Waste Disposal & Sustainable Energy
Number of Followers: 0 Hybrid journal (It can contain Open Access articles) ISSN (Print) 2524-7980 - ISSN (Online) 2524-7891 Published by Springer-Verlag [2468 journals] |
- Enhancing methane production in anaerobic co-digestion of food wastes and
sewage sludge: roles of different types of iron amendments-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Iron element is known to be an effective additive for accelerating the anaerobic digestion (AD) process for treating organic wastes. However, the effects of different kinds of iron additives on food waste (FW) and sewage sludge of co-digestion process have not been yet investigated thoroughly. This study aimed to elucidate how different kinds of iron components affect methane production during FW and sewage sludge anaerobic co-digestion (co-AD) process and to investigate the possible mechanism of Fe amendment. Experimental results revealed that Fe amendment could effectively promote the substrate degradation and methane production, and FeCl3 amended group presented the best digestion performance, boosting the methane production from 465.9 mL to 2650.4 mL. The results of the excitation-emission matrix fluorescence spectra analysis further supported that Fe supplements facilitated the waste hydrolysis with a higher concentration of dissolved organic matters and thereby more substrates can be used for methane generation. In addition, the activity of coenzyme F420 and direct interspecies electron transfer in FeCl3 group were 5.82 and 5.89 times higher than those in the control group, respectively, indicating that electron transfer, particularly the interspecies one, was enhanced by Fe amendment. As compared to that in the control group, the increased cytochrome c concentration in Fe amended groups also proved it. Therefore, this study will provide a reference regarding Fe amendment in the co-AD process for FW and sewage sludge. Graphical abstract
PubDate: 2024-08-07
-
- A two-stage strategy combining vermicomposting and membrane-covered
aerobic composting to achieve value-added recycling of kitchen waste solid
residues-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Kitchen waste solid residues (KWSR) are secondary organic solid wastes generated from kitchen waste (KW) after oil and slurry separation. In this study, two recycling methods for KWSR were investigated: direct membrane-covered aerobic composting (T1) and a two-stage method combining vermicomposting with membrane-covered aerobic composting (T2). Compared with T1, T2 had a faster increase in pile temperature, a shorter thermal stage, lower greenhouse gas emissions and higher NH3 emissions. The vermicomposting promoted the formation of humus and shortened the maturation time during aerobic composting, resulting in a shorter treatment period for T2 (18 d) than for T1 (21 d). The initial bacterial communities of T1 and T2 were significantly different, but they became similar as composting progressed. The economic feasibility analysis showed that 1000 kg of KWSR generated a profit of 285 CNY using the T2 method, which was higher than that of T1 (36 CNY). The outcomes of the present study provide an improved strategy for the management of KWSR. Graphical abstract
PubDate: 2024-08-03
-
- Nature’s architects: a comprehensive review of extracellular polymeric
substances and their diverse applications-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Extracellular polymeric substances (EPSs) play a crucial role in various applications, especially in wastewater treatment. This review explores the importance of EPS in modern treatment methods, emphasizing its organic polymeric nature and properties that aid in effective pollutant removal and resource conservation. The study focuses on biological strategies utilizing microbial and bacterial communities, as well as electrolyte precipitate systems containing various components such as uronic acids, proteins, and carbohydrates that are essential for treatment processes. This review also describes the complex mechanisms regulating EPS biosynthesis, highlighting the impact of factors such as temperature, light intensity, and carbon to nitrogen ratio on EPS production. These findings emphasizes the influence of carbon supply and nitrogen sources on EPS formation, shedding light on the relationship between environmental conditions and EPS synthesis. In addition, this study discusses the significance of EPS extraction techniques for maintaining material integrity. Furthermore, the review explores the broad applications of EPS beyond wastewater treatment, including soil aggregation, pharmaceuticals, the food industry, and sustainable energy generation through EPS-driven microbial fuel cells. Understanding the diverse functions of EPS has the potential to improve environmental practices, mitigate climate change effects, and enhance industrial processes towards sustainability and efficiency. The versatility of EPS underscores its transformative impact on environmental and industrial practices. Graphical abstract
PubDate: 2024-07-16
-
- Textural properties prediction of KOH-activated carbon prepared from coal
based on pyrolysis kinetics-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Pyrolysis kinetics were used in this study to analyze the pore formation mechanism of coal activated with KOH. Experimental derivative thermogravimetry (DTG) curves were fitted using Achar and Coats–Redfern methods to obtain kinetic parameters, such as activation energies. The effects of heating rate and KOH ratio on the activation energy show similar trends. Another attempt was trying to correlate the activation energies with the textural properties. The direct fitting was initially used and the obtained activation energies showed little correlation with textural properties. Two improved methods, namely, single peak fitting and multi peak fitting, were introduced. The former only considered the interaction between KOH and coal, regardless of coal pyrolysis. The activation energies obtained showed linear relation with the total pore volumes/BET (Brunauer–Emmett–Teller) surface areas (R2=0.94/0.99). The latter used Gaussian function to deconvolute the DTG curves, and then, each theoretical DTG peak could be correctly fitted. The positive linear correlation between the summed activation energies derived from surface reactions and metallic K intercalation and micropore volumes/surface areas was obtained (R2=0.993/0.996). Therefore, the proposed methods could be successfully applied to design and analyze the textural properties of specific coals with KOH activation. Graphical abstract
PubDate: 2024-07-14
-
- Slum dynamics: the interplay of remittances, waste disposal and health
outcomes-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Slum dwellers often fail to expend enough on waste disposal to have a healthy life, and remittances provide funds for a household to expend on the betterment of life conditions. This paper examines the impact of remittances on total monthly waste disposal expenditures and the impact of better waste disposal on monthly health expenditures among slum households in Bangladesh. Propensity score matching was adopted as an identification strategy to reduce selection bias. In this study, remittance includes both remittances received from within and outside Bangladesh. Remittance receipt equals 1 if a household receives remittances from within and/or outside of Bangladesh. Our results show that remittances increase expenditures on waste disposal by 28.77% to 32.74% among slum households in Bangladesh. Waste disposal expenditure is considered as an indicator of better waste disposal. Furthermore, we find that better waste disposal reduces total outpatient expenditures. A reduction in outpatient expenditure indicates that waste disposal results in better health conditions for slum dwellers. The findings of this study can be connected to Sustainable Development Goal 11, which targets sustainable cities and communities and suggests that remittances are a bottom-up financial mechanism for improving waste disposal at the micro level to improve health status. Graphical abstract
PubDate: 2024-07-03
-
- A review on graphite carbon nitride (g-C3N4)-based composite for
antibiotics and dye degradation and hydrogen production-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract This paper reviews recent advances in the use of graphite carbon nitride (g-C3N4)-based composite photocatalysts for antibiotic and dye degradation and hydrogen production. It also discusses the structure, synthesis, modification, morphology, doping, preparation, and application of a particular subject and evaluates the advantages and disadvantages of different morphologies and preparation processes. The photocatalysts based on g-C3N4-based composites have demonstrated great potential. The g-C3N4 has been modified and tailored into various novel structures and morphologies to improve its efficiency in the photocatalytic degradation of pollutants. The techniques such as doping, metal deposition, heterojunction formation, and structural tuning enhance the rate of light absorption, charge transfer, and charge separation of g-C3N4. This leads to improved photocatalytic performance for antibiotic and dye degradation and hydrogen production.
PubDate: 2024-07-01
-
- Functionalizing carbon nanofibers with chicken manure to catalyse oxygen
reduction reaction in a fuel cell-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Chicken manure (CM) is one of the most common animal wastes produced worldwide. The conventional application of CM is as a fertilizer; however, in the present study, we introduce an approach for the straightforward and affordable use of CM for fuel cell applications. It reports the functionalization of carbon nanofibers (CNFs) using CM to confer multiple functionalities. The elements that make up the functionalized CNF are nitrogen (7.40%, atoms ratio, the same below), oxygen (6.22%), phosphorous (0.30%), and sulfur (0.02%), etc., according to energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy studies. It has been verified that following treatment with CM, the morphology of the CNFs remains the same. The CM-modified CNFs exhibit a higher electrocatalytic activity (onset potential: −0.0756 V; limiting current density: 2.69 mA/cm2) for the oxygen reduction reaction (ORR) at the cathode of a fuel cell. The electron transfer number for this sample is 3.68, i.e., the ORR favours a four-electron pathway like Pt/C. The direct method of functionalizing the CNF is more effective; however, treatment of CNFs with Triton X-100 prior to functionalization shields their otherwise exposed open edge sites and in turn affects their ORR activity. A large surface area (99.866 m2/g), the presence of multiple functional elements (oxygen, nitrogen, phosphorous, sulfur, etc.), surface charge redistribution and induced donor–acceptor interactions at the surface of CM-modified CNFs contribute to their enhanced electrochemical activity. This preliminary study reports the suitability of a facile and economical approach for treating CM for the most advanced clean energy applications. Hopefully, this study will pave the way for cutting-edge methods for handling other biowaste materials as well. Graphical abstract
PubDate: 2024-06-27
-
- Research on heat dissipation optimization and energy conservation of
supercapacitor energy storage tram-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Uneven heat dissipation will affect the reliability and performance attenuation of tram supercapacitor, and reducing the energy consumption of heat dissipation is also a problem that must be solved in supercapacitor engineering applications. This paper takes the vehicle supercapacitor energy storage power supply as the research object, and uses computational fluid dynamics (CFD) simulation to calculate its internal temperature distribution to solve the problem that the internal heat dissipation of the power supply in the initial design scheme is not uniform, and the maximum temperature of cell capacitors is as high as 67 °C. Filling of heat-conducting silicone film between single cell capacitors inside the module can conduct heat from single cell capacitor in the center of the module to the edge of the module quickly; adding baffles in the cabinet can optimize the air duct, and the temperature between the modules can be uniform; as a result of the combined effect of the two optimization measures, the maximum temperature of the cell capacitors drops to 55.5 °C, which is lower than the allowable operating temperature limit of the capacitor cell 56 °C. For the first time, the scheme of using air-conditioning waste exhaust air to cool supercapacitor energy storage power supply is proposed. Compared with the traditional cooling scheme using special air conditioning units, each energy storage system can save 967.16 kW·h per year using air-conditioning waste exhaust cooling, effectively reducing the overall energy consumption of the vehicle.
PubDate: 2024-06-21
-
- Towards a sustainable geoliner construction in landfills by potential
blending of fly ash with kaolin clay alternative: a review with an insight
to Indian scenario-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Electricity generated through coal-based Thermal Power Plants (TPPs) has played a pivotal role in shaping modern civilization, revolutionizing industries, and improving the quality of life for billions of people worldwide. These TPPs contribute to about 37%–40% of the global energy requirements. Energy production, in turn, has a direct impact on the economy of any country. Apart from this boon to humankind, these TPPs combusting coal as their primary fuel also have specific environmental impacts, the major ones being water, air, and soil pollution due to unscientific disposal of high-quantity fly ash produced yearly. If we can put this ash to good use, it may assist us in mitigating the pollution caused by it. Although there are many conventional uses of fly ash, such as a pozzolanic material in the cement industry, more pathways need to be discovered to balance the high generation quantities with consumption. Therefore, a detailed description of its use in potential geoliner applications is presented in this article. A geoliner or a landfill liner acts as a virtually impenetrable layer to mitigate the leachate penetration into the underneath subsoil and groundwater, thus preventing contamination. There are presently some studies that support the use of only fly ash in such applications. Nevertheless, the properties of the geoliners using it are not so good to significantly mitigate environmental degradation owing to its high permeability and low densification tendency. The bentonite conventionally used has limited deposits and is mined intensively for its use as a natural sealant. Their deposits must also be conserved, and an alternative material that may serve similar application benefits, like bentonite, must be selected. The desired aim can be fulfilled if we blend this combustion residue with other suitable materials (such as kaolinite clay) with low permeability. Thus, the article focuses on the possibilities of blending fly ash with different clays for geoliner construction to improve the individual properties of fly ash. This will contribute to developing a scope for future scientific research in deploying these blends in natural membrane materials for various industries. Different types of geoliners that are designed to contain the disposed-off waste are also explained in detail. Additionally, a glimpse of the global fly ash market is put forward to depict its importance for various industries in this technologically advancing world. This article profoundly observes an overall environmental management aspect regarding waste utilization. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00178-8
-
- Rapid and real-time detection of municipal sludge moisture content based
on microwave reflection principle-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity ( \(\varepsilon^{\prime}\) ). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of \(\varepsilon^{\prime}\) is developed, and the relationship between the resonant frequency and \(\varepsilon^{\prime}\) is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00179-7
-
- Mechanistic investigation on the Hg0 elimination ability of MnOx–CeOx
nanorod adsorbents: effects of Mn/Ce molar ratio-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Mercury pollution is created by coal combustion processes in multi-component systems. Adsorbent injection was identified as a potential strategy for capturing Hg0 from waste gases, with adsorbents serving as the primary component. The hydrothermal approach was used to synthesize a series of MnOx–CeOx nanorod adsorbents with varying Mn/Ce molar ratios to maximize the Hg0 capture capabilities. Virgin CeOx had weak Hg0 elimination activity; <8% Hg0 removal efficiency was obtained from 150 °C to 250 °C. With the addition of MnOx, the amount of surface acid sites and the relative concentration of Mn4+ increased. This ensured the sufficient adsorption and oxidation of Hg0 while overcoming the limitations of restricted adsorbate-adsorbent interactions caused by the lower surface area, endowing MnOx–CeOx with increased Hg0 removal capacity. When the molar ratio of Mn/Ce reached 6/4, the adsorbent’s Hg0 removal efficiency remained over 92% at 150 °C and 200 °C. As the molar ratio of Mn/Ce grew, the adsorbent’s Hg0 elimination capacity declined due to decreased surface area, weakened acidity, and decreased activity of Mn4+; <75% Hg0 removal efficiency was reached between 150 °C and 250 °C for virgin MnOx. Throughout the overall Hg0 elimination reactions, Mn4+ and Oα were in charge of oxidizing Hg0 to HgO, with Ce4+ acting as a promoter to aid in the regeneration of Mn4+. Because of its limited adaptability to flue gas components, further optimization of the MnOx–CeOx nanorod adsorbent is required. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00181-z
-
- A review on the chemical speciation and influencing factors of heavy
metals in Municipal Solid Waste landfill humus-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Heavy metal pollution in landfill humus can cause serious environmental problems and may endanger soil ecosystems and human health. The biological toxicity of heavy metals is not only related to their total amount but also influenced to a greater extent by the distribution of their chemical speciation. Exploring the different chemical speciation and proportions of heavy metals can provide a more comprehensive and accurate understanding of the pollution characteristics and biological toxicity of heavy metals in landfill soil. Based on a review of the relevant literature, this paper systematically summarizes the recent research status of typical heavy metal chemical speciation in landfill humus. This chemical speciation is diverse and complex. For instance, heavy metals in residual states and organically bound states have little impact on organisms, while heavy metals in exchangeable states and Fe–Mn oxide states can easily migrate and transform. The chemical speciation of heavy metals is affected by many factors, among which the soil pH and organic matter content are some of the most important factors. Finally, the existing gaps in the current research on the chemical speciation of heavy metals in landfills are described and future research directions are proposed. This work provides a theoretical reference for researching the restoration of heavy metal-contaminated humus soil and the resource utilization of humus soil. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00186-8
-
- Photovoltaic waste management in sub-Saharan Africa: current practices in
Burkina Faso-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Sub-Saharan Africa is witnessing a proliferation of photovoltaic (PV) waste due to the increasing number of solar PV power plants. PV waste (panels, batteries, electrical cables, mounting structures, and inverters) consists of elements such as mercury, cadmium, chromium, lead, copper, aluminum, fluorinated compounds, and plastics that are toxic to human health and the environment if a proper management system is not available. Although many studies worldwide have focused on PV waste management, very few have been conducted in sub-Saharan Africa. This study aims to investigate the current PV waste management system in Burkina Faso, determine stakeholder profiles, and propose strategies to enhance the existing system. Documentary research, interviews, questionnaires, and field visits were used in the methodology. The survey showed that young people, mainly under 30 years of age and with a primary education, dominate (70%) in terms of PV waste collection and repair activities, while the more technical recycling and export activities are carried out mainly (88%) by stakeholders older than 40 years and with a secondary education (60%). Among the older stakeholders, 100% are aware of the hazardous nature of PV waste, whereas 36% are young people. From an environmental perspective, the main source of contamination observed is the release of lead-rich sulfuric acids into water and soil during the collection and repair phases. During the recycling of batteries and electrical cables, toxic fumes are emitted into the air, and recycling residues rich in toxic substances are landfilled. To reduce risks to human health and the environment when managing PV waste, the introduction of legislation, the multiplication of collection points and appropriate infrastructures, the training and awareness-raising of stakeholders, and the extended responsibility of manufacturers are recommended. Studies on the economic feasibility of setting up formal management structures are needed to complete this work. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00184-w
-
- Evaluation of the efficiency of urban solid waste management in Brazil by
data envelopment analysis and possible variables of influence-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: This article has the general objective of estimating the efficiency of urban solid waste management in 940 Brazilian municipalities through Data Envelopment Analysis (DEA) technique and has specific objectives: (i) to estimate efficiency scores; (ii) to compare the performance between different groups of municipalities; and (iii) to analyze the profile of efficient municipalities from the perspective of the guidelines of Law 12,305/2010 and socio-economic and environmental indicators. The technique used was DEA with output-oriented and variable scale to return modeling. The results showed higher efficiency scores in the municipalities with populations above 500,000 inhabitants. The score variation ranged from 0.5 (municipalities with populations <10,000 inhabitants) to 0.9 (municipalities with more than 500,000 inhabitants). Of the sample set, only 12.34% of the municipalities were considered efficient, and when analyzing the efficient group, it was found that adherence to legislation was not a major factor in achieving efficiency. Graphical abstract
PubDate: 2024-06-01
DOI: 10.1007/s42768-023-00175-x
-
- Innovations in food waste management: from resource recovery to
sustainable solutions-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Food waste (FW) constitutes a significant portion of municipal solid waste (MSW) and represents an underutilized resource with substantial potential for energy generation. The effective management and recycling of FW are crucial for mitigating environmental issues and minimizing associated health risks. This comprehensive review provides an in-depth overview of current technological applications for converting FW into energy with the dual goals of reducing environmental impact and maximizing resource utilization. It covers various aspects, including pretreatment methods, biological technologies (e.g., anaerobic digestion and fermentation), and thermal technologies (e.g., incineration, pyrolysis, gasification, and hydrothermal carbonization). The analysis includes the scope, advantages and disadvantages of these techniques. Landfilling, composting, and incineration are widely considered the most prevalent methods of FW disposal and have substantial negative impacts on the environment. Advanced technologies such as anaerobic fermentation offer environmental benefits and are suitable for scaling up, reducing greenhouse gas emissions, and producing renewable energy such as biogas, thus reducing carbon emissions. The promotion and adoption of advanced technologies like anaerobic fermentation can contribute to more sustainable FW management practices, reduce environmental impacts, and support the transition to a circular economy. Additionally, this article presents successful case studies, emphasizing the importance of technological integration in FW treatment. Furthermore, this article outlines future directions for FW treatment, including advancements in biological treatment technologies, decentralized treatment systems, and the adoption of digital and data-driven FW management systems. These emerging trends aim to promote sustainable, resource-efficient, and environmentally responsible FW management practices. Graphical abstract
PubDate: 2024-05-29
DOI: 10.1007/s42768-024-00201-6
-
- Preparation of crab-shell-based N, O co-doped graded porous carbon for
supercapacitors using the confined nanospace deposition method-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Biomass-based carbon materials with hierarchical porous structures have attracted attention for their ability to provide more channels and shorten ion transport paths. Here, we developed a simple method based on confined nanospace deposition. During high-temperature treatment, the mesoporous silica layer wrapped around the outside of the crab shells acted as a closed nanospace and effectively suppressed the severe deformation of the crab shell structure by shrinking inward. The prepared carbon material has a layered porous structure with abundant and stable N and O co-doping (N 7.32%, O 3.69%). The specific capacitance of the three-electrode system was 134.3 F/g at a current density of 0.5 A/g in a 6 mol/L KOH electrolyte, and the assembled aqueous symmetric supercapacitors exhibited an excellent cycling stability of 98.81% even after 5000 cycles. Graphical abstract
PubDate: 2024-04-16
DOI: 10.1007/s42768-024-00199-x
-
- Sustainable bio-energy generation via the conversion of spent wash using
dual chamber microbial fuel cell-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Microbial fuel cells (MFCs) are innovative devices that combine microbial processes with electrochemical reactions to convert organic matter in wastewater into electricity while simultaneously treating the wastewater. One such application is the treatment of spent wash, a highly polluting effluent generated from the distillery industry after crude mesh is separated into ethanol and spent wash. Spent wash, also known as distillery effluent or stillage, is a highly challenging wastewater treatment method due to its high chemical oxygen demand (COD), biological oxygen demand (BOD), and total dissolved solids (TDS). These characteristics make it a complex and polluting industrial effluent that requires specialized treatment processes to reduce its environmental impact effectively. However, MFCs have shown promise in treating spent wash, as they can utilize the organic matter in wastewater as a fuel source for microbial growth as well as for electricity generation. For the treatment of spent wash, Saccharomyces cerevisiae sp. was used as a biocatalyst along with 340 mol/L potassium ferricyanide in the cathode chamber and 170 mol/L methylene blue in the anode as a mediator. All tests were conducted by balancing a one-liter volume for power production from spent wash in MFC with the optimal conditions of 10% agarose, pH 8.5, 300 mL/min of aeration in the cathode chamber, and 40% (in weight) substrate concentration. At an ideal concentration, the maximum current and power density are roughly 53.41 mA/m2 and 72.22 mW/m2, respectively. For each litre of processed spent wash, a maximum voltage of 850 mV (4.5 mA) was obtained. Amazingly, 91% of COD and BOD were removed from the effluent MFC. These findings show that MFCs are capable of producing electricity and efficiently removing COD from wasted wash at the same time. Graphical abstract
PubDate: 2024-04-03
DOI: 10.1007/s42768-024-00189-z
-
- Influence of ion size on the charge storage mechanism of MXenes: a
combination of experimental and computational study-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: MXene nanomaterials have attracted great interest as the electrode of supercapacitors. However, its energy storage mechanisms in organic electrolytes are still unclear. This work investigated the size effect of cations (i.e., Li+, Na+, K+, and EMIM+) on the capacitive behaviors of MXene-based supercapacitors. The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size (i.e., from 43 F g−1 (EMIM+) to 129 F g−1 (Li+) at 2 mV s−1). Density-functional theory calculation reveals a correlation between cation size and ion–electrode surface interaction, supporting experimental observations of the capacitive-dominant behavior. Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size, providing dynamic insights into the experimentally observed specific capacitance trends. Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms. This finding of ion dynamics, solvation structure, and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors. Graphical abstract
PubDate: 2024-03-18
DOI: 10.1007/s42768-023-00188-6
-
- Synthesis and characterization of nanocarbon from waste batteries via an
eco-friendly method-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The widespread use of disposable batteries to power common electronic devices is a major source of e-waste. There are growing environmental and health concerns due to the expansion of e-waste around the world. Hence, developing a reliable system for recycling old batteries has reached the top of the recycling priority list. The current study presents a novel approach to synthesis carbon nanoparticles (CNPs) from spent batteries via an eco-friendly method that offers economical, environment-friendly, and nontoxic approaches in comparison to conventional chemical methods. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), powder X-ray diffractometry (XRD), UV–VIS absorption analysis (UV), Fourier transform infrared spectroscopy (FT-IR), Atomic force microscope (AFM), and thermo-gravimetric analysis (TGA). The average diameter of the synthesized particles was 40.16 nm, and the particles tended to be aspherical in shape. EDX analysis also predicted the presence of pure carbon, with some contamination arrived at 15% (in weight). This is a novel study in which nanocarbons were synthesized in a brine (7600×10−6) from a target (CNPs>75 nm), which paves the way for future use of CNPs derived from spent batteries and helps the environment by decreasing the amount of electronic waste dumped in landfills. Graphical abstract
PubDate: 2024-03-14
DOI: 10.1007/s42768-023-00180-0
-
- Determination of characteristics for mechanically separated organic
fraction of MSW at a full-scale anaerobic digestion plant-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Anaerobic digestion (AD) as a waste management method has the potential to reduce greenhouse gas emissions while producing renewable energy, making it a viable option for managing the organic fraction of municipal solid waste (OFMSW). OFMSW characteristics can vary depending on factors such as waste source, composition and separation units. The characteristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production. In this study, the waste composition and physicochemical characteristics of the mechanically separated OFMSW (ms-OFMSW) were determined at a full-scale AD plant in Türkiye. The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester. The composition and physicochemical characteristics of the samples were determined by manual sorting. The results showed that the majority of the ms-OFMSW (76.45%±1.71%) was organic, while 8.99%±1.56% was recyclable and 14.56%±1.69% was non-recyclable. Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency. Metals (399.7 GJ) and plastics (403.7 GJ) both saved nearly the same amount of energy while metals saved the most water (421.8 m3), with the greatest positive impact. Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream. These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW, while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester. In addition to encouraging source separation applications, this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW. Graphical abstract
PubDate: 2024-03-07
DOI: 10.1007/s42768-023-00183-x
-