Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

SOCIAL WEB (61 journals)

Showing 1 - 58 of 58 Journals sorted alphabetically
ACM Transactions on Social Computing     Hybrid Journal  
ACM Transactions on the Web (TWEB)     Hybrid Journal   (Followers: 3)
American Journal of Information Systems     Open Access   (Followers: 4)
Asiascape : Digital Asia     Hybrid Journal   (Followers: 1)
CCF Transactions on Networking     Hybrid Journal  
Communications in Mobile Computing     Open Access   (Followers: 14)
Computational Social Networks     Open Access   (Followers: 4)
Cyberpolitik Journal     Open Access  
Cyberpsychology, Behavior, and Social Networking     Hybrid Journal   (Followers: 16)
Data Science     Open Access   (Followers: 6)
Digital Library Perspectives     Hybrid Journal   (Followers: 40)
Discover Internet of Things     Open Access   (Followers: 2)
Informação & Informação     Open Access   (Followers: 2)
Information Technology and Libraries     Open Access   (Followers: 312)
Infrastructure Complexity     Open Access   (Followers: 5)
International Journal of Art, Culture and Design Technologies     Full-text available via subscription   (Followers: 10)
International Journal of Bullying Prevention     Hybrid Journal   (Followers: 1)
International Journal of Digital Humanities     Hybrid Journal   (Followers: 3)
International Journal of e-Collaboration     Full-text available via subscription  
International Journal of E-Entrepreneurship and Innovation     Full-text available via subscription   (Followers: 6)
International Journal of Entertainment Technology and Management     Hybrid Journal   (Followers: 1)
International Journal of Information Privacy, Security and Integrity     Hybrid Journal   (Followers: 25)
International Journal of Information Technology and Web Engineering     Hybrid Journal   (Followers: 2)
International Journal of Interactive Communication Systems and Technologies     Full-text available via subscription   (Followers: 2)
International Journal of Interactive Mobile Technologies     Open Access   (Followers: 8)
International Journal of Internet and Distributed Systems     Open Access   (Followers: 2)
International Journal of Knowledge Society Research     Full-text available via subscription  
International Journal of Networking and Virtual Organisations     Hybrid Journal   (Followers: 11)
International Journal of Social and Humanistic Computing     Hybrid Journal  
International Journal of Social Computing and Cyber-Physical Systems     Hybrid Journal  
International Journal of Social Media and Interactive Learning Environments     Hybrid Journal   (Followers: 14)
International Journal of Social Network Mining     Hybrid Journal   (Followers: 3)
International Journal of Virtual Communities and Social Networking     Full-text available via subscription   (Followers: 1)
International Journal of Web Based Communities     Hybrid Journal  
International Journal of Web-Based Learning and Teaching Technologies     Hybrid Journal   (Followers: 20)
International Journal on Semantic Web and Information Systems     Hybrid Journal   (Followers: 4)
Internet Technology Letters     Hybrid Journal     Open Access   (Followers: 7)
Journal of Cyber Policy     Hybrid Journal   (Followers: 1)
Journal of Digital & Social Media Marketing     Full-text available via subscription   (Followers: 18)
Journal of Social Structure     Open Access   (Followers: 1)
Medicine 2.0     Open Access   (Followers: 2)
Observatorio (OBS*)     Open Access  
Online Social Networks and Media     Hybrid Journal   (Followers: 9)
Policy & Internet     Hybrid Journal   (Followers: 11)
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies     Hybrid Journal  
Redes. Revista Hispana para el Análisis de Redes Sociales     Open Access  
RESET     Open Access  
Scientific Phone Apps and Mobile Devices     Open Access  
Social Media + Society     Open Access   (Followers: 24)
Social Network Analysis and Mining     Hybrid Journal   (Followers: 4)
Social Networking     Open Access   (Followers: 3)
Social Networks     Hybrid Journal   (Followers: 20)
Social Science Computer Review     Hybrid Journal   (Followers: 13)
Synthesis Lectures on the Semantic Web: Theory and Technology     Full-text available via subscription  
Teknokultura. Revista de Cultura Digital y Movimientos Sociales     Open Access  
Terminal     Open Access  
Texto Digital     Open Access  
Similar Journals
Journal Cover
Computational Social Networks
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2197-4314
Published by SpringerOpen Homepage  [228 journals]
  • Modeling the transmission dynamics of racism propagation with community

    • Abstract: Abstract Racism spreading can have a vital influence on people’s lives, declining adherence, pretending political views, and recruiters’ socio-economical crisis. Besides, Web 2.0 technologies have democratized the creation and propagation of racist information, which facilitated the rapid spreading of racist messages. In this research work, the impact of community resilience on the spread dynamics of racism was assessed. To investigate the effect of resilience-building, new SERDC mathematical model was formulated and analyzed. The racism spread is under control where \(R_0<1\) , whereas persist in the community whenever \(R_0>1\) . Sensitivity analysis of the parameters value of the model are conducted. The rising of transmission and racial extremeness rate provides the prevalence of racism spread. Effective community resilience decline the damages, mitigate, and eradicate racism propagation. Theoretical analysis of the model are backed up by numerical results. Despite the evidence of numerical simulations, reducing the transmission and racial extremeness rate by improving social bonds and solidarity through community resilience could control the spread of racism.
      PubDate: 2021-11-06
  • Contextual polarity and influence mining in online social networks

    • Abstract: Abstract Crowdsourcing is an emerging tool for collaboration and innovation platforms. Recently, crowdsourcing platforms have become a vital tool for firms to generate new ideas, especially large firms such as Dell, Microsoft, and Starbucks, Crowdsourcing provides firms with multiple advantages, notably, rapid solutions, cost savings, and a variety of novel ideas that represent the diversity inherent within a crowd. The literature on crowdsourcing is limited to empirical evidence of the advantage of crowdsourcing for businesses as an innovation strategy. In this study, Starbucks’ crowdsourcing platform, Ideas Starbucks, is examined, with three objectives: first, to determine crowdsourcing participants’ perception of the company by crowdsourcing participants when generating ideas on the platform. The second objective is to map users into a community structure to identify those more likely to produce ideas; the most promising users are grouped into the communities more likely to generate the best ideas. The third is to study the relationship between the users’ ideas’ sentiment scores and the frequency of discussions among crowdsourcing users. The results indicate that sentiment and emotion scores can be used to visualize the social interaction narrative over time. They also suggest that the fast greedy algorithm is the one best suited for community structure with a modularity on agreeable ideas of 0.53 and 8 significant communities using sentiment scores as edge weights. For disagreeable ideas, the modularity is 0.47 with 8 significant communities without edge weights. There is also a statistically significant quadratic relationship between the sentiments scores and the number of conversations between users.
      PubDate: 2021-10-14
  • Fairness norm through social networks: a simulation approach

    • Abstract: Abstract Recently there has been an increased interest in adopting game-theoretic models to social norms. Most of these approaches are generally lacking a structure linking the local level of the ‘norm’ interaction to its global ‘social’ nature. Although numerous studies examined local-interaction games, where the emphasis is placed on neighborhood relations, regarding social network as a whole unique entity seems to be quite limited. In this paper, we conduct a series of simulation experiments to examine the effects that a network topology could have on the speed of emergence of the social norm. The emphasis is placed on the fairness norm in the ultimatum game context, by considering three network type models (Barabási–Albert, Watts–Strogatz and Erdős–Rényi) and several intrinsic topological properties.
      PubDate: 2021-10-09
  • A model for the co-evolution of dynamic social networks and infectious
           disease dynamics

    • Abstract: Abstract Recent research shows an increasing interest in the interplay of social networks and infectious diseases. Many studies either neglect explicit changes in health behavior or consider networks to be static, despite empirical evidence that people seek to distance themselves from diseases in social networks. We propose an adaptable steppingstone model that integrates theories of social network formation from sociology, risk perception from health psychology, and infectious diseases from epidemiology. We argue that networking behavior in the context of infectious diseases can be described as a trade-off between the benefits, efforts, and potential harm a connection creates. Agent-based simulations of a specific model case show that: (i) high (perceived) health risks create strong social distancing, thus resulting in low epidemic sizes; (ii) small changes in health behavior can be decisive for whether the outbreak of a disease turns into an epidemic or not; (iii) high benefits for social connections create more ties per agent, providing large numbers of potential transmission routes and opportunities for the disease to travel faster, and (iv) higher costs of maintaining ties with infected others reduce final size of epidemics only when benefits of indirect ties are relatively low. These findings suggest a complex interplay between social network, health behavior, and infectious disease dynamics. Furthermore, they contribute to solving the issue that neglect of explicit health behavior in models of disease spread may create mismatches between observed transmissibility and epidemic sizes of model predictions.
      PubDate: 2021-10-07
  • Understanding how retweets influence the behaviors of social networking
           service users via agent-based simulation

    • Abstract: Abstract The retweet is a characteristic mechanism of several social network services/social media, such as Facebook, Twitter, and Weibo. By retweeting tweet, users can share an article with their friends and followers. However, it is not clear how retweets affect the dominant behaviors of users. Therefore, this study investigates the impact of retweets on the behavior of social media users from the perspective of networked game theory, and how the existence of the retweet mechanism in social media promotes or reduces the willingness of users to post and comment on articles. To address these issues, we propose the retweet reward game model and quote tweet reward game model by adding the retweet and quote tweet mechanisms to a relatively simple social networking service model known as the reward game. Subsequently, we conduct simulation-based experiments to understand the influence of retweets on the user behavior on various networks. It is demonstrated that users will be more willing to post new articles with a retweet mechanism, and quote retweets are more beneficial to users, as users can expect to spread their information and their own comments on already posted articles.
      PubDate: 2021-09-13
  • A robust optimization model for influence maximization in social networks
           with heterogeneous nodes

    • Abstract: Abstract Influence maximization is the problem of trying to maximize the number of influenced nodes by selecting optimal seed nodes, given that influencing these nodes is costly. Due to the probabilistic nature of the problem, existing approaches deal with the concept of the expected number of nodes. In the current research, a scenario-based robust optimization approach is taken to finding the most influential nodes. The proposed robust optimization model maximizes the number of infected nodes in the last step of diffusion while minimizing the number of seed nodes. Nodes, however, are treated as heterogeneous with regard to their propensity to pass messages along; or as having varying activation thresholds. Experiments are performed on a real text-messaging social network. The model developed here significantly outperforms some of the well-known existing heuristic approaches which are proposed in previous works.
      PubDate: 2021-08-27
  • Celebrity profiling through linguistic analysis of digital social networks

    • Abstract: Abstract Digital social networks have become an essential source of information because celebrities use them to share their opinions, ideas, thoughts, and feelings. This makes digital social networks one of the preferred means for celebrities to promote themselves and attract new followers. This paper proposes a model of feature selection for the classification of celebrities profiles based on their use of a digital social network Twitter. The model includes the analysis of lexical, syntactic, symbolic, participation, and complementary information features of the posts of celebrities to estimate, based on these, their demographic and influence characteristics. The classification with these new features has an F1-score of 0.65 in Fame, 0.88 in Gender, 0.37 in Birth year, and 0.57 in Occupation. With these new features, the average accuracy improve up to 0.14 more. As a result, extracted features from linguistic cues improved the performance of predictive models of Fame and Gender and facilitate explanations of the model results. Particularly, the use of the third person singular was highly predictive in the model of Fame.
      PubDate: 2021-08-26
  • Link weights recovery in heterogeneous information networks

    • Abstract: Socio-technical systems usually consist of many intertwined networks, each connecting different types of objects or actors through a variety of means. As these networks are co-dependent, one can take advantage of this entangled structure to study interaction patterns in a particular network from the information provided by other related networks. A method is, hence, proposed and tested to recover the weights of missing or unobserved links in heterogeneous information networks (HIN)—abstract representations of systems composed of multiple types of entities and their relations. Given a pair of nodes in a HIN, this work aims at recovering the exact weight of the incident link to these two nodes, knowing some other links present in the HIN. To do so, probability distributions resulting from path-constrained random walks, i.e., random walks where the walker is forced to follow only a specific sequence of node types and edge types, capable to capture specific semantics and commonly called a meta-path, are combined in a linearly fashion to approximate the desired result. This method is general enough to compute the link weight between any types of nodes. Experiments on Twitter and bibliographic data show the applicability of the method.
      PubDate: 2021-03-23
  • Spheres of legislation: polarization and most influential nodes in
           behavioral context

    • Abstract: Abstract Game-theoretic models of influence in networks often assume the network structure to be static. In this paper, we allow the network structure to vary according to the underlying behavioral context. This leads to several interesting questions on two fronts. First, how do we identify different contexts and learn the corresponding network structures using real-world data' We focus on the U.S. Senate and apply unsupervised machine learning techniques, such as fuzzy clustering algorithms and generative models, to identify spheres of legislation as context and learn an influence network for each sphere. Second, how do we analyze these networks to gain an insight into the role played by the spheres of legislation in various interesting constructs like polarization and most influential nodes' To this end, we apply both game-theoretic and social network analysis techniques. In particular, we show that game-theoretic notion of most influential nodes brings out the strategic aspects of interactions like bipartisan grouping, which structural centrality measures fail to capture.
      PubDate: 2021-03-21
  • Modelling community structure and temporal spreading on complex networks

    • Abstract: Abstract We present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.
      PubDate: 2021-03-18
  • Utilizing the simple graph convolutional neural network as a model for
           simulating influence spread in networks

    • Abstract: Abstract The ability for people and organizations to connect in the digital age has allowed the growth of networks that cover an increasing proportion of human interactions. The research community investigating networks asks a range of questions such as which participants are most central, and which community label to apply to each member. This paper deals with the question on how to label nodes based on the features (attributes) they contain, and then how to model the changes in the label assignments based on the influence they produce and receive in their networked neighborhood. The methodological approach applies the simple graph convolutional neural network in a novel setting. Primarily that it can be used not only for label classification, but also for modeling the spread of the influence of nodes in the neighborhoods based on the length of the walks considered. This is done by noticing a common feature in the formulations in methods that describe information diffusion which rely upon adjacency matrix powers and that of graph neural networks. Examples are provided to demonstrate the ability for this model to aggregate feature information from nodes based on a parameter regulating the range of node influence which can simulate a process of exchanges in a manner which bypasses computationally intensive stochastic simulations.
      PubDate: 2021-03-17
  • Modeling and analyzing users’ behavioral strategies with
           co-evolutionary process

    • Abstract: Abstract Social networking services (SNSs) are constantly used by a large number of people with various motivations and intentions depending on their social relationships and purposes, and thus, resulting in diverse strategies of posting/consuming content on SNSs. Therefore, it is important to understand the differences of the individual strategies depending on their network locations and surroundings. For this purpose, by using a game-theoretical model of users called agents and proposing a co-evolutionary algorithm called multiple-world genetic algorithm to evolve diverse strategy for each user, we investigated the differences in individual strategies and compared the results in artificial networks and those of the Facebook ego network. From our experiments, we found that agents did not select the free rider strategy, which means that just reading the articles and comments posted by other users, in the Facebook network, although this strategy is usually cost-effective and usually appeared in the artificial networks. We also found that the agents who mainly comment on posted articles/comments and rarely post their own articles appear in the Facebook network but do not appear in the connecting nearest-neighbor networks, although we think that this kind of user actually exists in real-world SNSs. Our experimental simulation also revealed that the number of friends was a crucial factor to identify users’ strategies on SNSs through the analysis of the impact of the differences in the reward for a comment on various ego networks.
      PubDate: 2021-03-10
  • Network analysis of internal migration in Croatia

    • Abstract: Abstract Migration, and urbanization as its consequence, is among the most intricate political and scientific topics, predicted to have huge effects on human lives in the near future. Thus being said, previous works have mainly focused on international migration, and the research on internal migration outside of the US is scarce, and in the case of Europe—the ubiquitous center of migration affairs—only in its infancy. Observing migration between settlements, especially using network analysis indicators and models, can help to explain and predict migration, as well as urbanization originating from internal migration. We therefore conducted a network analysis of internal migration in Croatia, providing insights into the size of internal migration in population, and relative sizes between intra-settlement migration, inter-settlement migration and population. Through centrality analysis, we provide insights into hierarchy of importance, especially, in terms of the overall flow and overall attractiveness of particular settlements in the network. The analysis of the network structure reveals high presence of reciprocity and thus the importance of internal migration to urbanization, as well as the systematic abandonment of large cities in the east of the country. The application of three different community detection algorithms provides insights for the policy domain in terms of the compatibility of the current country administrative subdivision schemes and the subdivision implied by migration patterns. For network scholars, the analysis at hand reveals the status quo in applied network analysis to migration, the works published, the measures used, and potential metrics outside those applied which may be used to better explain and predict the intricate phenomenon of human migration.
      PubDate: 2021-03-04
  • Influence maximization in social media networks concerning dynamic user
           behaviors via reinforcement learning

    • Abstract: Abstract This study examines the influence maximization (IM) problem via information cascades within random graphs, the topology of which dynamically changes due to the uncertainty of user behavior. This study leverages the discrete choice model (DCM) to calculate the probabilities of the existence of the directed arc between any two nodes. In this IM problem, the DCM provides a good description and prediction of user behavior in terms of following or not following a neighboring user. To find the maximal influence at the end of a finite-time horizon, this study models the IM problem by using multistage stochastic programming, which can help a decision-maker to select the optimal seed nodes by which to broadcast messages efficiently. Since computational complexity grows exponentially with network size and time horizon, the original model is not solvable within a reasonable time. This study then uses two different approaches by which to approximate the optimal decision: myopic two-stage stochastic programming and reinforcement learning via the Markov decision process. Computational experiments show that the reinforcement learning method outperforms the myopic two-stage stochastic programming method.
      PubDate: 2021-02-22
  • The structure of co-publications multilayer network

    • Abstract: Abstract Using the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.
      PubDate: 2021-02-09
  • Influence network design via multi-level optimization considering
           boundedly rational user behaviours in social media networks

    • Abstract: Abstract Social media networks have been playing an increasingly more important role for both socialization and information diffusion. Political campaign can gain more supporters by attracting more mass attention and influencing them directly, while commercial campaigns can increase their companies’ profits by expanding social media connection with new users. To build the optimal network structure to influence the whole, this paper studies mathematical models to simulate the users’ behaviours interacting with others in the information provider’s network. The behaviours of concerns include information re-posting and following/unfollowing other users. Linear threshold propagation model is used to determine the re-posting actions, Boundedly Rational User Equilibrium (BRUE) models are used to determine the following or unfollowing actions. Hence, the topology of the network changes and depends on the information provider’s plan to post various kinds of information. A three-level optimization model is proposed to maximize total number of connections, the goal of the top level. The second level simulates user behaviours under BRUE. The third level maximizes the each user’s utility defined in the second level. This paper solves this problem using exact algorithms for a small-scale synthetic network. For a large-scale problem, this paper uses heuristic algorithms based on large neighbourhood search. This paper also discusses possible reasons why the BRUE model may be a more accurate simulation of users’ actions compared to game theory. Comparisons from the BRUE model to game theoretical model show that the BRUE model performs significantly better than game theoretical model.
      PubDate: 2021-02-08
  • Discovering the maximum k-clique on social networks using bat optimization

    • Abstract: Abstract The k-clique problem is identifying the largest complete subgraph of size k on a network, and it has many applications in Social Network Analysis (SNA), coding theory, geometry, etc. Due to the NP-Complete nature of the problem, the meta-heuristic approaches have raised the interest of the researchers and some algorithms are developed. In this paper, a new algorithm based on the Bat optimization approach is developed for finding the maximum k-clique on a social network to increase the convergence speed and evaluation criteria such as Precision, Recall, and F1-score. The proposed algorithm is simulated in Matlab® software over Dolphin social network and DIMACS dataset for k = 3, 4, 5. The computational results show that the convergence speed on the former dataset is increased in comparison with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) approaches. Besides, the evaluation criteria are also modified on the latter dataset and the F1-score is obtained as 100% for k = 5.
      PubDate: 2021-02-02
  • Gumbel-softmax-based optimization: a simple general framework for
           optimization problems on graphs

    • Abstract: Abstract In computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure, such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve, because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA), and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on four representative optimization problems on graph including modularity optimization from network science, Sherrington–Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph, and Influence Maximization problem from computational social science. High-quality solutions can be obtained with much less time-consuming compared to the traditional approaches.
      PubDate: 2021-02-01
  • Understanding social media beyond text: a reliable practice on Twitter

    • Abstract: Abstract Social media provides high-volume and real-time data, which has been broadly used in diverse applications in sales, marketing, disaster management, health surveillance, etc. However, distinguishing between noises and reliable information can be challenging, since social media, a user-generated content system, has a great number of users who update massive information every second. The rich information is not only included in the short textual content but also embedded in the images and videos. In this paper, we introduce an effective and efficient framework for event detection with social media data. The framework integrates both textual and imagery content in the hope to fully utilize the information. The approach has been demonstrated to be more accurate than the text-only approach by removing 58 (66.7%) false-positive events. The precision of event detection is improved by 6.5%. Besides, based on our analysis, we also look into the content of these images to further explore the space of social media studies. Finally, the closely related text and image from social media offer us a valuable text-image mapping, which can enable knowledge transfer between two media types.
      PubDate: 2021-01-30
  • A hybrid metaheuristic for solving asymmetric distance-constrained vehicle
           routing problem

    • Abstract: Abstract The Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is NP-hard as it is a natural extension of the NP-hard Vehicle Routing Problem. In ADVRP problem, each customer is visited exactly once by a vehicle; every tour starts and ends at a depot; and the traveled distance by each vehicle is not allowed to exceed a predetermined limit. We propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions. Extensive numerical experiments and comparisons with all the state-of-the-art algorithms show that the proposed method is highly competitive in terms of solution quality and computation time, providing new best solutions for a number of instances.
      PubDate: 2021-01-22
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-