Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Mikael Sabuhi, Nima Mahmoudi, Hamzeh Khazaei
Control theory has proven to be a practical approach for the design and implementation of controllers, which does not inherit the problems of non-control theoretic controllers due to its strong mathematical background. State-of-the-art auto-scaling controllers suffer from one or more of the following limitations: (1) lack of a reliable performance model, (2) using a performance model with low scalability, tractability, or fidelity, (3) being application- or architecture-specific leading to low extendability, and (4) no guarantee on their efficiency. Consequently, in this article, we strive to mitigate these problems by leveraging an adaptive controller, which is composed of a neural network as the performance model and a Proportional-Integral-Derivative (PID) controller as the scaling engine. PubDate: Wed, 18 Aug 2021 00:00:00 GMT
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Omid Gheibi, Danny Weyns, Federico Quin
Recently, we have been witnessing a rapid increase in the use of machine learning techniques in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analyzing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such an overview is important for researchers to understand the state of the art and direct future research efforts. This article reports the results of a systematic literature review that aims at providing such an overview. PubDate: Wed, 18 Aug 2021 00:00:00 GMT
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Jose Barambones, Florian Richoux, Ricardo Imbert, Katsumi Inoue
Team formation (TF) faces the problem of defining teams of agents able to accomplish a set of tasks. Resilience on TF problems aims to provide robustness and adaptability to unforeseen events involving agent deletion. However, agents are unaware of the inherent social welfare in these teams. This article tackles the problem of how teams can minimise their effort in terms of organisation and communication considering these dynamics. Our main contribution is twofold: first, we introduce the Stabilisable Team Formation (STF) as a generalisation of current resilient TF model, where a team is stabilisable if it possesses and preserves its inter-agent organisation from a graph-based perspective. PubDate: Tue, 13 Jul 2021 00:00:00 GMT