Subjects -> ENERGY (Total: 414 journals)
    - ELECTRICAL ENERGY (12 journals)
    - ENERGY (252 journals)
    - ENERGY: GENERAL (7 journals)
    - NUCLEAR ENERGY (40 journals)
    - PETROLEUM AND GAS (58 journals)
    - RENEWABLE ENERGY (45 journals)

RENEWABLE ENERGY (45 journals)

Showing 1 - 46 of 46 Journals sorted alphabetically
Advanced Fiber Materials     Full-text available via subscription  
Advanced Sustainable Systems     Hybrid Journal   (Followers: 7)
African Journal of Sustainable Development     Full-text available via subscription   (Followers: 9)
Applied Solar Energy     Hybrid Journal   (Followers: 21)
Biochar     Hybrid Journal   (Followers: 1)
Clean Energy     Open Access   (Followers: 2)
Current Sustainable/Renewable Energy Reports     Hybrid Journal   (Followers: 7)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
EcoMat : Functional Materials for Green Energy and Environment     Open Access  
Environmental Progress & Sustainable Energy     Hybrid Journal   (Followers: 7)
Foundations and Trends® in Renewable Energy     Full-text available via subscription   (Followers: 4)
Global Energy Interconnection     Open Access  
Hydro Nepal : Journal of Water, Energy and Environment     Open Access   (Followers: 2)
IEEE Transactions on Sustainable Energy     Hybrid Journal   (Followers: 15)
IET Renewable Power Generation     Open Access   (Followers: 12)
International Journal of Renewable Energy Development     Open Access   (Followers: 6)
International Journal of Renewable Energy Technology     Hybrid Journal   (Followers: 11)
International Journal of Ventilation     Full-text available via subscription  
Journal of Renewable and Sustainable Energy     Hybrid Journal   (Followers: 14)
Journal of Renewable Energies / Revue des Energies Renouvelables     Open Access   (Followers: 2)
Journal of Renewable Energy     Open Access   (Followers: 11)
Journal of Renewable Energy and Mechanics     Open Access   (Followers: 1)
Journal of Smart Systems and Stable Energy     Open Access   (Followers: 1)
Journal of Solar Energy     Open Access   (Followers: 12)
Journal of Solar Energy Engineering     Full-text available via subscription   (Followers: 19)
Journal of Technology Innovations in Renewable Energy     Hybrid Journal   (Followers: 2)
Materials for Renewable and Sustainable Energy     Open Access   (Followers: 6)
Renewable and Sustainable Energy Reviews     Partially Free   (Followers: 30)
Renewable and Sustainable Energy Transition     Open Access  
Renewable Energy     Hybrid Journal   (Followers: 27)
Renewable Energy and Environmental Sustainability     Open Access   (Followers: 3)
Renewable Energy and Sustainable Development     Open Access   (Followers: 3)
Renewable Energy Focus     Full-text available via subscription   (Followers: 7)
Renewables : Wind, Water, and Solar     Open Access   (Followers: 3)
Resource-Efficient Technologies     Open Access  
Resources, Conservation & Recycling Advances     Open Access   (Followers: 1)
Smart Grid and Renewable Energy     Open Access   (Followers: 9)
Solar Energy     Hybrid Journal   (Followers: 20)
Solar Energy Advances     Open Access   (Followers: 2)
Solar Energy Materials and Solar Cells     Hybrid Journal   (Followers: 29)
Solar RRL     Hybrid Journal  
Sustainable Energy     Open Access   (Followers: 2)
Waste Disposal & Sustainable Energy     Hybrid Journal  
Wind Energy     Hybrid Journal   (Followers: 4)
Wind Energy Science     Open Access   (Followers: 2)
Wind Engineering     Hybrid Journal  
Similar Journals
Journal Cover
Advanced Fiber Materials
Number of Followers: 0  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 2524-7921 - ISSN (Online) 2524-793X
Published by Springer-Verlag Homepage  [2468 journals]
  • Electrospun Polyacrylonitrile Membrane In Situ Modified with Cellulose
           Nanocrystal Anchoring TiO2 for Oily Wastewater Recovery

    • Free pre-print version: Loading...

      Abstract: With the increasingly urgent demand for clean water resources and the growing emission of oily wastewater, high-flux oil/water separation materials with the special wettability are progressively desired. Cellulose nanocrystal (CNC) from renewable biomass has been utilized to fabricate oil/water separation membranes, but it is limited to enhancing mechanical properties. Herein, a wrinkled structure with abundant –OH is constructed on polyacrylonitrile (PAN) nanofibers via the CNC hybridization process. And then, a super-hydrophilic nano-TiO2 shell is anchored tightly on the surface of the fiber by wrinkles and –OH. The CNC promotes significantly the in situ growth of TiO2, with the TiO2 loading ratio of up to 5.3%. The nano-TiO2 shell endows the obtained film with super-hydrophilicity and underwater super-oleophobicity, resulting in a visible increase of the permeation flux for the oil/water mixture from 1483 to 11,023 L m−2 h−1. Interestingly, the hierarchical structure facilitates the demulsification for oil-in-water emulsion stabilized by surfactant, allowing the obtained membrane to exhibit eminent antifouling property and high emulsion permeability of about 3,278 L m−2 h−1. This design strategy develops next-generation anchors for targeted modification on the non-reactive substrates and provides a novel pathway for fabricating oil/water separation membranes. Graphical
      PubDate: 2023-09-12
       
  • Advances in Nonwoven-Based Separators for Lithium-Ion Batteries

    • Free pre-print version: Loading...

      Abstract: Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries. Graphical abstract
      PubDate: 2023-09-08
       
  • Hydrophobic, Hemostatic and Durable Nanofiber Composites with a Screw-Like
           Surface Architecture for Multifunctional Sensing Electronics

    • Free pre-print version: Loading...

      Abstract: MXene-decorated textile composites have attracted tremendous attention, due to their possible applications in wearable sensing electronics. However, the easy oxidation, low strain sensitivity and poor water-proof performance restrict the applications of MXene-based smart textiles. Here, we developed a flexible and hydrophobic polymer nanofibrous composite with a screw-like structure by assembling MXene nanosheets onto a prestretched polyurethane (PU) nanofiber surface and subsequent fluorination treatment. The thin hydrophobic fluorosilane layer can greatly prevent the MXene shell from being oxidized and simultaneously endow the nanofiber composite with good hemostatic performance. The wrinkled MXene shell with the screw-like structure enhances the sensitivity of MXene@PU nanofiber composite (HMPU) toward strain, and the hydrophobic strain sensor exhibits a high gauge factor (324.4 in the strain range of 85–100%), and can detect different human movements. In virtue of its excellent water-proof performance, HMPU can function normally in corrosive and underwater conditions. In addition, the resistance of HMPU exhibits a negative temperature coefficient; thus, HMPU shows potential for monitoring temperature and providing a temperature alarm. The multifunctional HMPU shows broad application prospects in smart wearable electronics. Graphical
      PubDate: 2023-08-29
       
  • Revolutionizing Thermal Stability and Self-Healing in Pressure Sensors: A
           Novel Approach

    • Free pre-print version: Loading...

      Abstract: Soft electronics, which require mechanical elasticity, rely on elastic materials that have both a small Young’s modulus and a large elastic strain range. These materials, however, are prone to damage when stress accumulates, presenting a significant challenge for soft electronics. To address this issue, the integration of self-healing functionality into these materials appears to be a promising solution. Dynamic covalent bond chemistry has been utilized to design high-strength polymers with controllable reversibility. Nonetheless, the temperature needed to trigger self-healing may induce thermal damage to other parts of the device. In contrast, if the self-healing temperature is reduced, the device might suffer damage when exposed to temperatures exceeding the self-healing point due to the low stability of the polymer at high temperatures. These challenges highlight the need for materials that can self-heal at low temperatures while maintaining thermal stability at high temperatures. In response to this challenge, we propose a novel approach that involves forming a microfibrous network using polycaprolactone (PCL), a material with a low melting temperature of 60 °C that is widely utilized in shape memory and self-healing materials. We fabricated the conductive fiber by encapsulating a microfiber PCL network with MXene nanosheets. These MXene nanosheets were seamlessly coated on the PCL fiber’s surface to prevent shape deformation at high temperatures. Furthermore, they exhibited high thermal conductivity, facilitating rapid internal heat dissipation. Consequently, the MXene/PCL microfiber networks demonstrated self-healing capabilities at 60 °C and thermal stability above 200 °C. This makes them potentially suitable for stretchable, self-healing electronic devices that need to withstand high temperatures. Graphical abstract
      PubDate: 2023-08-21
       
  • Plastic-Swelling Preparation of Functional Graphene Aerogel Fiber Textiles

    • Free pre-print version: Loading...

      Abstract: Graphene aerogel fibers (GAFs) combine the advantages of lightweight, high specific strength and conductivity of graphene, showing great potential in multifunctional wearable textiles. However, the fabrication and application of GAF textiles are considerably limited by the low structural robustness of GAF. Here, we report a plastic-swelling method to fabricate GAF textiles with high performance and multi-functionalities. GAF textiles were achieved by plastic-swelling, the prewoven graphene oxide fiber (GOF) tow textiles. This near-solid plastic-swelling process allows GAFs in textiles to maintain high structural order and controllable density, and exhibit record-high tensile strength up to 103 MPa and electrical conductivity up to 1.06 × 104 S m−1 at the density of 0.4 g cm−3. GAF textiles exhibit high strength of 113 MPa, multiple electrical and thermal functions, and high porosity to serve as host materials for more functional guests. The plastic-swelling provides a general strategy to fabricate diverse aerogel fiber textiles, paving the road for their realistic application. Graphical
      PubDate: 2023-08-21
       
  • “Zincophilic-Hydrophobic” PAN/PMMA Nanofiber Membrane Toward High-Rate
           Dendrite-Free Zn Anode

    • Free pre-print version: Loading...

      Abstract: Uncontrollable Zn dendrites and side reactions seriously downgrade the cycling stability of the Zn anode, and restrict the commercialization of aqueous zinc ion batteries. Here, PAN-based (PAN, PAN/PMMA) nanofiber membranes with uniform “zincophilic-hydrophobic” sites have been in-situ electrospun on Zn to effectively prevent harmful side reactions and control Zn plating/stripping behavior. The abundant highly-negative functional groups (C≡N and C=O) of PAN/PMMA have strong coordination interactions with Zn2+, which can accelerate Zn2+ desolvation and increase the Zn2+ migration number. Furthermore, the even distribution of zincophilic sites can help create a uniform Zn deposition environment and enable horizontal Zn deposition. Simultaneously, the inherent “hydrophobicity” of the nonpolar carbon skeleton in PAN/PMMA can prevent Zn corrosion and hydrogen evolution reaction (HER) side reactions, thus improving the cycling stability of the Zn anode. As a result, PAN/PMMA@Zn symmetric cells demonstrated remarkable rate performance and long cycling stability, sustaining efficient operation for over 2000 cycles at 10 mA cm− 2 with a low polarization voltage below 65 mV. This Zn anode modification strategy by in-situ constructed PAN-based nanofiber membrane has the advantages of simple-preparation, one-step membrane construction, binder-free, uniform distribution of functionalized units, which not only provides a specific scheme for developing advanced Zn anode but also lays a certain research foundation for developing “separator-anode” integrated Zn-based batteries. Graphical
      PubDate: 2023-08-17
       
  • Rosuvastatin-Eluting Gold-Nanoparticle-Loaded Perivascular Wrap for
           Enhanced Arteriovenous Fistula Maturation in a Murine Model

    • Free pre-print version: Loading...

      Abstract: Arteriovenous fistulas (AVFs) are a vital form of AV access for patients requiring hemodialysis, but they link to overall morbidity and mortality when they fail to mature. The most common cause of AVF non-maturation is neointimal hyperplasia (NIH). To minimize the deleterious effects of NIH, a perivascular wrap composed of polycaprolactone (PCL), rosuvastatin (ROSU), and gold nanoparticles (AUNPs) was constructed. This study assessed the impact of ROSU-eluting, radiopaque resorbable perivascular wraps on pathologic NIH in a chronic kidney disease (CKD) rodent model of AVF. Electrospun PCL wraps containing AuNPs and/or ROSU were monitored for in vitro tensile strength, AuNP release, ROSU elution, and effect on cellular viability. The wraps were then implanted around an AVF in a CKD rodent model for in vivo ultrasound (US) and micro-computed tomography (mCT) imaging. AVF specimens were collected for histological analyses. Cell viability was preserved in the presence of both AuNP- and ROSU-containing wraps. In vitro release of ROSU and AuNPs correlated with in vivo findings of decreasing radiopacity on mCT over time. AuNP-loaded wraps had higher radiopacity (1270.0–1412.0 HU at week 2) compared with other wraps (103.5–456.0 HU), which decreased over time. The addition of ROSU decreased US and histologic measurements of NIH. The reduced NIH seen with ROSU-loaded perivascular wraps suggests a synergistic effect between mechanical support and anti-hyperplasia medication. Furthermore, AuNP loading increased wrap radiopacity. Together, our results show that AuNP- and ROSU-loaded PCL wraps induce AVF maturation and suppress NIH while facilitating optimal implanted device visualization. Graphical
      PubDate: 2023-08-11
       
  • Multi-Functional Fibrous Dressings for Burn Injury Treatment with Pain and
           Swelling Relief and Scarless Wound Healing

    • Free pre-print version: Loading...

      Abstract: As one of the most common forms of skin injuries, skin burns are often accompanied by edema pain, suppuration of infection, slow tissue regeneration, and severe scar formation, which significantly delay wound healing as well as affect the quality of life. We prepared multifunctional electrospun poly(L-lactide-co-glycolide)/gelatin (P/G)-based dressings to synergistically harness the therapeutic benefits of peppermint essential oil (T), burn ointment (B), and Oregano essential oil (O) (P/G@TBO) for skin regeneration in punch and burn injury models. The P/G@TBO can afford the sustained release of bioactive cues for up to 72 h as well as remarkably promote cell migration (ca. P/G@TBO, 89% vs. control group, 51%) at 24 h. The P/G@TBO membranes also showed significant angiogenic effect as well as antibacterial and anti-inflammatory properties than that of the control group in vitro. Moreover, P/G@TBO dressings enabled fast wound healing (ca. P/G@TBO, 100% wound closure vs. control group, 95%) in a full-thickness excisional defect model up to 14 days in rats. Further evaluation of membranes in different animal models, including tail wagging model, facial itch model, and hot burn injury model showed significant pain relieve effect as well as itching and swelling relief functions during earlier stages of wound healing. Membranes were next transplanted into a scalded wound model in rats and an ear punch wound model in rabbits, which manifested antibacterial and anti-inflammatory properties and promoted re-epithelialization to achieve scarless wound healing percentage wound closure at day 28: P/G@TBO, 96% vs. control group 66%. Taken together our approach of simultaneously harnessing T, B, and O to enable multifunctionality to fibrous dressings may hold great promise for burn wound healing applications and other related disciplines. Graphical abstract
      PubDate: 2023-08-09
       
  • Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid
           Metal/Polydimethylsiloxane Porous Fibrous TENG

    • Free pre-print version: Loading...

      Abstract: The utilization of textile-based triboelectric nanogenerators (t-TENGs) offers great potential for providing sustainable and wearable power. Nevertheless, the current designs of t-TENGs present limitations in terms of low electrical outputs and less developed, straightforward batch processing techniques. Herein, a facile bottom-up foaming-combined coaxial extrusion method is developed for the massive fabrication of liquid metal/polydimethylsiloxane (PDMS) core–shell porous fibrous TENG, which can be directly woven to form t-TENGs. Ink designs are studied for high-fidelity fibrous TENG manufacturing and porosity-controlled micropore formation. Furthermore, porous fibrous TENGs are applied to integrate different woven structures, and the electrical and mechanical performances of the t-TENGs are optimized. Compared with plain surface fibrous TENG, the porous fibrous TENG achieves a ~ fivefold improvement in the open-circuit voltage (VOC) and a ~ sevenfold improvement in the short-circuit current (ISC). These outcomes indicate that we can prepare a range of polymers for t-TENGs with enhanced output performance even though they do not demonstrate great triboelectrification. This work also demonstrates successful integration for sustainably powering miniature electronics. These results can contribute to human motion energy harvesting for wearable self-powered sensors. Graphical abstract
      PubDate: 2023-08-08
       
  • Bifunctional Activated Carbon Ultrathin Fibers: Combining the Removal of
           VOCs and PM in One Material

    • Free pre-print version: Loading...

      Abstract: Abstract Volatile organic compounds (VOCs) and particulate matter (PM) are both frequently present in air as contaminants, posing serious health and environmental hazards. The current filtration of VOCs utilizes entirely different materials compared with PM filtration, adding complexity to air cleaning system. Herein, we design a pitch-based activated carbon ultrathin fibers (PACUFs) for bifunctional air purification. The PACUFs, with fiber diameter of ∼1.2 µm and specific surface area of 2341 m2 g−1, provide both high VOCs adsorption capacity (∼706 mg g−1) and excellent efficiency of ∼97% PM0.3 filtration with low pressure drop. In contrast, traditional activated carbon fibers exhibit VOCs adsorption capacity of ∼448 mg g−1 and PM0.3 removal efficiency of only ∼36% at an equal area density of ∼190 g m−2. Theoretical investigations reveal the filtration mechanism of the high-performance bifunctional fibrous PACUFs, considering full advantages of the high surface area, small pore size, and significant micropore volume.
      PubDate: 2023-08-03
       
  • Publisher Correction to: Ultrasensitive, Highly Selective, Integrated
           Multidimensional Sensor Based on a Rigid-Flexible Synergistic Stretchable
           Substrate

    • Free pre-print version: Loading...

      PubDate: 2023-08-01
       
  • Hierarchical Fabric Emitter for Highly Efficient Passive Radiative Heat
           Release

    • Free pre-print version: Loading...

      Abstract: Intense heat waves pose a serious threat to public health and well-being, especially in outdoor spaces. Outdoor high-temperature environments without air conditioners are major challenges for humanity. However, an achievable approach that can provide outdoor cooling without consuming any energy is lacking. Hence, this work presents a novel hierarchical fabric emitter (HFET) used for sunshade sheds to provide radiative outdoor cooling for humanity, the HFET is composed of polyethylene/silicon dioxide/silicon nitride film, melt-blown polypropylene film, and polydimethylsiloxane film from top to bottom. In addition to reflecting 94% solar irradiance by its top surface, the HFET shows selective emission (0.82 in the atmospheric window and 0.38 outside the atmospheric window) on its top surface to outer space and broadband absorption (0.80 in the longwave infrared band) on its bottom surface from the inside. This bidirectional asymmetric emission enables the simulated skin to avoid overheating by 2–11 °C relative to the reverse HFET and bare cases under direct sunlight. Due to its excellent cooling capability, the HFET will be one of the most considerable solutions for outdoor cooling in hot summer environments. Graphical
      PubDate: 2023-08-01
       
  • Metal Organic Framework Derived Zirconia–Carbon Nanoporous Mat for
           Integrated Strain Sensor Powered by Solid-State Supercapacitor

    • Free pre-print version: Loading...

      Abstract: Flexible electronics are essential for the rapid development of human–machine interface technology, encompassing sensors and energy storage systems. Solid-state supercapacitors with 1D nanofiber electrodes are critical for enhancing ion transport. In this study, a flexible supercapacitor integrated with a strain sensor was designed using a polyvinyl alcohol/polymethyl methacrylate (PVA/PMMA)-based electrolyte and a metal–organic framework (MOF)-derived Zr–nanoporous carbon mat (Zr–NPC). The sensor showed remarkable sensitivity over a broad strain range, enabling reliable and precise detection of mechanical deformation. The supercapacitor with Zr–NPC@PVDF electrode also demonstrated a specific capacitance of 286 mF cm−2 at 0.5 mA cm−2, maintaining high flexibility and mechanical strength. The fabricated supercapacitor maintained around 81% charge retention after 10,000 cycles. Ultimately, the self-powered integrated model was directly connected to the human body to detect physical motion, accentuating its potential for widespread applications in wearable technology. Graphical
      PubDate: 2023-08-01
       
  • Super-elastic Scintillating Fibers and Fabrics for Efficient and Visual
           Radiation Detection

    • Free pre-print version: Loading...

      Abstract: The fabrication of advanced radiation detectors is an important subject due to the wide use of radiation sources in scientific instruments, medical services, security check, non-destructive inspection, and nuclear industries. However, the manufacture of flexible and stretchable radiation detectors remains a challenge. Here, we report the scalable fabrication of super-elastic scintillating fibers and fabrics for visual radiation detection by thermal drawing and melt-spinning methods using styrene-b-(ethylene-co-butylene)-b-styrene, and scintillating Gd2O2S: Tb (GOS). Microstructure evolution, rheological properties, and radiation–composite interaction are studied to reveal the excellent processability, elasticity, and radiation detection ability of the fabricated fibers. Benefiting from the physical crosslinking structural features of the polymer matrix and the excellent radiation absorption capacities of GOS, the resulting fiber can sustain high strains of 765% with a high content of GOS dopants (2 wt.%) and has excellent X-ray detection performance with the limit down to 53 nGyair s−1. Furthermore, stretchable fabrics are constructed, and their applications in various fields, such as radiation warning, and X-ray imaging, are demonstrated. Our work not only provides a new type of super-elastic scintillating fibers and fabrics for smart textiles but also demonstrates their potential applications in the nuclear field. Graphical
      PubDate: 2023-08-01
       
  • Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles

    • Free pre-print version: Loading...

      Abstract: With the development and prosperity of Internet of Things (IoT) technology, wearable electronics have brought fresh changes to our lives. The demands for low power consumption and mini-type wearable power systems for wearable electronics are more urgent than ever. Thermoelectric materials can efficiently convert the temperature difference between body and environment into electrical energy without the need for mechanical components, making them one of the ideal candidates for wearable power systems. In recent years, a variety of high-performance thermoelectric materials and processes for the preparation of large-scale single-fiber devices have emerged, driving the application of flexible fiber-based thermoelectric generators. By weaving thermoelectric fibers into a textile that conforms to human skin, it can achieve stable operation for long periods even when the human body is in motion. In this review, the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles is introduced comprehensively. Strategies for enhancing thermoelectric performance, processing techniques for fiber devices, and the wide applications of thermoelectric textiles are summarized. In addition, the challenges of ductile thermoelectric materials, system integration, and specifications are discussed, and the relevant developments in this field are prospected. Graphical abstract
      PubDate: 2023-08-01
       
  • Electrospinning Technique Meets Solar Energy: Electrospun Nanofiber-Based
           Evaporation Systems for Solar Steam Generation

    • Free pre-print version: Loading...

      Abstract: The huge gap between inadequate clean water supply and demanding human needs can be narrowed by sustainable and green methods of solar-driven evaporation, which effectively converts solar energy into thermal energy to purify seawater and wastewater. Electrospun materials produced from a facile electrospinning technique can be combined with functional photothermal materials, giving rise to various superior advantages in solar water evaporation. However, to date, few reviews have focused on this topic. This article reviews the recent progress of electrospun nanofiber-based evaporation systems focusing on polymer selection, available solar materials, incorporation strategies of solar materials, system configurations, factors influencing the performance, and applications of electrospun nanofiber evaporation systems. The incorporation strategies of solar materials and system configurations in electrospun nanofiber evaporators are classified and systematically discussed. Finally, the challenges and perspectives of the electrospun nanofiber evaporation systems are also presented. This review updates the progress of electrospun nanofiber evaporation systems and simultaneously stimulates attractive research on designing electrospun nanofiber-based photothermal systems for applications in solar water evaporation, photothermal therapy, electricity generation, and other related areas. Graphical abstract
      PubDate: 2023-08-01
       
  • Ultrasensitive, Highly Selective, Integrated Multidimensional Sensor Based
           on a Rigid-Flexible Synergistic Stretchable Substrate

    • Free pre-print version: Loading...

      Abstract: High-performance wearable sensors that detect complex, multidimensional signals are indispensable in practical applications. Most existing sensors can only detect axial deformations or single stimuli, dramatically limiting their application fields. In this study, anisotropic strain and deformation-insensitive pressure sensors were effectively constructed based on a rigid-flexible synergistic stretchable substrate. Furthermore, we developed a three-dimensional integrated sensor with highly directional selective sensing through reasonable design and assembly. This integrated sensor recognizes the amplitude and direction of strain in the plane with a maximum gauge factor of 635 and an unprecedented selectivity of 13.99. Additionally, this device can also monitor the pressure outside the plane with a sensitivity of 0.277 kPa−1. We further investigated the working mechanism of sensor anisotropy and confirmed the application of the sensor in detecting complex multifreedom human joint movements. This research discovery provides new ideas and methods for developing multidimensional sensors, which is essential for broadening the application field of wearable electronic products. Graphical
      PubDate: 2023-08-01
       
  • Progress in Electrospun Fibers for Manipulating Cell Behaviors

    • Free pre-print version: Loading...

      Abstract: The manipulation of cell behaviors is essential to maintaining cell functions, which plays a critical role in repairing and regenerating damaged tissue. To this end, a rich variety of tissue-engineered scaffolds have been designed and fabricated to serve as matrix for supporting cell growth and functionalization. Among others, scaffolds made of electrospun fibers showed great potential in regulating cell behaviors, mainly owing to their capability of replicating the dimension, composition, and function of the natural extracellular matrix. In particular, electrospun fibers provided both topological cues and biofunctions simply by adjusting the electrospinning parameters and/or post-treatment. In this review, we summarized the most recent applications and advances in electrospun nanofibers for manipulating cell behaviors. First, the engineering of the secondary structures of individual fibers and the construction of two-dimensional nanofiber mats and nanofiber-based, three-dimensional scaffolds were introduced. Then, the functionalization strategies, such as endowing the fibers with bioactive, physical, and chemical cues, were explored. Finally, the typical applications of electrospun fibers in controlling cell behaviors (i.e., cell adhesion and proliferation, infiltration, migration, neurite outgrowth, stem cell differentiation, and cancer cell capture and killing) were demonstrated. Taken together, this review will provide valuable information to the specific design of nanofiber-based scaffolds and extend their use in controlling cell behaviors for the purpose of tissue repair and regeneration. Graphical abstract
      PubDate: 2023-08-01
       
  • N-Cadherin-Functionalized Nanofiber Hydrogel Facilitates Spinal Cord
           Injury Repair by Building a Favorable Niche for Neural Stem Cells

    • Free pre-print version: Loading...

      Abstract: The inhospitable niche at the injury site after spinal cord injury (SCI) brings several challenges to neural stem cell (NSC) therapy, such as limited NSC retention and neuronal differentiation. Biomaterial-based stem cell transplantation has become a promising strategy for building a favorable niche to stem cells. Herein, an aligned fibrin nanofiber hydrogel modified with N-Cadherin-Fc (AFGN) was fabricated by electrospinning and biochemical conjugation to deliver NSCs for SCI repair. The AFGN hydrogel provides multimodal cues, including oriented nanofibrous topography, soft stiffness, and specific cell binding ligand, for directing NSC functions and nerve regeneration. The conjugated N-Cadherin-Fc recapitulated the homophilic cell–cell interaction for NSCs’ adhesion on AFGN and modulated cellular mechanosensing in response to AFGN for NSC differentiation. In addition, the AFGN hydrogel carrying exogenous NSCs was implanted in a rat 2 mm-long complete transected SCI model and significantly promoted the grafted NSCs retention, immunomodulation, neuronal differentiation, and in vivo integration with inherent neurons, thus finally achieved renascent neural relay formation and an encouraging locomotor functional recovery. Altogether, this study represents a valuable strategy for boosting NSC-based therapy in SCI regeneration by engineering an NSC-specific niche. Graphical abstract
      PubDate: 2023-08-01
       
  • Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber
           Membranes

    • Free pre-print version: Loading...

      Abstract: Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical
      PubDate: 2023-08-01
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.239.148.127
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-