Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

AUTOMATION AND ROBOTICS (116 journals)                     

Showing 1 - 103 of 103 Journals sorted alphabetically
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 10)
ACM Transactions on Human-Robot Interaction     Open Access   (Followers: 4)
Advanced Robotics     Hybrid Journal   (Followers: 29)
Advances in Computed Tomography     Open Access   (Followers: 2)
Advances in Image and Video Processing     Open Access   (Followers: 28)
Advances in Robotics & Automation     Open Access   (Followers: 12)
Artificial Life and Robotics     Hybrid Journal   (Followers: 17)
Augmented Human Research     Hybrid Journal  
Automated Software Engineering     Hybrid Journal   (Followers: 9)
Automatic Control and Information Sciences     Open Access   (Followers: 4)
Automation and Remote Control     Hybrid Journal   (Followers: 6)
Autonomous Agents and Multi-Agent Systems     Hybrid Journal   (Followers: 9)
Autonomous Robots     Hybrid Journal   (Followers: 11)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomimetic Intelligence and Robotics     Open Access  
Cognitive Robotics     Open Access   (Followers: 4)
Computational Intelligence and Neuroscience     Open Access   (Followers: 18)
Computer-Aided Design     Hybrid Journal   (Followers: 9)
Construction Robotics     Hybrid Journal   (Followers: 5)
Current Robotics Reports     Hybrid Journal   (Followers: 4)
Cybernetics & Human Knowing     Full-text available via subscription   (Followers: 3)
Cybernetics and Systems Analysis     Hybrid Journal  
Cybernetics and Systems: An International Journal     Hybrid Journal   (Followers: 1)
Design Automation for Embedded Systems     Hybrid Journal   (Followers: 4)
Digital Zone : Jurnal Teknologi Informasi Dan Komunikasi     Open Access  
Drone Systems and Applications     Open Access   (Followers: 1)
Electrical Engineering and Automation     Open Access   (Followers: 9)
Facta Universitatis, Series : Automatic Control and Robotics     Open Access   (Followers: 1)
Foundations and Trends® in Robotics     Full-text available via subscription   (Followers: 4)
GIScience & Remote Sensing     Open Access   (Followers: 58)
IAES International Journal of Robotics and Automation     Open Access   (Followers: 5)
IEEE Robotics & Automation Magazine     Full-text available via subscription   (Followers: 69)
IEEE Robotics and Automation Letters     Hybrid Journal   (Followers: 9)
IEEE Transactions on Affective Computing     Hybrid Journal   (Followers: 23)
IEEE Transactions on Audio, Speech, and Language Processing     Hybrid Journal   (Followers: 17)
IEEE Transactions on Automatic Control     Hybrid Journal   (Followers: 70)
IEEE Transactions on Cybernetics     Hybrid Journal   (Followers: 16)
IEEE Transactions on Intelligent Vehicles     Hybrid Journal   (Followers: 2)
IEEE Transactions on Medical Robotics and Bionics     Hybrid Journal   (Followers: 5)
IEEE Transactions on Neural Networks and Learning Systems     Hybrid Journal   (Followers: 57)
IEEE Transactions on Robotics     Hybrid Journal   (Followers: 71)
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews     Hybrid Journal   (Followers: 16)
IET Cyber-systems and Robotics     Open Access   (Followers: 2)
IET Systems Biology     Open Access   (Followers: 1)
Industrial Robot An International Journal     Hybrid Journal   (Followers: 2)
Intelligent Control and Automation     Open Access   (Followers: 6)
Intelligent Service Robotics     Hybrid Journal   (Followers: 2)
International Journal of Adaptive, Resilient and Autonomic Systems     Full-text available via subscription   (Followers: 3)
International Journal of Advanced Pervasive and Ubiquitous Computing     Full-text available via subscription   (Followers: 4)
International Journal of Advanced Robotic Systems     Full-text available via subscription   (Followers: 1)
International Journal of Agent Technologies and Systems     Full-text available via subscription   (Followers: 4)
International Journal of Ambient Computing and Intelligence     Full-text available via subscription   (Followers: 3)
International Journal of Applied Evolutionary Computation     Full-text available via subscription   (Followers: 3)
International Journal of Artificial Life Research     Full-text available via subscription  
International Journal of Automation and Control     Hybrid Journal   (Followers: 11)
International Journal of Automation and Control Engineering     Open Access   (Followers: 5)
International Journal of Automation and Logistics     Hybrid Journal   (Followers: 4)
International Journal of Automation and Smart Technology     Open Access   (Followers: 3)
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 14)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 2)
International Journal of Humanoid Robotics     Hybrid Journal   (Followers: 6)
International Journal of Imaging & Robotics     Full-text available via subscription   (Followers: 3)
International Journal of Intelligent Information Technologies     Full-text available via subscription   (Followers: 1)
International Journal of Intelligent Machines and Robotics     Hybrid Journal   (Followers: 3)
International Journal of Intelligent Mechatronics and Robotics     Full-text available via subscription   (Followers: 5)
International Journal of Intelligent Robotics and Applications     Hybrid Journal  
International Journal of Intelligent Systems Design and Computing     Hybrid Journal   (Followers: 2)
International Journal of Intelligent Unmanned Systems     Hybrid Journal   (Followers: 3)
International Journal of Machine Consciousness     Hybrid Journal   (Followers: 7)
International Journal of Machine Learning and Cybernetics     Hybrid Journal   (Followers: 31)
International Journal of Mechanisms and Robotic Systems     Hybrid Journal   (Followers: 2)
International Journal of Mechatronics and Automation     Hybrid Journal   (Followers: 5)
International Journal of Robotics and Automation     Full-text available via subscription   (Followers: 8)
International Journal of Robotics and Control     Open Access   (Followers: 3)
International Journal of Robotics Applications and Technologies     Full-text available via subscription   (Followers: 1)
International Journal of Robotics Research     Hybrid Journal   (Followers: 15)
International Journal of Space-Based and Situated Computing     Hybrid Journal   (Followers: 2)
International Journal of Synthetic Emotions     Full-text available via subscription  
International Journal of Tomography & Simulation     Full-text available via subscription   (Followers: 1)
Journal of Automation and Control     Open Access   (Followers: 9)
Journal of Biomechanical Engineering     Full-text available via subscription   (Followers: 12)
Journal of Computer Assisted Tomography     Hybrid Journal   (Followers: 2)
Journal of Control & Instrumentation     Full-text available via subscription   (Followers: 19)
Journal of Control, Automation and Electrical Systems     Hybrid Journal   (Followers: 11)
Journal of Intelligent and Robotic Systems     Hybrid Journal   (Followers: 6)
Journal of Intelligent Learning Systems and Applications     Open Access   (Followers: 4)
Journal of Robotic Surgery     Hybrid Journal   (Followers: 3)
Jurnal Otomasi Kontrol dan Instrumentasi     Open Access  
Machine Translation     Hybrid Journal   (Followers: 12)
Proceedings of the ACM on Human-Computer Interaction     Hybrid Journal   (Followers: 2)
Results in Control and Optimization     Open Access   (Followers: 5)
Revista Iberoamericana de Automática e Informática Industrial RIAI     Open Access  
ROBOMECH Journal     Open Access   (Followers: 1)
Robotic Surgery : Research and Reviews     Open Access   (Followers: 1)
Robotica     Hybrid Journal   (Followers: 5)
Robotics and Autonomous Systems     Hybrid Journal   (Followers: 19)
Robotics and Biomimetics     Open Access   (Followers: 1)
Robotics and Computer-Integrated Manufacturing     Hybrid Journal   (Followers: 7)
Science Robotics     Full-text available via subscription   (Followers: 11)
Soft Robotics     Hybrid Journal   (Followers: 5)
Unmanned Systems     Hybrid Journal   (Followers: 4)
Wearable Technologies     Open Access   (Followers: 4)

           

Similar Journals
Journal Cover
Robotica
Journal Prestige (SJR): 0.375
Citation Impact (citeScore): 1
Number of Followers: 5  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0263-5747 - ISSN (Online) 1469-8668
Published by Cambridge University Press Homepage  [353 journals]
  • ROB volume 42 issue 5 Cover and Front matter

    • Free pre-print version: Loading...

      Pages: 1 - 2
      PubDate: 2024-04-30
      DOI: 10.1017/S0263574724000705
       
  • ROB volume 42 issue 5 Cover and Back matter

    • Free pre-print version: Loading...

      Pages: 1 - 2
      PubDate: 2024-04-30
      DOI: 10.1017/S0263574724000717
       
  • Insights into the deployment of a social robot-augmented telepresence
           robot in an elder care clinic – perspectives from patients and
           therapists: a pilot study

    • Free pre-print version: Loading...

      Authors: Sobrepera; Michael J., Nguyen, Anh T., Gavin, Emily S., Johnson, Michelle J.
      Pages: 1321 - 1349
      Abstract: As the proportion of the elderly population in the USA expands, so will the demand for rehabilitation and social care, which play an important role in maintaining function and mediating motor and cognitive decline in older adults. The use of social robotics and telemedicine are each potential solutions but each have limitations. To address challenges with classical telemedicine for rehabilitation, we propose to use a social robot-augmented telepresence (SRAT), Flo, which was deployed for long-term use in a community-based rehabilitation facility catering to older adults. Our goals were to explore how clinicians and patients would use and respond to the robot during rehab interactions. In this pilot study, three clinicians were recruited and asked to rate usability after receiving training for operating the robot and two of them conducted multiple rehab interactions with their patients using the robot (eleven patients with cognitive impairment and/or motor impairment and 23 rehab sessions delivered via SRAT in total). We report on the experience of both therapists and patients after the interactions.
      PubDate: 2024-03-14
      DOI: 10.1017/S026357472400002X
       
  • Collision-free path planning for cable-driven continuum robot based on
           improved artificial potential field

    • Free pre-print version: Loading...

      Authors: Ding; Meng, Zheng, Xianjie, Liu, Liaoxue, Guo, Jian, Guo, Yu
      Pages: 1350 - 1367
      Abstract: Continuum robot has become a research hotspot due to its excellent dexterity, flexibility and applicability to constrained environments. However, the effective, secure and accurate path planning for the continuum robot remains a challenging issue, for that it is difficult to choose a suitable inverse kinematics solution due to its redundancy in the confined environment. This paper presents a collision-free path planning method based on the improved artificial potential field (APF) for the cable-driven continuum robot, in which the beetle antennae search algorithm is adopted to deal with the optimal problem of APF without the necessary for velocity kinematics. In addition, the local optimum problem of traditional APF is solved by the randomness of the antennae’s direction vector which can make the algorithm easily jump out of local minima. The simulation and experimental results verify the efficiency of the proposed path planning method.
      PubDate: 2024-03-05
      DOI: 10.1017/S026357472400016X
       
  • Wireless vision-based digital media fixed-point DSP processor depending
           robots for natural calamities

    • Free pre-print version: Loading...

      Authors: Mary Joans; S., Gomathi, N., Ponsudha, P.
      Pages: 1368 - 1385
      Abstract: Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.
      PubDate: 2024-03-15
      DOI: 10.1017/S0263574724000225
       
  • An experimental evaluation of robot-stopping approaches for improving
           fluency in collaborative robotics

    • Free pre-print version: Loading...

      Authors: Scalera; Lorenzo, Lozer, Federico, Giusti, Andrea, Gasparetto, Alessandro
      Pages: 1386 - 1402
      Abstract: This paper explores and experimentally compares the effectiveness of robot-stopping approaches based on the speed and separation monitoring for improving fluency in collaborative robotics. In the compared approaches, a supervisory controller checks the distance between the bounding volumes enclosing human operator and robot and prevents potential collisions by determining the robot’s stop time and triggering a stop trajectory if necessary. The methods are tested on a Franka Emika robot with 7 degrees of freedom, involving 27 volunteer participants, who are asked to walk along assigned paths to cyclically intrude the robot workspace, while the manipulator is working. The experimental results show that scaling online the dynamic safety zones is beneficial for improving fluency of human-robot collaboration, showing significant statistical differences with respect to alternative approaches.
      PubDate: 2024-03-15
      DOI: 10.1017/S0263574724000262
       
  • Heavy-duty hexapod robot sideline tipping judgment and recovery

    • Free pre-print version: Loading...

      Authors: Zhang; Lianzhao, Zha, Fusheng, Guo, Wei, Chen, Chen, Sun, Lining, Wang, Pengfei
      Pages: 1403 - 1419
      Abstract: Heavy-duty hexapod robots are well-suited for physical transportation, disaster relief, and resource exploration. The immense locomotion capabilities conferred by the six appendages of these systems enable traversal over unstructured and challenging terrain. However, tipping can be a serious concern when moving with a tripod gait in these challenging environments, which may cause irreversible consequences such as compromised movement control and potential damage. In this paper, we focus on heavy-duty hexapod robot sideline tipping judgment and recovery during tripod gait motion, and a novel sideline tipping judgment and recovery method is proposed by adjusting an optimal swinging leg to the stance state. Considering the locomotion environments, motion mode, and tipping analysis, the robot’s stability margin is quantified, and the tipping event is evaluated by the Force Angle Stability Measure (FASM). The recovery method is initiated upon detecting that the robot is tipping, which involves the selection of an adjustment leg and the determination of an optimal foothold. Since the FASM is based on the foot force and robot center of gravity (CoG), the stability margin quantification expression is reformulated to the constraint form of quadratic programming (QP). Furthermore, a foot force distribution method, integrating stability margin considerations into the QP model, has been devised to ensure post-adjustment stability of the landing leg. Experiments on tipping judgment and recovery demonstrate the effectiveness of the proposed approaches on tipping judgment and recovery.
      PubDate: 2024-03-15
      DOI: 10.1017/S0263574724000274
       
  • A novel tactile sensor with multimodal vision and tactile units for
           multifunctional robot interaction

    • Free pre-print version: Loading...

      Authors: Xiong; Pengwen, Huang, Yuxuan, Yin, Yifan, Zhang, Yu, Song, Aiguo
      Pages: 1420 - 1435
      Abstract: Robots with multi-sensors always have a problem of weak pairing among different modals of the collected information produced by multi-sensors, which leads to a bad perception performance during robot interaction. To solve this problem, this paper proposes a Force Vision Sight (FVSight) sensor, which utilizes a distributed flexible tactile sensing array integrated with a vision unit. This innovative approach aims to enhance the overall perceptual capabilities for object recognition. The core idea is using one perceptual layer to trigger both tactile images and force-tactile arrays. It allows the two heterogeneous tactile modal information to be consistent in the temporal and spatial dimensions, thus solving the problem of weak pairing between visual and tactile data. Two experiments are specially designed, namely object classification and slip detection. A dataset containing 27 objects with deep presses and shallow presses is collected for classification, and then 20 slip experiments on three objects are conducted. The determination of slip and stationary state is accurately obtained by covariance operation on the tactile data. The experimental results show the reliability of generated multimodal data and the effectiveness of our proposed FVSight sensor.
      PubDate: 2024-03-05
      DOI: 10.1017/S0263574724000286
       
  • Force analysis of a soft-rigid hybrid pneumatic actuator and its
           application in a bipedal inchworm robot

    • Free pre-print version: Loading...

      Authors: Jiang; Zhujin, Zhang, Ketao
      Pages: 1436 - 1452
      Abstract: This paper systematically investigates a soft-rigid hybrid pneumatic actuator (SRHPA), which consists of a rigid-foldable twisting skeleton capable of a large range of helical motion and a soft bellows muscle with high linear driving force. Considering the unique varying-pitch helical motion of the foldable skeleton, the analytical model mapping the input force generated by the bellows muscle and output forces of the actuator is revealed and verified with a simulation of the force analysis. Prototypes of the actuator are developed by fabricating the twisting skeleton with multilayered aluminum composite panels and 3D-printing the bellows muscle with thermoplastic polyurethane (TPU) 95A filament. The static and dynamic performances of the prototypes are tested to validate the analytical modeling of output forces. Using the actuator as a module, a novel bipedal inchworm robot with four modules is developed and tested to demonstrate its adaptability in confined space by switching between the going-straight, the turning-around, and the rotating gaits. The hybrid actuator and the inchworm robot with zero onboard electronics have the potential to be deployed in extreme environments where pneumatically actuated systems are preferred over electrical machines and drives, such as in nuclear and explosive environments.
      PubDate: 2024-03-07
      DOI: 10.1017/S0263574724000298
       
  • Research and experiment on active training of lower limb based on five-bar
           mechanism of man-machine integration system

    • Free pre-print version: Loading...

      Authors: Sun; Jianghong, Hu, Fuqing, Gao, Keke, Gao, Feng, Ma, Chao, Wang, Junjian
      Pages: 1453 - 1475
      Abstract: In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.
      PubDate: 2024-03-14
      DOI: 10.1017/S0263574724000304
       
  • Adaptive fractional-order integral fast terminal sliding mode and
           fault-tolerant control of dual-arm robots

    • Free pre-print version: Loading...

      Authors: Tuan; Le Anh, Ha, Quang Phuc
      Pages: 1476 - 1499
      Abstract: Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).
      PubDate: 2024-03-07
      DOI: 10.1017/S0263574724000328
       
  • An improved iterative approach with a comprehensive friction model for
           identifying dynamic parameters of collaborative robots

    • Free pre-print version: Loading...

      Authors: Li; Zeyu, Wei, Hongxing, Liu, Chengguo, He, Ye, Liu, Gang, Zhang, Haochen, Li, Weiming
      Pages: 1500 - 1522
      Abstract: Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.
      PubDate: 2024-03-20
      DOI: 10.1017/S0263574724000341
       
  • Structure design and kinematic performance of the deployable translational
           parallel tape-spring manipulator

    • Free pre-print version: Loading...

      Authors: Liu; Hu, Qin, Yawen, Yang, Yi
      Pages: 1523 - 1548
      Abstract: A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double C-shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component (CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom (DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the 2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments are conducted to validate the proposed design and analysis.
      PubDate: 2024-03-22
      DOI: 10.1017/S0263574724000353
       
  • Inverse dynamics analysis of a 6-RR-RP-RR parallel manipulator with offset
           universal joints

    • Free pre-print version: Loading...

      Authors: Huang; Huze, Han, Hasiaoqier, Li, Dawei, Xu, Zhenbang, Wu, Qingwen
      Pages: 1549 - 1567
      Abstract: This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.
      PubDate: 2024-03-26
      DOI: 10.1017/S0263574724000365
       
  • Adaptive backstepping controller based on a novel framework for dynamic
           solution of an ankle rehabilitation spherical parallel robot

    • Free pre-print version: Loading...

      Authors: Ahmadi N; Ali, Kamali Eigoli, Ali, Taghvaeipour, Afshin
      Pages: 1568 - 1596
      Abstract: This research offers an adaptive model-based methodology for autonomous control of 3-RRR spherical parallel manipulator (RSPM) based on a novel modeling framework. RSPM is an overconstrained parallel mechanism that has a variety of applications in medical procedures such as ankle rehabilitation because of its precision and accuracy. However, obtaining a complete explicit dynamic model of these mechanisms for tracking purposes has been a problematic challenge due to their inherent singularities, coupling effects of the limbs, and redundant constraints imposed by the intermediate joints. This paper presents a novel algorithm to obtain the analytical kinematic solutions of RSPMs based on the closed-loop vector method, which includes constraint analysis. By incorporating constrained kinematics into the dynamic model, a comprehensive explicit dynamic solution of the non-overconstrained version 3-RCC of RSPM is developed in task space, based on screw theory and the linear homogeneous property of algebraic equations on the manipulator twist. Based on the proposed computational framework, a robust self-tuning backstepping control (STBC) strategy is applied to the robot to overcome the effect of external disturbances and time-varying uncertainties. Furthermore, an observer-based compensation (OBC) method is presented for dealing with the nonlinear hysteresis loops of the ankle during trajectory tracking purposes. The closed-loop stability of the whole system including STBC and OBC is theoretically performed by Lyapunov methods. The proposed methodologies are validated by realistic co-simulations in different scenarios. For instant, in the presence of external disturbances, the maximum tracking error norm of STBC is 37.5% less than the sliding mode approach.
      PubDate: 2024-04-12
      DOI: 10.1017/S0263574724000390
       
  • A trocar puncture robot for assisting venipuncture blood collection

    • Free pre-print version: Loading...

      Authors: Yang; Zhikang, Wen, Shikun, Qi, Qian, Lv, Zhuhai, Ji, Aihong
      Pages: 1597 - 1613
      Abstract: The venous blood test is a prevalent auxiliary medical diagnostic method. Venous blood collection equipment can improve blood collection’s success rate and stability, reduce the workload of medical staff, and improve the efficiency of diagnosis and treatment. This study proposed a rigid-flexible composite puncture (RFCP) strategy, based on which a small 7-degree-of-freedom (DOF) auxiliary venipuncture blood collection (VPBC) robot using a trocar needle was designed. The robot consists of a position and orientation adjustment mechanism and a RFCP end-effector, which can perform RFCP to avoid piercing the blood vessel’s lower wall during puncture. The inverse kinematics solution and validation of the robot were analyzed based on the differential evolution algorithm, after which the quintic polynomial interpolation algorithm was applied to achieve the robot trajectory planning control. Finally, the VPBC robot prototype was developed for experiments. The trajectory planning experiment verified the correctness of the inverse kinematics solution and trajectory planning, and the composite puncture blood collection experiment verified the feasibility of the RFCP strategy.
      PubDate: 2024-03-27
      DOI: 10.1017/S0263574724000407
       
  • Micro-hexapod robot with an origami-like SU-8-coated rigid frame

    • Free pre-print version: Loading...

      Authors: Sugimoto; Kenjiro, Nagasawa, Sumito
      Pages: 1614 - 1627
      Abstract: In recent years, many microrobots have been developed for search applications using swarms in places where humans cannot enter, such as disaster sites. Hexapod robots are suitable for moving over uneven terrain. In order to use micro-hexapod robots for swarm exploration, it is necessary to reduce the robot’s size while maintaining its rigidity. Herein, we propose a micro-hexapod with an SU-8 rigid frame that can be assembled from a single sheet. By applying the SU-8 coating as a structure to the hexapod and increasing the rigidity, the substrate size can be reduced to within 40 mm × 40 mm and the total length when assembled to approximately 30 mm. This enables the integration of the micro electromechanical systems (MEMS) process into small and inexpensive hexapod robots. In this study, we assembled the hexapod with a rigid frame from a sheet created using the MEMS process and evaluated the leg motion.
      PubDate: 2024-04-02
      DOI: 10.1017/S0263574724000419
       
  • Symbolic position analysis for three 6-DOF parallel mechanisms and new
           insight

    • Free pre-print version: Loading...

      Authors: Du; Zhongqiu, Li, Ju, Meng, Qingmei, Ye, Pengda, Shen, Huiping
      Pages: 1628 - 1648
      Abstract: The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.
      PubDate: 2024-03-27
      DOI: 10.1017/S0263574724000432
       
  • Performance evaluation and dimensional optimization design of planar 6R
           redundant actuation parallel mechanism

    • Free pre-print version: Loading...

      Authors: Han; Ming, Che, Jiajin, Liu, Jinyue, Yang, Dong
      Pages: 1649 - 1675
      Abstract: Aiming at the problems of small good workspace, many singular configurations, and limited carrying capacity of non-redundant parallel mechanisms, a full-redundant drive parallel mechanism is designed and developed, and its performance evaluation, good workspace identification, and scale optimization design are studied. First, the kinematics analysis of the planar 6R parallel mechanism is completed. Then, the motion/force transmission performance evaluation index of the mechanism is established, and the singularity analysis of the mechanism is completed. Based on this, the fully redundant driving mode of the mechanism is determined, and the good transmission workspace of the mechanism in this mode is identified. Then, the mapping relationship between the performance and scale of the mechanism is established by using the space model theory, and the scale optimization of the mechanism is completed. Finally, the robot prototype is made according to the optimal scale, and the performance verification is carried out based on the research of dynamics and control strategy. The results show that the fully redundant actuation parallel mechanism obtained by design optimization has high precision and large bearing capacity. The position repeatability and position accuracy are 0.053 mm and 0.635 mm, respectively, and the load weight ratio can reach 15.83%. The research results of this paper complement and improve the performance evaluation and scale optimization system of redundantly actuated parallel mechanisms.
      PubDate: 2024-03-27
      DOI: 10.1017/S0263574724000456
       
  • A modular computational framework for the dynamic analyses of cable-driven
           parallel robots with different types of actuation including the effects of
           inertia, elasticity and damping of cables

    • Free pre-print version: Loading...

      Authors: Mamidi; Teja Krishna, Bandyopadhyay, Sandipan
      Pages: 1676 - 1708
      Abstract: Dynamic simulations of the cable-driven parallel robots (CDPRs) with cable models closer to reality can predict the motions of moving platforms more accurately than those with idealisations. Hence, the present work proposes an efficient and modular computational framework for this purpose. The primary focus is on the developments required in the context of CDPRs actuated by moving the exit points of cables while the lengths are held constant. Subsequently, the framework is extended to those cases where simultaneous changes in the lengths of cables are employed. Also, the effects due to the inertia, stiffness and damping properties of the cables undergoing 3D motions are included in their dynamic models. The efficient recursive forward dynamics algorithms from the prior works are utilised to minimise the computational effort. Finally, the efficacy of the proposed framework and the need for such an inclusive dynamic model are illustrated by applying it to different application scenarios using the spatial - CDPR as an example.
      PubDate: 2024-04-11
      DOI: 10.1017/S026357472400047X
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 98.80.143.34
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 
  Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

AUTOMATION AND ROBOTICS (116 journals)                     

Showing 1 - 103 of 103 Journals sorted alphabetically
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 10)
ACM Transactions on Human-Robot Interaction     Open Access   (Followers: 4)
Advanced Robotics     Hybrid Journal   (Followers: 29)
Advances in Computed Tomography     Open Access   (Followers: 2)
Advances in Image and Video Processing     Open Access   (Followers: 28)
Advances in Robotics & Automation     Open Access   (Followers: 12)
Artificial Life and Robotics     Hybrid Journal   (Followers: 17)
Augmented Human Research     Hybrid Journal  
Automated Software Engineering     Hybrid Journal   (Followers: 9)
Automatic Control and Information Sciences     Open Access   (Followers: 4)
Automation and Remote Control     Hybrid Journal   (Followers: 6)
Autonomous Agents and Multi-Agent Systems     Hybrid Journal   (Followers: 9)
Autonomous Robots     Hybrid Journal   (Followers: 11)
Biocybernetics and Biological Engineering     Full-text available via subscription   (Followers: 4)
Biological Cybernetics     Hybrid Journal   (Followers: 10)
Biomimetic Intelligence and Robotics     Open Access  
Cognitive Robotics     Open Access   (Followers: 4)
Computational Intelligence and Neuroscience     Open Access   (Followers: 18)
Computer-Aided Design     Hybrid Journal   (Followers: 9)
Construction Robotics     Hybrid Journal   (Followers: 5)
Current Robotics Reports     Hybrid Journal   (Followers: 4)
Cybernetics & Human Knowing     Full-text available via subscription   (Followers: 3)
Cybernetics and Systems Analysis     Hybrid Journal  
Cybernetics and Systems: An International Journal     Hybrid Journal   (Followers: 1)
Design Automation for Embedded Systems     Hybrid Journal   (Followers: 4)
Digital Zone : Jurnal Teknologi Informasi Dan Komunikasi     Open Access  
Drone Systems and Applications     Open Access   (Followers: 1)
Electrical Engineering and Automation     Open Access   (Followers: 9)
Facta Universitatis, Series : Automatic Control and Robotics     Open Access   (Followers: 1)
Foundations and Trends® in Robotics     Full-text available via subscription   (Followers: 4)
GIScience & Remote Sensing     Open Access   (Followers: 58)
IAES International Journal of Robotics and Automation     Open Access   (Followers: 5)
IEEE Robotics & Automation Magazine     Full-text available via subscription   (Followers: 69)
IEEE Robotics and Automation Letters     Hybrid Journal   (Followers: 9)
IEEE Transactions on Affective Computing     Hybrid Journal   (Followers: 23)
IEEE Transactions on Audio, Speech, and Language Processing     Hybrid Journal   (Followers: 17)
IEEE Transactions on Automatic Control     Hybrid Journal   (Followers: 70)
IEEE Transactions on Cybernetics     Hybrid Journal   (Followers: 16)
IEEE Transactions on Intelligent Vehicles     Hybrid Journal   (Followers: 2)
IEEE Transactions on Medical Robotics and Bionics     Hybrid Journal   (Followers: 5)
IEEE Transactions on Neural Networks and Learning Systems     Hybrid Journal   (Followers: 57)
IEEE Transactions on Robotics     Hybrid Journal   (Followers: 71)
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews     Hybrid Journal   (Followers: 16)
IET Cyber-systems and Robotics     Open Access   (Followers: 2)
IET Systems Biology     Open Access   (Followers: 1)
Industrial Robot An International Journal     Hybrid Journal   (Followers: 2)
Intelligent Control and Automation     Open Access   (Followers: 6)
Intelligent Service Robotics     Hybrid Journal   (Followers: 2)
International Journal of Adaptive, Resilient and Autonomic Systems     Full-text available via subscription   (Followers: 3)
International Journal of Advanced Pervasive and Ubiquitous Computing     Full-text available via subscription   (Followers: 4)
International Journal of Advanced Robotic Systems     Full-text available via subscription   (Followers: 1)
International Journal of Agent Technologies and Systems     Full-text available via subscription   (Followers: 4)
International Journal of Ambient Computing and Intelligence     Full-text available via subscription   (Followers: 3)
International Journal of Applied Evolutionary Computation     Full-text available via subscription   (Followers: 3)
International Journal of Artificial Life Research     Full-text available via subscription  
International Journal of Automation and Control     Hybrid Journal   (Followers: 11)
International Journal of Automation and Control Engineering     Open Access   (Followers: 5)
International Journal of Automation and Logistics     Hybrid Journal   (Followers: 4)
International Journal of Automation and Smart Technology     Open Access   (Followers: 3)
International Journal of Bioinformatics Research and Applications     Hybrid Journal   (Followers: 14)
International Journal of Biomechatronics and Biomedical Robotics     Hybrid Journal   (Followers: 2)
International Journal of Humanoid Robotics     Hybrid Journal   (Followers: 6)
International Journal of Imaging & Robotics     Full-text available via subscription   (Followers: 3)
International Journal of Intelligent Information Technologies     Full-text available via subscription   (Followers: 1)
International Journal of Intelligent Machines and Robotics     Hybrid Journal   (Followers: 3)
International Journal of Intelligent Mechatronics and Robotics     Full-text available via subscription   (Followers: 5)
International Journal of Intelligent Robotics and Applications     Hybrid Journal  
International Journal of Intelligent Systems Design and Computing     Hybrid Journal   (Followers: 2)
International Journal of Intelligent Unmanned Systems     Hybrid Journal   (Followers: 3)
International Journal of Machine Consciousness     Hybrid Journal   (Followers: 7)
International Journal of Machine Learning and Cybernetics     Hybrid Journal   (Followers: 31)
International Journal of Mechanisms and Robotic Systems     Hybrid Journal   (Followers: 2)
International Journal of Mechatronics and Automation     Hybrid Journal   (Followers: 5)
International Journal of Robotics and Automation     Full-text available via subscription   (Followers: 8)
International Journal of Robotics and Control     Open Access   (Followers: 3)
International Journal of Robotics Applications and Technologies     Full-text available via subscription   (Followers: 1)
International Journal of Robotics Research     Hybrid Journal   (Followers: 15)
International Journal of Space-Based and Situated Computing     Hybrid Journal   (Followers: 2)
International Journal of Synthetic Emotions     Full-text available via subscription  
International Journal of Tomography & Simulation     Full-text available via subscription   (Followers: 1)
Journal of Automation and Control     Open Access   (Followers: 9)
Journal of Biomechanical Engineering     Full-text available via subscription   (Followers: 12)
Journal of Computer Assisted Tomography     Hybrid Journal   (Followers: 2)
Journal of Control & Instrumentation     Full-text available via subscription   (Followers: 19)
Journal of Control, Automation and Electrical Systems     Hybrid Journal   (Followers: 11)
Journal of Intelligent and Robotic Systems     Hybrid Journal   (Followers: 6)
Journal of Intelligent Learning Systems and Applications     Open Access   (Followers: 4)
Journal of Robotic Surgery     Hybrid Journal   (Followers: 3)
Jurnal Otomasi Kontrol dan Instrumentasi     Open Access  
Machine Translation     Hybrid Journal   (Followers: 12)
Proceedings of the ACM on Human-Computer Interaction     Hybrid Journal   (Followers: 2)
Results in Control and Optimization     Open Access   (Followers: 5)
Revista Iberoamericana de Automática e Informática Industrial RIAI     Open Access  
ROBOMECH Journal     Open Access   (Followers: 1)
Robotic Surgery : Research and Reviews     Open Access   (Followers: 1)
Robotica     Hybrid Journal   (Followers: 5)
Robotics and Autonomous Systems     Hybrid Journal   (Followers: 19)
Robotics and Biomimetics     Open Access   (Followers: 1)
Robotics and Computer-Integrated Manufacturing     Hybrid Journal   (Followers: 7)
Science Robotics     Full-text available via subscription   (Followers: 11)
Soft Robotics     Hybrid Journal   (Followers: 5)
Unmanned Systems     Hybrid Journal   (Followers: 4)
Wearable Technologies     Open Access   (Followers: 4)

           

Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 98.80.143.34
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-