Subjects -> ENERGY (Total: 414 journals)
    - ELECTRICAL ENERGY (12 journals)
    - ENERGY (252 journals)
    - ENERGY: GENERAL (7 journals)
    - NUCLEAR ENERGY (40 journals)
    - PETROLEUM AND GAS (58 journals)
    - RENEWABLE ENERGY (45 journals)

NUCLEAR ENERGY (40 journals)

Showing 1 - 37 of 37 Journals sorted alphabetically
Atom Indonesia     Open Access  
Bulletin of the Atomic Scientists     Hybrid Journal   (Followers: 8)
CNL Nuclear Review     Partially Free  
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir     Open Access  
EPJ Nuclear Sciences & Technologies     Open Access   (Followers: 3)
Fusion Science and Technology     Hybrid Journal   (Followers: 4)
Ganendra : Majalah IPTEK Nuklir     Open Access  
Hyperfine Interactions     Hybrid Journal   (Followers: 1)
IEEE Transactions on Sustainable Energy     Hybrid Journal   (Followers: 13)
International Journal of Advanced Nuclear Reactor Design and Technology     Open Access  
International Journal of Critical Infrastructure Protection     Hybrid Journal   (Followers: 4)
International Journal of Nuclear Energy Science and Engineering     Open Access   (Followers: 5)
International Journal of Nuclear Law     Hybrid Journal   (Followers: 3)
International Journal of Nuclear Safety and Security     Hybrid Journal   (Followers: 1)
International Journal of Nuclear Security     Open Access   (Followers: 1)
Journal of Nuclear Energy Science & Power Generation Technology     Hybrid Journal   (Followers: 2)
Journal of Nuclear Engineering & Technology     Full-text available via subscription   (Followers: 3)
Journal of Nuclear Science and Technology     Hybrid Journal   (Followers: 2)
Journal of Power Technologies     Open Access   (Followers: 6)
Journal of Radiation Research     Open Access   (Followers: 3)
Journal of the Physical Society of Japan     Hybrid Journal   (Followers: 2)
Kerntechnik     Full-text available via subscription  
Majalah Ilmiah Teknologi Elektro : Journal of Electrical Technology     Open Access   (Followers: 1)
Nano Energy     Open Access   (Followers: 11)
Nanomaterials and Energy     Hybrid Journal   (Followers: 1)
Nuclear Energy and Technology     Open Access   (Followers: 3)
Nuclear Engineering and Technology     Open Access   (Followers: 5)
Nuclear Materials and Energy     Open Access   (Followers: 1)
Nuclear Science and Engineering     Hybrid Journal   (Followers: 7)
Nuclear Science and Techniques     Full-text available via subscription  
Nuclear Technology     Hybrid Journal   (Followers: 5)
Nucleus     Open Access  
Nukleonika     Open Access  
Radiation Detection Technology and Methods     Hybrid Journal   (Followers: 1)
Tri Dasa Mega : Jurnal Teknologi Reaktor Nuklir     Open Access  
Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir     Open Access  
World Journal of Nuclear Science and Technology     Open Access   (Followers: 4)
Similar Journals
Journal Cover
Tri Dasa Mega : Jurnal Teknologi Reaktor Nuklir
Number of Followers: 0  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1411-240X - ISSN (Online) 2527-9963
Published by Badan Tenaga Nuklir Nasional Homepage  [2 journals]
  • PREDICTION OF AP1000’S NUCLEAR REACTOR PRESSURE VESSEL TEMPERATURE
           DURING NORMAL OPERATION

    • Authors: Muhammad Darwis Isnaini, Elfrida Saragi, Veronika Indriati Sri Wardani
      Pages: 99 - 106
      Abstract: Modeling of thermal-hydraulic calculations for the AP1000 core to predict the reactor pressure vessel (RPV) temperature has been carried out. The reactor’s primary coolant system transfers the heat produced in the reactor fuel during reactor operation to the steam generator. Part of the heat will also be transferred from the coolant to the reactor vessel and the pipe. This paper presents the calculation result of the RPV temperature prediction during AP1000 normal operation. Calculations were performed using COBRA-EN code for analyzing the core thermal hydraulics and using analytics for predicting the RPV temperature. These methods were carried out with the aim to predict the RPV temperature as well as at steady state nominal power conditions, at the function of flow, and at power fluctuation conditions. The calculation results at nominal power 3400 MWt (100% heat generated in fuel was assumed) and thermal design flow with 10% tube plugging (TDF2) of 48,443.7 ton/hr, for the minimum system pressure of 15.1 MPa, nominal system pressure of 15.513 MPa, and design system pressure of 17.133 MPa, show that the core outlet coolant temperature is 326.96°C, 327.01°C, and 327.22°C, and the RPV temperature is 303.65°C, 303.87°C, and 306.67°C, and the minimum departure from nucleate boiling ratio (MDNBR) is 3.21, 3.29, and 3.01, respectively. During reactor operation at a fixed nominal power of 3400 MWt, nominal system pressure, and under the condition of flow fluctuation, the maximum RPV temperature is shown to be 303.87°C.
      PubDate: 2022-11-09
      DOI: 10.17146/tdm.2022.24.3.6684
      Issue No: Vol. 24, No. 3 (2022)
       
  • ESTIMATION OF NEUTRON AND PROMPT PHOTON DOSE RATE DISTRIBUTION IN TMSR-500
           USING MCNP6

    • Authors: Luqman Satria Pradana, Utari Utari, Suharyana Suharyana, Azizul Khakim
      Pages: 107 - 116
      Abstract: Thorium Molten Salt Reactor-500 (TMSR-500), one of the Generation IV nuclear reactors, is designed by Thorcon International, Pte. Ltd, which is projected to be built in Indonesia. The reactor core is radially surrounded by B4C shielding, but not the upper part. As the silo hall sits above the reactor core and is accessible by reactor personnel, the dose rate must be calculated in the area to ensure the workers receive an annual dose below the acceptable limit. The dose rate from neutrons and photons as the result of fission reactions are the only sources to be calculated in this research, without taking the source from fission products into account. This research aims to obtain the dose rate distribution of neutrons and prompt photons using Monte Carlo code MCNP6. The reactor was assumed to operate at a nominal thermal power of 557 MWth. Dose rate calculation was obtained from flux Tally F4 and converted into dose rate using Dose Energy Dose Function (DEDF) factor. Conversion factors of flux to the dose were based on ICRP-21 and ANSI/ANS-6.1.1 1977. The result of the calculations showed that the distribution of neutron and prompt photon fluxes does not reach the silo hall.
      PubDate: 2022-11-09
      DOI: 10.17146/tdm.2022.24.3.6692
      Issue No: Vol. 24, No. 3 (2022)
       
  • NEUTRONIC ANALYSIS OF THE VVER-1200 LATTICE CELL FUEL USING WIMSD-5B CODE

    • Authors: Santo Paulus Rajagukguk, Syaiful Bakhri, Ana Muliyana, Juniastel Rajagukguk
      Pages: 117 - 124
      Abstract: The calculation of safety parameters in nuclear reactors has an important influence on nuclear reactor control and safety. The infinite multiplication factor, reactivity coefficients, and power peaking factor parameters are the most important safety parameters for determining reactor status. The aim of the present study is to analyze the behavior of the nuclear safety parameters for the VVER-1200 core in a normal state of reactor operation. A lattice cell fuel model of the VVER-1200 reactor core was performed using WIMSD-5B. The cross-section library data based on the ENDF/B-VIII.0 was used. The investigated parameters were the value of infinite multiplication factor with different pitch, temperature, enrichment, and boron concentration.  The calculation also investigated the reactivity coefficient parameters. The verification of WIMS model VVER-1200 was performed by comparing the results of the WIMSD-5B code with VVER-1200 data in the SAR document, and it was implied that they are in good agreement. The calculated values of reactivity coefficients illustrated a safe behavior.
      PubDate: 2022-11-09
      DOI: 10.17146/tdm.2022.24.3.6697
      Issue No: Vol. 24, No. 3 (2022)
       
  • MICROCONTROLLER ATMEGA328P TIMER/COUNTER FOR SINGLE CHANNEL GAMMA
           SPECTROSCOPY

    • Authors: Santiko Tri Sulaksono, Putu Sukmabuana, Nanda Nagara
      Pages: 125 - 130
      Abstract: Soil contamination may occur in the upcoming decommissioning activities of the TRIGA2000 Reactor. Measurement of contaminant radioactivity, which can be performed using single-channel spectroscopy, is required in soil decontamination processes. This research develops a timer/counter system for single-channel spectroscopy using a microcontroller. The performance of the ATMega328P microcontroller Timer/Counter on Arduino has been tested for single-channel spectroscopy. Microcontroller's Timer/Counter1 is used as a counter while Timer/Counter2 is used as a timer. Tests include the linearity test, comparative test, and chi-square test. The test results show that the ATMega328P microcontroller Timer/Counter works well and can be used as the end of a single-channel spectroscopic system.
      PubDate: 2022-11-09
      DOI: 10.17146/tdm.2022.24.3.6699
      Issue No: Vol. 24, No. 3 (2022)
       
  • COLLISION CASCADE AND PRIMARY RADIATION DAMAGE IN SILICON CARBIDE: A
           MOLECULAR DYNAMICS STUDY

    • Authors: Ihda Husnayani, Muzakkiy Putra Muhammad Akhir
      Pages: 131 - 136
      Abstract: Silicon carbide (SiC) is a competitive candidate material to be used in several advanced and Generation-IV nuclear reactor designs as neutron moderator, fuel coating, cladding, or core structural material. Many studies have been performed to investigate the durability of SiC in severe environment in nuclear reactor. However, the nature and behavior of defect induced by neutron irradiation are still not fully understood. This paper is aimed to study collision cascade and primary radiation damage in SiC using molecular dynamics simulation. The potential being used was a hybrid Tersoff potential modified with Ziegler-Biersack-Littmark (ZBL) screening function. The collision cascade was let evolved for 10 ps from a Si or C primary knocked atom (PKA) located initially at the top center of a system containing 960.000 atoms. The simulation was carried out at room temperature as well as at several advanced fission reactor-relevant temperatures. It was obtained that the number of C point defects were larger than the number of Si point defects. The number of stable point defect was found to be temperature-dependent. It was also obtained that the recovery of point defects was larger at high temperature (>800 C).
      PubDate: 2022-11-09
      DOI: 10.17146/tdm.2022.24.3.6702
      Issue No: Vol. 24, No. 3 (2022)
       
  • Acknowledgement

    • Authors: Editor in Chief
      Pages: 137 - 138
      Abstract: This Section consists of Abstract Collection Page, Keywords Index Page and Acknowledgment Page
      PubDate: 2022-11-09
      Issue No: Vol. 24, No. 3 (2022)
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.247.184
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-