Subjects -> BIOLOGY (Total: 3174 journals)
    - BIOCHEMISTRY (239 journals)
    - BIOENGINEERING (143 journals)
    - BIOLOGY (1491 journals)
    - BIOPHYSICS (53 journals)
    - BIOTECHNOLOGY (243 journals)
    - BOTANY (233 journals)
    - CYTOLOGY AND HISTOLOGY (32 journals)
    - ENTOMOLOGY (67 journals)
    - GENETICS (165 journals)
    - MICROBIOLOGY (279 journals)
    - MICROSCOPY (13 journals)
    - ORNITHOLOGY (26 journals)
    - PHYSIOLOGY (73 journals)
    - ZOOLOGY (117 journals)

CYTOLOGY AND HISTOLOGY (32 journals)

Showing 1 - 29 of 29 Journals sorted alphabetically
Acta Histochemica     Hybrid Journal   (Followers: 3)
Annals of Cytology and Pathology     Open Access   (Followers: 1)
Applied Immunohistochemistry & Molecular Morphology     Hybrid Journal   (Followers: 16)
Cell Discovery     Open Access   (Followers: 2)
Comparative Cytogenetics     Open Access   (Followers: 1)
Current Protocols in Cytometry     Hybrid Journal  
Cytogenetic and Genome Research     Full-text available via subscription   (Followers: 2)
Cytokine     Hybrid Journal   (Followers: 6)
Cytokine & Growth Factor Reviews     Hybrid Journal   (Followers: 3)
Cytokine : X     Open Access  
Cytology and Genetics     Hybrid Journal   (Followers: 4)
Cytometry Part A     Hybrid Journal   (Followers: 3)
Cytometry Part B: Clinical Cytometry     Hybrid Journal   (Followers: 4)
Cytopathology     Hybrid Journal   (Followers: 11)
Cytoskeleton     Hybrid Journal   (Followers: 1)
Cytotechnology     Hybrid Journal   (Followers: 10)
Diagnostic Cytopathology     Hybrid Journal   (Followers: 10)
Egyptian Journal of Genetics And Cytology     Open Access  
European Journal of Histochemistry     Open Access   (Followers: 4)
Folia Cryptogamica Estonica     Open Access  
Histochemistry and Cell Biology     Hybrid Journal   (Followers: 6)
Journal of Cytology & Histology     Open Access   (Followers: 5)
Journal of Histochemistry and Cytochemistry     Hybrid Journal   (Followers: 7)
Journal of Histotechnology     Hybrid Journal   (Followers: 2)
Journal of Molecular Histology     Hybrid Journal   (Followers: 5)
Journal of the American Society of Cytopathology     Hybrid Journal   (Followers: 5)
Journal of the History of Biology     Hybrid Journal   (Followers: 5)
Single Cell Biology     Open Access  
Vegetation History and Archaeobotany     Hybrid Journal   (Followers: 4)
Similar Journals
Journal Cover
European Journal of Histochemistry
Journal Prestige (SJR): 0.879
Citation Impact (citeScore): 2
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1121-760X - ISSN (Online) 2038-8306
Published by PAGEPress Homepage  [52 journals]
  • Clinicopathological assessment of cancer/testis antigens NY‑ESO‑1 and
           MAGE‑A4 in osteosarcoma

    • Authors: Kazuhiko Hashimoto, Shunji Nishimura, Tomohiko Ito, Naohiro Oka, Ryosuke Kakinoki, Masao Akagi
      Abstract: The cancer/testis antigens (CTAs), New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen gene (MAGE)-A4 are normally restricted to male germ cells but are aberrantly expressed in several cancers. Considering the limited information regarding their significance in osteosarcoma (OS), the purpose of this study was to determine the clinical significance of NY-ESO-1 and MAGE-A4 expression in OS. Nine patients with OS treated at Kindai University Hospital were included in the study. The median age was 27 years, and median follow-up period was 40 months. The specimens obtained at the time of biopsy were used to perform immunostaining for NY-ESO, MAGE-A4, p53, and Ki-67. The positive cell rates and positive case rates of NY-ESO, MAGE-A4, p53, and Ki-67 were calculated. The correlation between the positive cell rate of immunohistochemical markers was also calculated. The correlation between the positive cell rate of NY-ESO-1 or MAGE-A4 and tumor size or maximum standardized uptake (SUV-max) was also determined. The positive cell rates of NY-ESO-1 or MAGE-A4 in continuous disease-free (CDF) cases were also compared with those in alive with disease (AWD) or dead of disease (DOD) cases. The average positive cell rates of NY-ESO, MAGEA4, p53, and Ki-67 were 71.7%, 85.1%, 16.2%, and 14.7%, and their positive case rates were 33.3%, 100%, 44.4%, and 100%, respectively. The positivity rates of NY-ESO-1 and p53 were strongly correlated, whereas those of NY-ESO-1 and Ki-67 were moderately correlated. The MAGE-A4 and p53 positivity rates and the MAGE-A4 and Ki-67 positive cell rates were both strongly correlated. The NY-ESO-1 and MAGE-A4 positivity rates were moderately correlated. The positive correlation between the NY-ESO-1 positive cell rate and tumor size was medium, and that between the MAGE-A4 positivity rate and SUV-max was very strong. There was no significant difference in the positive cell rates of NY-ESO-1 or MAGE-A4 between CDF cases and AWD or DOD cases. Overall, our results suggest that NY-ESO-1 and MAGE-A4 may be involved in the aggressiveness of OS.
      PubDate: 2022-06-23
      DOI: 10.4081/ejh.2022.3377
      Issue No: Vol. 66, No. 3 (2022)
       
  • Extracellular vesicles from bone mesenchymal stem cells transport
           microRNA-206 into osteosarcoma cells and target NRSN2 to block the
           ERK1/2-Bcl-xL signaling pathway

    • Authors: Alimu Keremu, Pazila Aila, Aikebaier Tusun , Maimaitiaili Abulikemu, Xiaoguang Zou
      Abstract: Osteosarcoma (OS) is a kind of malignant tumor originating from mesenchymal tissue Bone mesenchymal stem cells-derived extracellular vesicles (BMSCs-EVs) can play important roles in OS. This study investigated the mechanism of BMSCs-EVs on OS. BMSC surface antigens and adipogenic and osteogenic differentiation were detected by flow cytometry, and oil red O and alizarin red staining. EVs were isolated from BMSCs by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot (WB). miR-206 and neurensin-2 (NRSN2) levels in human osteoblast hFOB 1.19 or OS cells (143B, MG-63, Saos2, HOS) were detected by RT-qPCR. Human OS cells with lower miR-206 levels were selected and treated with BMSCs-EVs or pSUPER-NRSN2. The uptake of EVs by 143B cells, cell proliferation, apoptosis, invasion, and migration were detected by immunofluorescence, 5-ethynyl-2’-deoxyuridine (EdU) and colony formation assays, flow cytometry, scratch test, and transwell assays. The binding sites between miR-206 and NRSN2 were predicted by Starbase database and verified by dual-luciferase assay. The OS xenograft model was established and treated by BMSCs-EVs. Tumor growth rate and volume, cell proliferation, and p-ERK1/2, ERK1/2, and Bcl-xL levels were detected by vernier caliper, immunohistochemistry, and WB. BMSCs-EVs were successfully extracted. miR-206 was diminished and NRSN2 was promoted in OS cells. BMSCs-EVs inhibited proliferation, migration, and invasion, and promoted apoptosis of OS cells. BMSCs-EVs carried miR-206 into OS cells. Inhibition of miR-206 in EVs partially reversed the inhibitory effect of EVs on malignant behaviors of OS cells. miR-206 targeted NRSN2. Overexpression of NRSN2 reversed the inhibitory effect of EVs on OS cells. NRSN2 activated the ERK1/2-Bcl-xL pathway. BMSC-EVs inhibited OS growth in vivo. In summary, BMSC-EVs targeted NRSN2 and inhibited the ERK1/2-Bcl-xL pathway by carrying miR-206 into OS cells, thus inhibiting OS progression.
      PubDate: 2022-06-22
      DOI: 10.4081/ejh.2022.3394
      Issue No: Vol. 66, No. 3 (2022)
       
  • Transcription factor nuclear factor erythroid 2 p45-related factor 2
           (NRF2) ameliorates sepsis-associated acute kidney injury by maintaining
           mitochondrial homeostasis and improving the mitochondrial function

    • Authors: Zhijiang Chen, Huili Wang, Bin Hu, Xinxin Chen, Meiyu Zheng, Lili Liang, Juanjuan Lyu, Qiyi Zeng
      Abstract: Mitochondrial dysfunction has a role in sepsis-associated acute kidney injury (S-AKI), so the restoration of normal mitochondrial homeostasis may be an effective treatment strategy. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) is a main regulator of cell-redox homeostasis, and recent studies reported that NRF2 activation helped to preserve mitochondrial morphology and function under conditions of stress. However, the role of NRF2 in the process of S-AKI is still not well understood. The present study investigated whether NRF2 regulates mitochondrial homeostasis and influences mitochondrial function in S-AKI. We demonstrated activation of NRF2 in an in vitro model: lipopolysaccharide (LPS) challenge of ductal epithelial cells of rat renal tubules (NRK-52e cells), and an in vivo model: cecal ligation and puncture (CLP) of rats. Over-expression of NRF2 attenuated oxidative stress, apoptosis, and the inflammatory response; enhanced mitophagy and mitochondrial biogenesis; and mitigated mitochondrial damage in the in vitro model. In vivo experiments showed that rats treated with an NRF2 agonist had higher adenosine triphosphate (ATP) levels, lower blood urea nitrogen and creatinine levels, fewer renal histopathological changes, and higher expression of mitophagy-related proteins [PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), microtubule-associated protein 1 light chain 3 II (LC3 II)] and mitochondrial biogenesis-related proteins [peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) and mitochondrial transcription factor A (TFAM)]. Electron microscopy of kidney tissues showed that mitochondrial damage was alleviated by treatment with an NRF2 agonist, and the opposite response occurred upon treatment with an NRF2 antagonist. Overall, our findings suggest that mitochondria have an important role in the pathogenesis of S-AKI, and that NRF2 activation restored mitochondrial homeostasis and function in the presence of this disease. This mitochondrial pathway has the potential to be a novel therapeutic target for the treatment of S-AKI.
      PubDate: 2022-06-21
      DOI: 10.4081/ejh.2022.3412
      Issue No: Vol. 66, No. 3 (2022)
       
  • MALAT1 regulates hypertrophy of cardiomyocytes by modulating the
           miR-181a/HMGB2 pathway

    • Authors: Feng Chen, Wenfeng Li, Dandan Zhang, Youlin Fu, Wenjin Yuan, Gang Luo, Fuwei Liu, Jun Luo
      Abstract: Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
      PubDate: 2022-06-21
      DOI: 10.4081/ejh.2022.3426
      Issue No: Vol. 66, No. 3 (2022)
       
  • Ferroptosis resistance cooperates with cellular senescence in the overt
           stage of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

    • Authors: Antonella Vetuschi, Alfredo Cappariello, Paolo Onori, Eugenio Gaudio, Giovanni Latella, Simona Pompili, Roberta Sferra
      Abstract: Cellular senescence and ferroptosis are the two main, fine-tuned processes in tissue damage restraint; however, they can be overactivated in pathologies such as nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH), becoming dangerous stimuli. Senescence is characterized by a decline in cell division and an abnormal release of reactive oxygen species (ROS), and ferroptosis is represented by iron deposition associated with an excessive accumulation of ROS. ROS and cellular stress pathways are also drivers of NAFLD/NASH development. The etiology of NAFLD/NASH lies in poor diets enriched in fat and sugar. This food regimen leads to liver steatosis, resulting in progressive degeneration of the organ, with a late onset of irreversible fibrosis and cirrhosis. Few studies have investigated the possible connection between senescence and ferroptosis in NAFLD/NASH progression, despite the two events sharing some molecular players. We hypothesized a possible link between senescence and ferroptosis in a NAFLD background. To thoroughly investigate this in the context of “Western-style” diet (WSD) abuse, we used an amylin-modified liver NASH mouse model. The main NASH hallmarks have been confirmed in this model, as well as an increase in apoptosis, and Ki67 and p53 expression in the liver. Senescent beta-galactosidase-positive cells were elevated, as well as the expression of the related secretory molecules Il-6 and MMP-1. Features of DNA damage and iron-overload were found in the livers of NASH mice. Gpx4 (glutathione peroxidase 4) expression, counteracting ferroptotic cell death, was increased. Notably, an increased number of senescent cells showing overexpression of gpx4 was also found. Our data seem to suggest that senescent cells acquire a gpx4-mediated mechanism of ferroptosis resistance and thus remain in the liver, fostering the deterioration of liver fitness.
      PubDate: 2022-06-21
      DOI: 10.4081/ejh.2022.3391
      Issue No: Vol. 66, No. 3 (2022)
       
  • Inhibition of HMGB1 suppresses inflammation and catabolism in
           temporomandibular joint osteoarthritis via NF-κB signaling pathway

    • Authors: Yan Yan Li, Ya Ping Feng, Li Liu, Jin Ke, Xing Long
      Abstract: HMGB1 is a highly conserved nuclear protein that is rapidly released into the extracellular environment during infection or tissue damage. In osteoarthritis, HMGB1 acts as a pro-inflammatory cytokine inducing a positive feedback loop for synovial inflammation and cartilage degradation. The aim of this study was to explore the role of HMGB1 in inflammation and catabolism of temporomandibular joint osteoarthritis (TMJOA) and whether inhibition of HMGB1 affects TMJOA. Human synovial fibroblasts were incubated with HMGB1, the expression of pro-inflammatory cytokines and catabolic mediators were measured by Western blot and ELISA. NF-κB signaling pathway involvement was studied by the NF-κB inhibitor and detected by Western blotting and immunofluorescence staining. TMJOA was induced by an injection of Complete Freund’s adjuvant (CFA) into anterosuperior compartment of rat’s joint. An anti-HMGB1 antibody was used to assess the effect to HMGB1 in the synovium and cartilage of the CFA-induced TMJOA rats by H&E, Safranin O, Masson trichrome staining, immunohistochemistry and immunofluorescence. HMGB1 markedly increased the production of MMP13, ADAMTS5, IL-1β and IL-6 through activating NF-κB signaling pathway in human synovial fibroblasts. In vivo, application of the HMGB1 neutralizing antibody effectively ameliorated the detrimental extent of TMJOA. Furthermore, the HMGB1 neutralizing antibody reduced the expression of NF-κB, pro-inflammatory cytokines and catabolic mediators in the synovium and cartilage of CFA-induced TMJOA rats. HMGB1 inhibition alleviates TMJOA by reducing synovial inflammation and cartilage catabolism possibly through suppressing the NF-κB signaling pathway and may become a therapeutic method against TMJOA.
      PubDate: 2022-06-21
      DOI: 10.4081/ejh.2022.3357
      Issue No: Vol. 66, No. 3 (2022)
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.236.107.249
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-