Subjects -> ENERGY (Total: 414 journals)
    - ELECTRICAL ENERGY (12 journals)
    - ENERGY (252 journals)
    - ENERGY: GENERAL (7 journals)
    - NUCLEAR ENERGY (40 journals)
    - PETROLEUM AND GAS (58 journals)
    - RENEWABLE ENERGY (45 journals)

RENEWABLE ENERGY (45 journals)

Showing 1 - 46 of 46 Journals sorted alphabetically
Advanced Fiber Materials     Full-text available via subscription  
Advanced Sustainable Systems     Hybrid Journal   (Followers: 7)
African Journal of Sustainable Development     Full-text available via subscription   (Followers: 9)
Applied Solar Energy     Hybrid Journal   (Followers: 21)
Biochar     Hybrid Journal   (Followers: 1)
Clean Energy     Open Access   (Followers: 2)
Current Sustainable/Renewable Energy Reports     Hybrid Journal   (Followers: 7)
Ecological Chemistry and Engineering S     Open Access   (Followers: 4)
EcoMat : Functional Materials for Green Energy and Environment     Open Access  
Environmental Progress & Sustainable Energy     Hybrid Journal   (Followers: 7)
Foundations and Trends® in Renewable Energy     Full-text available via subscription   (Followers: 4)
Global Energy Interconnection     Open Access  
Hydro Nepal : Journal of Water, Energy and Environment     Open Access   (Followers: 2)
IEEE Transactions on Sustainable Energy     Hybrid Journal   (Followers: 15)
IET Renewable Power Generation     Open Access   (Followers: 12)
International Journal of Renewable Energy Development     Open Access   (Followers: 6)
International Journal of Renewable Energy Technology     Hybrid Journal   (Followers: 11)
International Journal of Ventilation     Full-text available via subscription  
Journal of Renewable and Sustainable Energy     Hybrid Journal   (Followers: 14)
Journal of Renewable Energies / Revue des Energies Renouvelables     Open Access   (Followers: 2)
Journal of Renewable Energy     Open Access   (Followers: 11)
Journal of Renewable Energy and Mechanics     Open Access   (Followers: 1)
Journal of Smart Systems and Stable Energy     Open Access   (Followers: 1)
Journal of Solar Energy     Open Access   (Followers: 12)
Journal of Solar Energy Engineering     Full-text available via subscription   (Followers: 19)
Journal of Technology Innovations in Renewable Energy     Hybrid Journal   (Followers: 2)
Materials for Renewable and Sustainable Energy     Open Access   (Followers: 6)
Renewable and Sustainable Energy Reviews     Partially Free   (Followers: 30)
Renewable and Sustainable Energy Transition     Open Access  
Renewable Energy     Hybrid Journal   (Followers: 27)
Renewable Energy and Environmental Sustainability     Open Access   (Followers: 3)
Renewable Energy and Sustainable Development     Open Access   (Followers: 3)
Renewable Energy Focus     Full-text available via subscription   (Followers: 7)
Renewables : Wind, Water, and Solar     Open Access   (Followers: 3)
Resource-Efficient Technologies     Open Access  
Resources, Conservation & Recycling Advances     Open Access   (Followers: 1)
Smart Grid and Renewable Energy     Open Access   (Followers: 9)
Solar Energy     Hybrid Journal   (Followers: 20)
Solar Energy Advances     Open Access   (Followers: 2)
Solar Energy Materials and Solar Cells     Hybrid Journal   (Followers: 29)
Solar RRL     Hybrid Journal  
Sustainable Energy     Open Access   (Followers: 2)
Waste Disposal & Sustainable Energy     Hybrid Journal  
Wind Energy     Hybrid Journal   (Followers: 4)
Wind Energy Science     Open Access   (Followers: 2)
Wind Engineering     Hybrid Journal  
Similar Journals
Journal Cover
Materials for Renewable and Sustainable Energy
Journal Prestige (SJR): 0.738
Citation Impact (citeScore): 3
Number of Followers: 6  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2194-1459 - ISSN (Online) 2194-1467
Published by SpringerOpen Homepage  [229 journals]
  • Exploratory study of potential usefulness of cost-effective composites
           thin films for energy device

    • Abstract: Abstract In this study, we synthesized neat and loaded lead phosphate glass (PbO–P2O5) with the inclusion of Cr, Co, Ni, and Zn using an inexpensive sol–gel technique. These composites were then deposited on silica glass substrates. Our objective was to investigate the influence of these fillers on the properties of the glass. The concentrations of the fillers were varied from 0 to 16 wt%, and the resulting thin films were characterized by measuring the absorption coefficient and estimating the optical band gap at room temperature. Additionally, we measured the electrical resistivity of the semiconducting thin films as a function of filler concentrations and temperature. To assess the overall performance of the films, we calculated the figure of merit using the Iles and Soclof approach, considering the DC resistance versus free carrier concentration and absorption coefficient. Interestingly, our results revealed a significant improvement in the figure of merit at specific filler concentrations. The obtained results are comprehensive and provide detailed insights. They indicate that the thin films produced in this study have the potential to be useful in energy devices, particularly in applications involving P–N junctions and similar structures.
      PubDate: 2023-09-02
       
  • Low-temperature synthesis of doped MnO2–carbon dots nanocomposite: an
           analysis of nanostructure and electrical properties

    • Abstract: Abstract The synthesis of δ-MnO2, δ-MnO2 carbon dots nanocomposite, and Fe/Cu-doped δ-MnO2 carbon dots nanocomposite has been successfully carried out through a stirring process at room temperature and 80 °C. The synthesized powder shows a low crystallization determined through XRD and TEM analysis. Furthermore, the carbon dots are well attached to MnO2 performing a core–shell composite material, while the doping ions Fe and Cu were incorporated into the matrix substitute Mn in the MnO6 octahedron, although potassium ions were also detected. The manganese possess an oxidation state of + 3 and + 4, which promotes the oxygen vacancy creation \({V}_{\mathrm{O}}^{\cdot\cdot}\) denoting the conductivity decrease.
      PubDate: 2023-08-04
       
  • Synthesis and application of biomass-derived magnetic biochar catalyst for
           simultaneous esterification and trans-esterification of waste cooking oil
           into biodiesel: modeling and optimization

    • Abstract: Abstract This work created, characterized, and used a magnetic biochar catalyst that is both eco-friendly and very effective. Sugarcane bagasse was selected as primary raw material for catalyst preparation, because it is renewable and ecofriendly biomass. Catalyst created by doping sugarcane bagasse biochar with magnetic material in the form of (FeSO4·7H2O). Thermogravimetric Analysis (TGA) and Fourier Transform Infrared spectroscopy (FTIR) were used to characterize the catalyst. In addition, physical and textural characteristics of the catalyst were identified and interpreted. The characterization outcome showed that the catalyst has good catalytic qualities. For the manufacturing of biodiesel, discarded cooking oil served as the primary feedstock. The experiment was created utilizing the Box–Behnken Design (BBD) technique. There are four variables with the following three levels each: temperature, methanol to oil ratio, catalyst concentration, and reaction time. 29 experiments in total were carried out. Using the RSM function, optimization was done. The optimal conditions for obtaining biodiesel yield—temperature, methanol to oil ratio, reaction time, and catalyst weight—were 43.597 °C, 9.975 mol/L, 49.945 min, and 1.758 wt%. A study of the produced biodiesel using a FTIR showed that the conventional biodiesel IR spectra were confirmed. All physiochemical characteristics found suggested the biodiesel complied with ASTM and EN norms. Overall, the synthesized catalyst had conducted simultaneous reactions in a single batch reactor and had demonstrated suitability for converting used cooking oil to biodiesel.
      PubDate: 2023-07-06
       
  • A review on recent research on bio-based building materials and their
           applications

    • Abstract: Abstract Bio-based materials represent a promising alternative in building envelope applications, with the aim of improving in-use energy efficiency. They have the advantage of being renewable, low embodied energy and CO2 neutral or negative. In addition, they are excellent thermal regulators. This paper presents an overview of the state-of-the-art of bio-based materials used in building construction and their applications. The materials outlined include hemp, wood, date palm wood, cork, alfa and straw. Through this literature study we want to get a broad overview of the current state of theoretical and experimental studies of their hygrothermal characteristics and their thermal and energy performances. The aim is not to be exhaustive but to summarise the most important research results on these materials. This is the first part of a research work that deals with the contribution to the development of a new bio-based construction material to be used in building.
      PubDate: 2023-05-10
       
  • Alkaline electrolysis using CuOx cathode for the conversion of carbon
           dioxide into liquid fuels

    • Abstract: Abstract Electrochemical reduction of CO2 is an effective method for storing intermittent renewable energy. This could result in fuel additives and chemical feedstocks such as alcohols. A challenge of electrochemical alcohol production is the transfer of electrons and protons, as well as the formation of C–C bonds. As of now, copper-based materials are the most commonly used and effective catalysts. Although CuOx is considered a promising catalyst for electrochemical CO2 reduction reactions (CO2RR), significant improvements in product selectivity are still needed. This paper presents some results obtained using copper oxide as a cathode, combined with 33% of ionomer, nickel iron as anode, and membrane Fumatech as electrolyte. As a result of physico-chemical experiments, morphological measurements of the cathode, electrochemical experiments carried out with a complete zero-gap cell operating under alkaline conditions, and gas-chromatographic (GC) analyses of the cathode outlet stream, we determined that methyl formate, ethanol, and propanol were mainly obtained at a rate of 116.3 μmol \({\text{g}}_{\text{cat}}^{-1} \, {\text{h}}^{-{1}}\) during operation at 2.2 V.
      PubDate: 2023-05-10
       
  • N-type H2-doped amorphous silicon layer for solar-cell application

    • Abstract: Abstract In this work, we report that hydrogen (H2) doped in n-type a-Si:H thin films strongly influences the electronic correlation in increasing the conversion output power of solar cells. Type n a-Si:H thin films were grown using PECVD on ITO substrates with various H2-doping, to obtain various thin films for solar-cell applications. N-type a-Si:H thin films were prepared, and then characterized using ellipsometric spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The addition of doped-H2 to the thin layer shows a decrease in optical conductivity, while the energy gap in the thin layer shows a significant increase in the a-Si:H-type thin layer. Our results show that H2 doping plays a very important role in the electronic structure, which is indicated by the significant energy gap difference. On the other hand, the bond structure of each H2-doped thin film showed a change from amorphous to nanocrystalline structures which were evenly distributed in each H2-doped bonding. Overall, we believe that the addition of doped-H2 to our findings could help increase the power conversion output of the solar cell due to the modification of the electronic structure.
      PubDate: 2023-04-12
       
  • Modeling and simulation of biomass anaerobic digestion for high biogas
           yield and CO2 mineralization

    • Abstract: Abstract Bioenergy is one of several renewable energy options derived from biomass that can help satisfy our energy needs.  Anaerobic digestion is a viable method for producing bioenergy in the form of biogas from biomass. The anaerobic digestion process is challenged with low biogas recovery, and low-quality effluent or CO2 emission, which contribute to environmental pollution and the carbon footprint in the atmosphere. Computational process modelling and simulation can provide realistic information for dealing with the technological challenges involved with anaerobic digestion. In this study, modeling and simulation of the simplified anaerobic digestion process were done using SuperPro Designer software fed with biomass feedstock containing carbohydrates, proteins, and fats, as well as yeast, at 37 °C mesophilic temperature. The anaerobic digestion process yielded 89.655% of CH4 and 10.345% of CO2 and confirmed that the carbohydrate feedstock produces more CH4 composition in the biogas. Mineralization of CO2 using MgO yielded 0.23% MgCO3, consuming > 99% of the CO2 produced during the anaerobic digestion process. Environmental impact assessment of the effluent discharge yielded 0.142 kg Slds/L volatile solid with 6.01% COD reduction per batch of the anaerobic digestion process in an anaerobic digester with 90% (1.925 kg/batch) feedstock dosage. The data indicate that single-batch effluent cannot be discharged into the environment, hence indicating the possible recycling for multiple anaerobic digestion processing. The results are a significant guide for the realistic scalable production of high-quality biogas for bioenergy application, CO2 mineralization, and environmental remediation.
      PubDate: 2023-04-07
       
  • Development of polymer blend electrolytes for battery systems: recent
           progress, challenges, and future outlook

    • Abstract: Abstract Nowadays, addressing the drawbacks of liquid electrolyte-based batteries is a hot and challenging issue, which is supposed to be fulfilled through solid electrolyte systems such as polymer electrolytes. Polymer blend electrolytes (PBEs) are widely investigated as viable options to solve the undesired characteristics of their liquid counterparts and also the poor ionic conductivity of homopolymer-based electrolytes. Even though PBEs outperform homopolymer-based electrolytes in terms of performance, the conductivity of pristine PBEs is quite low for practical applications (i.e. below 10–3 S/cm at room temperature). A very promising approach to solve this limitation is to incorporate additives into the electrolyte systems, to select suitable polymeric materials and to employ the desired synthesizing techniques as the performance of PBEs is strongly dependent on the selection of polymeric materials (i.e. on the inherent properties of polymers), the nature and amount of salts and other additives, and also the techniques employed to synthesize the polymer blend hosts and/or polymer blend electrolytes, determining the functionality, amorphousness, dielectric constant, dimensional stability, and, ultimately, the electrochemical performances of the system. This paper reviews the different factors affecting the miscibility of polymer blends, PBEs synthesizing techniques, the thermal, chemical, mechanical and electrochemical characteristics of PBEs, and also the challenges and opportunities of PBEs. Moreover, the paper presents the current progress of polymer blend electrolytes as well as future prospects for advancing polymer blend electrolytes in the energy storage sectors.
      PubDate: 2023-03-31
       
  • Development of thin film coatings with polypyrrole (ppy) by physical
           plasma deposition technique (PAPVD) for electrochemical capacitor

    • Abstract: Abstract In this study, new polypyrrole films (ppy) were synthesized using a physical plasma deposition (PAPVD) system; where the equipment design and methodology for plasma-assisted pyrrole polymerization were improvement. The morphology, functional groups, and thermal stability of the polymer network films were characterized by X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques, respectively. The electrochemical properties of the films as capacitor were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results observed by SEM showed that the ppy 100W-1 and ppy 100W-2 films present uniformity in their structure. The analyses of TGA and DSC confirmed the improvement in stability; meanwhile for 100W-1 film, the presence of ppy bonds was corroborated by XPS. Plasma-activated ppy 100W-1 film exhibited higher capacitance and minor Rct resistance than that obtained for ppy 100W-2 film. The specific capacitances values of ppy 100W-1 and ppy 100w-2 films are 196 and 150 F/g in 1 M KCl. After charging and discharging tests of 1000 cycles at 5 mA cm−2 current density of ppy 100W-1 film retains 89% of its initial capacitance. Therefore, ppy 100W-1 film showed to be a promising material for use as an electrochemical capacitor.
      PubDate: 2023-02-21
       
  • First principles study of optical properties of Ni- and Pd-doped TiO2 as
           visible light catalyst

    • Abstract: Abstract Doping TiO2 with noble metals, transition metals, cations, anions have yielded very promising results in enhancing photocatalytic activity of TiO2 in the visible region and its role in generating alternate forms of energy. Noble metals in general can effectively slow down carrier recombination. However, the study of Pd and Ni as dopant can lead to a reliable and versatile TiO2-modified photocatalyst. In this paper, we explore the optical properties of Pd- and Ni-doped TiO2 by doping with 4.17% Ni and Pd dopant concentrations. The optical properties prove that Ni-doped TiO2 can absorb well in the visible region with an absorption coefficient of 1 × 105 cm−1. Hence, Ni-doped TiO2 can successfully alter the electronic and optical properties of TiO2 for favorable future applications. In the visible region, absorption coefficient of Pd-doped TiO2 supercell is around 1.2 × 105 cm−1 which is comparatively greater than that of pure TiO2 confirming its utility as a versatile and viable visible light photocatalyst. The other optical properties like reflectivity, refractivity, extinction coefficient and electron energy loss spectrum have also been studied.
      PubDate: 2023-02-16
       
  • Electrodeposited Cobalt–Copper mixed oxides for supercapacitor
           electrodes and investigation of the Co/Cu ratio on the electrochemical
           performance

    • Abstract: Abstract In this study, different Cobalt–Copper mixed oxides compositions for supercapacitor electrodes have been prepared, by means of electrodeposition and thermal annealing. The chemical–physical and electrochemical characterization of electrodes, as well as the effect of different Co/Cu in the ratios on the crystal lattice, electrode morphologies, and electrochemical performance of the electrodes, were investigated using X-ray diffraction (XRD), scanning electron microscopic (SEM) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) tests. The results indicated that the electrode prepared from 0.06 M CoSO4·7H2O + 0.04 M CuSO4·5H2O solution (CC4) had a better electrochemical performance. The initial capacity of the CC4 electrode was 28.3 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 94%. CC4 electrode featured capacity retention of 79.2% at a constant current density of 1 A/g after 5000 cycles.
      PubDate: 2023-02-09
       
  • Biomass stemmed activated carbon electrodes toward a significant electric
           double-layer capacitor

    • Abstract: Abstract The primary goal of the current study is to improve the specific capacitance of electric double-layer (EDLC) device using biomass (Tribulus Terrestris) derived activated carbon electrodes synthesized by chemical activation method. Furthermore, high surface area carbon electrodes are characterized using X-ray diffraction (XRD), RAMAN spectroscopy, and scanning electron microscopy (SEM) to confirm the morphological structure. Finally, the electrochemical performance of fabricated EDLC proves a good agreement data using Cyclic Voltammetry (CV), Low Impedance Spectroscopy (LIS), and Galvanostatic Charge–Discharge (GCD) analysis showing the high specific capacitance of 115 Fg−1 for the optimized 1:2 activated carbon material.
      PubDate: 2023-01-20
       
  • Comparative analysis between traditional and emerging technologies:
           economic and viability evaluation in a real case scenario

    • Abstract: Abstract This research work aims to study photovoltaic systems that generate energy for self-consumption using different traditional technologies, such as silicon, and emerging technologies, like nanowires and quantum. The photovoltaic system without batteries was implemented in a residential property in three different places, in Portugal. According to Portuguese Law, the sale of surplus energy to the grid is possible but the respective value for its selling is not defined. To evaluate the project viability, two different analyses are considered: with and without the sale of surplus energy to the grid. Results show that if there is no sale of excess energy produced to the grid, the project is not economically viable considering the four different technologies. Otherwise, using traditional technologies, the project is economically viable, presenting a payback time lower than 10 years. This shows that the introduction of nanostructures in solar cells is not yet a good solution in the application of solar systems namely with the current law. Furthermore, independently of the used technology, the current Portuguese law seems to difficult the investment return, which should not be the way to encourage the use of renewable sources.
      PubDate: 2023-01-16
       
  • Effect of concentration on the properties of nitrogen-doped zinc oxide
           thin films grown by electrodeposition

    • Abstract: Abstract Zinc oxide is one of the most researched semiconductors owing to the outstanding properties that make it useful in various industrial applications, such as solar cells and other optoelectronics. In this work, ZnO thin films were prepared in five different concentrations and doped with four nitrogen atoms from triethylene tetramine (TETA) to fabricate a ZnO for optoelectronic applications using an electrodeposition technique. The doped ZnO thin films were synthesized and deposited on ITO glass substrates. The deposited thin films were annealed at 400°Cfor 60min in a furnace under the same conditions. The thin films' optical, electrical, and surface morphological properties were characterized using UV–Vis Spectrophotometer, Four Point Probe (FPP), and Scanning Electron Microscope (SEM), respectively. The optical properties confirmed the film's suitability for various transparent device applications with a high optical transmittance of about 90% at the wavelength between 250 and 950 nm. The optical band gaps of 3.25 eV to 3.50 eV were obtained at ZnO concentrations from 0.2 M to 1.0 M. The SEM images depicted a polycrystalline nature of the films with irregular nanoparticle shapes across the substrates. Electrical results established the high conductivity of nitrogen-doped ZnO thin films, thereby making the thin films suitable as transparent conducting oxides for devices such as solar cells and optoelectronics.
      PubDate: 2022-12-26
       
  • Investigating the properties of tin-oxide thin film developed by
           sputtering process for perovskite solar cells

    • Abstract: Abstract Tin oxide (SnO2) nano-crystalline thin films were deposited on silicon and glass substrates at room temperature by sputtering at a constant power of 30 W and different working pressure of 10, 7, and 5 mTorr. Surface morphology, electrical and optical properties of the films were investigated to optimise the deposition condition of the films as electron transport layer (ETL) for high-power conversion efficiency perovskite solar cells. The films were characterized by scanning electron microscopy (SEM), UV–Vis–NIR Spectrophotometer, and Four-point probe. SnO2 films obtained at working pressure of 10 mTorr exhibited uniform surface morphology with high light transmittance (90%) and conductivity (4 S/m). These sputtered SnO2 films appeared to have shown promising properties as ETL for PSC, and further investigation is justified to establish the optimal fabrication parameters and resulting energy conversion efficiency.
      PubDate: 2022-12-22
       
  • Facile fabrication, structural and electrical investigations of cadmium
           sulfide nanoparticles for fuel cell performance

    • Abstract: Abstract In the present work, CdS nanoparticles were synthesized and analyzed for use in fuel cell applications. The X-ray diffraction investigation showed that CdS possesses a cubic polycrystalline structure. For the (111) plane, the average values of mean crystallite size, microstrain, and dislocation density were calculated and found to be 1.935 nm, 0.0758, and 0.267 nm−2. The average crystallite size was additionally calculated and found to be 2.02 nm using the modified Scherrer’s plot. The observed blue shift in the photoluminescence of CdS is caused by the quantum size impact of the nanocrystalline structure. A broad emission band at 590 nm is produced by the recombination of a hole in the valence band of CdS with an electron confined in a sulfur vacancy. The average Cd/S ratio is good and comparable, according to the EDS analysis, which is close to the theoretical values and almost exactly fits the ideal structure. A thermogravimetry diagram was used to establish the thermal stability of CdS across a wide range of temperatures. Fuel cell application features peaks were investigated by the cyclic voltammetry of CdS under various conditions. The linear sweep voltammetry was used to analyze the electrochemical performance of CdS electrodes in fuel cells. Electrochemical impedance spectroscopy (EIS) was also used and the results confirmed that nickel substrate is regarded as being superior to stainless steel in terms of performance.
      PubDate: 2022-12-12
       
  • A comparison between growth of direct and pulse current electrodeposited
           crystalline SnO2 films; electrochemical properties for application in
           lithium-ion batteries

    • Abstract: Abstract Tin oxide (SnO2) films were electrodeposited on graphite substrates using direct and pulse current electrodeposition techniques. The influence of applied current density on the morphological properties, crystal structure, and electrochemical behavior of the resulting films were studied by scanning electron microscope, X-ray diffraction spectroscopy, Mott–Schottky analysis, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The results showed that pulse electrodeposited films have porous flower-like morphology with smaller crystallite size and high donor density in comparison with direct current electrodeposited films that include equiaxed particles in their morphologies, such characteristics give them better electrochemical performance (higher degree of reversibility, higher specific capacitance, and faster lithium-ion diffusion) than those films that were synthesized by conventional direct current electrodeposition method. Furthermore, using higher applied current densities leads to the improvement of SnO2 films’ electrochemical performance due to the formation of the films with finer morphology that include more porosity and oxygen vacancies in their respective crystal structure.
      PubDate: 2022-12-02
       
  • Correction to: Modification of a first‑generation solid oxide fuel cell
           cathode with Co3O4 nanocubes having selectively exposed crystal planes

    • PubDate: 2022-11-29
       
  • Design of an isolated renewable hybrid energy system: a case study

    • Abstract: Abstract In addition to the fact that most renewable energies such as solar and wind energy have become more competitive in the global energy market, thanks to the great development in conversion technologies, it believes that renewable energy can play a crucial role in global environmental issues. However, in Palestine, the situation is different from anywhere else; renewable energy is not only an economic option, but an absolute necessity to get out of the energy crisis that Palestinian cities suffer from long years ago and continue nowadays. The cornerstone of the present research is focusing on the availability of renewable energy resources in Jenin Governorate (JG)—West Bank (WB)—Palestine. Two-year time-series of hourly solar, wind, biomass, and 1-year hourly electrical load data are used in the analysis in this paper. The energy potentials were estimated using System Advisor Model software (SAM), and the optimum combination and sizing of the hybrid renewable energy system were determined using Hybrid Optimization of Multiple Energy Resources (HOMER). The proposed Hybrid Renewable Energy System (HRES) consists of an 80 MW PV solar field, 66 MW wind farm, and 50 MW biomass system with an initial investment of $323 M. The proposed HRES generates 389 GWh/yr and is enough to meet 100% of the electrical demand of JG (372 GWh/yr) with excess in electricity generation of about 4.57% and the unmeet electric load is about 109.6 MWh/yr which is equivalent to less than 2 h off in a year. The estimated Levelized Cost of Energy (LCOE) was found as 0.313 $/kWh.
      PubDate: 2022-11-13
       
  • Analysis of power conversion limitation factors of Cu (InxGa1−x) (Se)2
           thin-film solar cells using SCAPS

    • Abstract: Abstract While the first generation of silicon solar cells offers a clean and unlimited energy source, the technology has matured where costs dominate, and the theoretical power conversion efficiency is reaching its limits. The new generation of thin-film solar cells is emerging as an affordable alternative to their bulky counterparts. The technology offers a much cheaper method to quickly fabricate solar cells that use less material with good optical and electronic properties on a wide range of substrates, including flexible materials. In particular, Cu (InxGa1−x) (Se)2 thin-film solar cells are investigated using SCAPS simulation to study the impact of series resistance and doping levels of different layers of the cell structure on the short-circuit current, open-circuit voltage, power conversion efficiency, and fill factor. It was found that an increase in the series resistance of the solar cell layers results in a decrease in the power conversion efficiency with a dependency on light intensities. In addition, the doping level in the absorber and buffer layers plays a significant role in controlling the solar cell’s power conversion efficiency and fill factor values with maximum values when acceptor doping levels are approximately equal to donor doping levels.
      PubDate: 2022-11-11
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.175.191.46
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-