting the presence of the PBVs in sheep Turkey for the first time, contributes to the molecular characterization and epidemiology of PBVs.
      PubDate: 2022-03-15
      DOI: 10.1007/s11262-022-01894-9
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.65.228
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-