Subjects -> CHEMISTRY (Total: 986 journals)
    - ANALYTICAL CHEMISTRY (59 journals)
    - CHEMISTRY (713 journals)
    - CRYSTALLOGRAPHY (23 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (45 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (71 journals)

INORGANIC CHEMISTRY (45 journals)

Showing 1 - 34 of 34 Journals sorted alphabetically
Acta Polymerica     Hybrid Journal   (Followers: 9)
Additives for Polymers     Full-text available via subscription   (Followers: 20)
Advances in Inorganic Chemistry     Full-text available via subscription   (Followers: 9)
Advances in Polymer Technology     Open Access   (Followers: 13)
Bioinorganic Chemistry and Applications     Open Access   (Followers: 5)
Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature     Hybrid Journal   (Followers: 1)
Communication in Inorganic Synthesis     Open Access  
European Journal of Inorganic Chemistry     Hybrid Journal   (Followers: 10)
European Polymer Journal     Hybrid Journal   (Followers: 44)
High Performance Polymers     Hybrid Journal   (Followers: 1)
Indian Journal of Chemistry - Section A     Open Access   (Followers: 9)
Inorganic and Nano-Metal Chemistry     Hybrid Journal  
Inorganic Chemistry     Hybrid Journal   (Followers: 31)
Inorganic Chemistry Communications     Hybrid Journal   (Followers: 13)
Inorganic Chemistry Frontiers     Hybrid Journal   (Followers: 4)
Inorganic Materials     Hybrid Journal   (Followers: 5)
Inorganic Materials: Applied Research     Hybrid Journal   (Followers: 1)
Inorganica Chimica Acta     Hybrid Journal   (Followers: 6)
International Journal of Bio-Inorganic Hybrid Nanomaterials     Open Access   (Followers: 2)
International Journal of Inorganic Chemistry     Open Access   (Followers: 3)
JBIC Journal of Biological Inorganic Chemistry     Hybrid Journal   (Followers: 2)
Journal of Inorganic and Organometallic Polymers and Materials     Hybrid Journal   (Followers: 8)
Journal of Inorganic Biochemistry     Hybrid Journal   (Followers: 4)
Journal of Inorganic Chemistry     Open Access   (Followers: 3)
Journal of Polymers and the Environment     Hybrid Journal   (Followers: 1)
Journal of Progressive Research in Chemistry     Open Access  
Journal of Separation Science     Hybrid Journal   (Followers: 10)
Materials Today Chemistry     Hybrid Journal   (Followers: 2)
Open Journal of Inorganic Chemistry     Open Access   (Followers: 1)
Polymer Bulletin     Hybrid Journal   (Followers: 7)
Polymer Composites     Hybrid Journal   (Followers: 18)
Russian Journal of Inorganic Chemistry     Hybrid Journal  
Separation Science plus (SSC plus)     Hybrid Journal  
Zeitschrift für anorganische und allgemeine Chemie     Hybrid Journal   (Followers: 1)
Similar Journals
Journal Cover
JBIC Journal of Biological Inorganic Chemistry
Journal Prestige (SJR): 0.931
Citation Impact (citeScore): 3
Number of Followers: 2  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-1327 - ISSN (Online) 0949-8257
Published by Springer-Verlag Homepage  [2537 journals]
  • Copper(II) and silver(I)-1,10-phenanthroline-5,6-dione complexes interact
           with double-stranded DNA: further evidence of their apparent multi-modal
           activity towards Pseudomonas aeruginosa

    • Free pre-print version: Loading...

      Abstract: Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (− 7.9 kcal/mol) or minor (− 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M−1) than Ag-phendione (Kapp = 2.79 × 105 M−1) and phendione (Kapp = 1.33 × 105 M−1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa. Graphical abstract
      PubDate: 2022-01-10
       
  • Structural characterization and antileishmanial activity of newly
           synthesized organo-bismuth(V) carboxylates: experimental and molecular
           docking studies

    • Free pre-print version: Loading...

      Abstract: In a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR′)2], where R=C6H5 for 1–4 and p-CH3C6H4 for 5–8, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (1H and 13C) NMR spectroscopy and X-ray crystallography. The crystal structures for [BiPh3(O2CC6H4(o-Br))2] (1), [BiPh3(O2CC2H2C6H4)2] (2), [BiPh3(O2CC6H4(m-NO2))2] (3) and [BiPh3(O2CC6H4(2-OH,3-CH3))2] (4) were determined and found to have a distorted pentagonal bipyramidal molecular geometry with seven coordinated bismuth center for 1–3 and for 4 distorted octahedral geometry, respectively. All the synthesized complexes demonstrated a moderate to significant activity against leishmania parasites. A broad analytical approach was followed to testify the stability for (1–8) in solid state as well as in solution and in leishmanial culture M199, ensuring them to be stable enough to exert a significant antileishmanial effect with promising results. Cytotoxicity profile suggests that tris(tolyl) derivatives show lower toxicity against isolated lymphocytes with higher antileishmanial potential. Molecular docking studies were carried out to reveal the binding modes for (1–8) targeting the active site of trypanothione reductase (TR) (PDB ID: 4APN) and Trypanothione Synthetase-Amidase structure (PDB ID 2vob). Graphical abstract
      PubDate: 2022-01-04
       
  • Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen

    • Free pre-print version: Loading...

      Abstract: Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2− is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2− to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features. Graphical abstract
      PubDate: 2021-12-05
       
  • Understanding the ancillary ligand effect on luminescent cyclometalated
           Ir(III) complex as a reporter for 2-acetylaminofluorene DNA(AAF-dG) adduct
           

    • Free pre-print version: Loading...

      Abstract: Mutagenic agents such as aromatic amines undergo metabolic activation and produce DNA adducts at C8 position of guanine bases. N-2-acetylaminofluorene (AAF) generates different mutational outcomes when placed at G1, G2, and G3 of a NarI sequence (-G1G2CG3CC/T-). These outcomes are dictated by the conformations adopted by these adducts. Detection of such lesions is of considerable interest owing to their hazardous effects. Here, we report the synthesis of three cyclometalated [Ir(L)2dppz]+ complexes (L = 2-phenylpyridine (ppy) 1; benzo[h]quinoline (bhq) 2; 2-phenylquinoline (pq) 3; dppz = dipyrido[3,2-a:2',3'-c]phenazine) and their interaction with AAF adducted NarI DNA. Remarkably, complexes 1 and 2 displayed dominant 3LC transition characteristic of polar environment despite binding to the adducted sites. On the other hand, complex 3 binds to NarI sequences and behaves as a luminescent reporter for AAF-modified DNA. The results reported here emphasize that molecular light switching phenomenon can be stimulated by switching ancillary ligands and might act as potential probes for covalent-DNA defects. Graphical abstract
      PubDate: 2021-11-29
       
  • Characterisation of the redox centers of ethylbenzene dehydrogenase

    • Free pre-print version: Loading...

      Abstract: Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe–4S cluster (FS0) in the α-subunit, three 4Fe–4S clusters (FS1 to FS3) and a 3Fe–4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe–S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1–FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI–MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH. Graphical abstract
      PubDate: 2021-11-29
       
  • Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as
           potential anticancer agents

    • Free pre-print version: Loading...

      Abstract: We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1−3) and its Cu(II) complexes [Cu(L1−3)Cl], 1–3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M−1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2ʹ,7ʹ-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells. Graphical abstract
      PubDate: 2021-11-24
       
  • Interactions of a boron-containing levodopa derivative on D2 dopamine
           receptor and its effects in a Parkinson disease model

    • Free pre-print version: Loading...

      Abstract: Levodopa is a cornerstone in Parkinson’s disease treatment. Beneficial effects are mainly by binding on D2 receptors. Docking simulations of a set of compounds including well-known D2-ligands and a pool of Boron-Containing Compounds (BCC), particularly boroxazolidones with a tri/tetra-coordinated boron atom, were performed on the D2 Dopamine receptor (D2DR). Theoretical results yielded higher affinity of the compound DPBX, a Dopaboroxazolidone, than levodopa on D2DR. Essential interactions with residues in the third and sixth transmembrane domains of the D2DR appear to be crucial to induce and stabilize interactions in the active receptor state. Results from a motor performance evaluation of a murine model of Parkinson’s disease agree with theoretical results, as DPBX showed similar efficacy to that of levodopa for diminishing MPTP-induced parkinsonism. This beneficial effect was disrupted with prior Risperidone (D2DR antagonist) administration, supporting the role of D2DR in the biological effect of DPBX. In addition, DPBX limited neuronal loss in substantia nigra in a similar manner to that of levodopa administration. Graphical abstract
      PubDate: 2021-11-22
       
  • FrpA is the outer membrane piscibactin transporter in Vibrio anguillarum:
           structural elements in synthetic piscibactin analogues required for
           transport

    • Free pre-print version: Loading...

      Abstract: Piscibactin (Pcb) is a labile siderophore widespread among Vibrionaceae. Its production is a major virulence factor of some fish pathogens such as Photobacterium damselae subsp. piscicida and Vibrio anguillarum. Although FrpA was previously suggested as the putative outer membrane transporter (OMT) for ferri-piscibactin, its role in piscibactin uptake was never demonstrated. In this work, we generated mutants of V. anguillarum defective in FrpA and analyzed their ability to use piscibactin as iron source. The results showed that inactivation of frpA completely disables piscibactin utilization, and the original phenotype could be restored by gene complementation, confirming that FrpA is the OMT that mediates ferri-Pcb uptake. Additionally, the ability of several Pcb thiazole analogues, with different configurations at positions 9, 10, and 13, to be internalized through FrpA, was evaluated measuring their ability to promote growth under iron deficiency of several indicator strains. The results showed that while those analogues with a thiazole ring maintain almost the same activity as Pcb, the maintenance of the hydroxyl group present in natural piscibactin configuration at position C-13 is crucial for Fe3+ chelation and, in consequence, for the recognition of the ferri-siderophore by the cognate OMT. All these findings allowed us to propose a Pcb analogue as a good candidate to vectorize antimicrobial compounds, through the Trojan horse strategy, to develop novel compounds against bacterial fish diseases. Graphical abstract
      PubDate: 2021-11-18
       
  • Nitric oxide, chronic iron and copper overloads and regulation of redox
           homeostasis in rat liver

    • Free pre-print version: Loading...

      Abstract: Iron [Fe(II)] and copper [Cu(II)] ions produced liver oxidative stress and damage, and as a consequence, changes in the antioxidant protection. The objective of this work is to evaluate whether control of redox homeostasis in chronic overload of Fe(II) and Cu(II) is associated with nitric oxide (NO) and antioxidant enzymes protection in liver. Male Sprague–Dawley rats of 80–90 g received the standard diet ad libitum and drinking water supplemented with either 1.0 g/L of ferrous chloride (0.1% w/v, n = 24) or 0.5 g/L cupric sulfate (0.05% w/v, n = 24) for 42 days. The activities of the enzymes involved in the control of cellular redox homeostasis, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), were determined by spectrophotometric methods, and NO production was determined by the determination of nitrite levels in liver. Chronic overload with Fe(II) and Cu(II) led to a significant increase of NO production while hampering the activity of NADPH oxidase. Meanwhile, the animals supplemented with Fe(II) showed a decrease in SOD and Gpx activities in liver homogenates with respect to baseline activity after 7 days of treatment, whereas the rats which received Cu(II) showed an increased SOD and catalase activity after 28 and 7 days of chronic overload. Further research is required to understand whether the modulation of the activity of these enzymes upon Cu and Fe overload is involved in a common toxic pathway or may serve to control the steady state of oxidant species related to redox signaling pathways. Graphical abstract
      PubDate: 2021-11-17
       
  • The role of hydrolysis in biological effects of molybdenum cluster with
           DMSO ligands

    • Free pre-print version: Loading...

      Abstract: Biological applications of octahedral molybdenum cluster complexes are complicated by their hydrolytic instability, since hydrolysis leads to irreversible changes in the structure and properties of these compounds. On the other hand, if such changes are thoroughly investigated and understood, the hydrolysis process can become an important tool for regulating specific biological effects of the clusters. In this work, we demonstrate how the luminescence and biological properties (cellular uptake, cytotoxicity in the dark and photodynamic effect) of highly unstable cluster complex [{Mo6I8}(DMSO)6](NO3)4 change along with the degree of hydrolysis. Particularly, cluster solution preliminarily aged in water demonstrated lower dark and higher photoinduced cytotoxicity and higher cellular uptake in comparison with fresh solution. Graphical abstract
      PubDate: 2021-11-15
       
  • Correction to: Co(II) complexes of curcumin and a ferrocene-based
           curcuminoid: a study on photo-induced antitumor activity

    • Free pre-print version: Loading...

      PubDate: 2021-10-25
       
  • Correction to: Synthesis and evaluation of iridium(III) complexes on
           antineoplastic activity against human gastric carcinoma SGC‑7901 cells

    • Free pre-print version: Loading...

      PubDate: 2021-10-08
       
  • KP772 overcomes multiple drug resistance in malignant lymphoma and
           leukemia cells in vitro by inducing Bcl-2-independent apoptosis and
           upregulation of Harakiri

    • Free pre-print version: Loading...

      Abstract: Despite high cure rates in pediatric patients with acute leukemia, development of resistance limits the efficacy of antileukemic therapy. Tris(1,10-phenanthroline)tris(thiocyanato-κN)lanthanum(III) (KP772) is an experimental antineoplastic agent to which multidrug-resistant cell models have shown hypersensitivity. Antiproliferative and apoptotic activities of KP772 were tested in leukemia, lymphoma and solid tumor cell lines as well as primary leukemia cells (isolated from the bone marrow of a child with acute myeloid leukemia (AML). The ability to overcome drug resistances was investigated in doxorubicin- and vincristine-resistant cell lines. Real-time PCR was used to gain insight into the mechanism of apoptosis induction. KP772 inhibited proliferation and induced apoptosis in various leukemia and lymphoma cell lines in a concentration-dependent manner (LC50 = 1–2.5 µM). Primary AML cells were also sensitive to KP772, whereas daunorubicin showed no significant effect. KP772 induces apoptosis independently of Bcl-2, Smac, and the CD95 receptor and is also effective in caspase 3-deficient MCF7 cells, indicating that apoptosis is partly triggered independently of caspase 3. mRNA expression profiling revealed an upregulation of the BH3-only Bcl-2 protein Harakiri in the course of KP772-induced apoptosis. Remarkably, KP772 overcame drug resistance to doxorubicin and vincristine in vitro, and the apoptotic effect in resistant cells was even superior to that in non-resistant parental cells. In combination with vincristine, doxorubicin and cytarabine, synergistic effects were observed in BJAB cells. The cytotoxic potency in vitro/ex vivo and the remarkable ability to overcome multidrug resistance propose KP772 as a promising candidate drug for antileukemic therapy, especially of drug-refractory malignancies. Graphic abstract
      PubDate: 2021-10-06
       
  • Spectroscopic investigation of iron(III) cysteamine dioxygenase in the
           presence of substrate (analogs): implications for the nature of
           substrate-bound reaction intermediates

    • Free pre-print version: Loading...

      Abstract: Thiol dioxygenases (TDOs) are a class of metalloenzymes that oxidize various thiol-containing substrates to their corresponding sulfinic acids. Originally established by X-ray crystallography for cysteine dioxygenase (CDO), all TDOs are believed to contain a 3-histidine facial triad that coordinates the necessary Fe(II) cofactor. However, very little additional information is available for cysteamine dioxygenase (ADO), the only other mammalian TDO besides CDO. Previous spectroscopic characterizations revealed that ADO likely binds substrate cysteamine in a monodentate fashion, while a mass spectrometry study provided evidence that a thioether crosslink can form between Cys206 and Tyr208 (mouse ADO numbering). In the present study, we have used electronic absorption and electron paramagnetic resonance (EPR) spectroscopies to investigate the species formed upon incubation of Fe(III)ADO with sulfhydryl-containing substrates and the superoxide surrogates azide and cyanide. Our data reveal that azide is unable to coordinate to cysteamine-bound Fe(III)ADO, suggesting that the Fe(III) center lacks an open coordination site or azide competes with cysteamine for the same binding site. Alternatively, cyanide binds to either cysteamine- or Cys-bound Fe(III)ADO to yield a low-spin (S = 1/2) EPR signal that is distinct from that observed for cyanide/Cys-bound Fe(III)CDO, revealing differences in the active-site pockets between ADO and CDO. Finally, EPR spectra obtained for cyanide/cysteamine adducts of wild-type Fe(III)ADO and its Tyr208Phe variant are superimposable, implying that either an insignificant fraction of as-isolated wild-type enzyme is crosslinked or that formation of the thioether bond has minimal effects on the electronic structure of the iron cofactor. Graphic abstract
      PubDate: 2021-09-27
       
  • Dual roles of tau R peptides on Cu(II)/(I)-mediated reactive oxygen
           species formation

    • Free pre-print version: Loading...

      Abstract: Metal dyshomeostasis plays a critical role in the reactive oxygen species (ROS) formation and protein misfolding and aggregation; hence, contributing to neurodegeneration. Tau protein plays a key role in normal cellular function by maintaining microtubule formation in brain. The role of metal ions on tau protein biochemistry has not been systematically evaluated, but earlier reports indicated that metal ions modulate the complex biochemistry of this protein and its peptides. Herein, we evaluated interactions of biologically-relevant Cu(II) ions with the four repeat peptides of tau protein (R1 through R4) and their role on the formation of ROS, Cu(II) to Cu(I) reduction, and ultimately, peptide aggregation. The role of R peptides on ROS formation was characterized in the absence and presence of biological reducing agent, ascorbate by using UV–Vis and fluorescence spectroscopy. In the presence of the reducing agent, all Cu(II)-peptide complexes reduced hydroxyl radical (OH·), while only Cu(II)-R3 complex depleted the hydrogen peroxide (H2O2). In the absence of a reducing agent, only Cu(II)-R2 and Cu(II)-R3 complexes, which contain Cys and His residues, produced OH· and H2O2. Only R2 and R3 peptides, but not R1 and R4, reduced Cu(II) to Cu(I). The aggregation propensities of R peptides were modulated by Cu(II) and ascorbate, and were imaged by transmission electron microscopy. All metallo-peptides were characterized predominantly as singly charged mononuclear complexes by mass spectrometry. The data indicate that Cu(II)-peptide complexes may act as pro-oxidants or antioxidants and exhibit unique aggregation propensities under specific environmental conditions, with implications in the biological setting. Graphic abstract
      PubDate: 2021-09-23
       
  • Peptidyl-prolyl cis–trans isomerase A participates in the selenium
           transport into the rat brain

    • Free pre-print version: Loading...

      Abstract: Selenium, an essential micronutrient, plays vital roles in the brain. Selenoprotein P (SELENOP), a major plasma selenoprotein, is thought to transport selenium to the brain. However, Selenop-knockout mice fed a diet containing an adequate amount of selenium shows no objective neurological dysfunction which is observed in the selenium-deficient diet-fed Selenop-knockout mice. This fact indicated that selenium from low-mass selenium-source compounds can be transported by SELENOP-independent alternative pathways to the brain. In this study, to obtain the basic information about the SELENOP-independent transport pathways, we performed ex vivo experiments in which the rat brain cell membrane fraction was analyzed to find selenium-binding and/or -interactive proteins using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several membrane proteins with the cysteine (C) thiol were found to be reactive with STS through the thiol-exchange reaction. One of the C-containing proteins in the brain cell membrane fraction was identified as peptidyl-prolyl cis–trans isomerase (PPIase) A from tryptic fragmentation experiments and database search. Among the 4 C residues in rat PPIase A, 21st C was proved to react with STS by assessment using C mutated recombinant proteins. PPIase A is ubiquitously expressed and also associates with a variety of biologically important events such as immunomodulation, intracellular signaling, transcriptional regulation and protein trafficking. Consequently, PPIase A was thought to participate in the selenium transport into the rat brain. Graphic abstract
      PubDate: 2021-09-22
       
  • Co(II) complexes of curcumin and a ferrocene-based curcuminoid: a study on
           photo-induced antitumor activity

    • Free pre-print version: Loading...

      Abstract: Co(II) complexes having a ferrocene-based curcuminoid (Fc-curH) ligand viz. [Co(L)2(Fc-cur)]ClO4 (1, 2), where L is phenanthroline base, namely, 1,10-phenanthroline (phen in 1) and dipyrido[3,2-a:2’,3’-c]phenazine (dppz in 2) have been synthesized, characterized and evaluated as photochemotherapeutic agents in vitro. The corresponding Co(II) complexes of the naturally occurring polyphenol curcumin (curH), namely, [Co(L)2(cur)]ClO4 (3, 4), where L is phen (in 3) and dppz (in 4) were synthesized and their photo-induced anticancer activities compared with their ferrocene containing counterparts 1 and 2. The Co(II) acetylacetonato complex viz. [Co(phen)2(acac)]ClO4 (5) was structurally characterized through X-ray crystallography and used as control for cellular experiments. The Co(II) complexes having ferrocene-based curcuminoid are remarkably stable at physiological condition with higher lipophilicity compared to their curcumin analogues. The complexes display significant binding propensity to calf thymus (ct) DNA and human serum albumin (HSA). The complexes 1–4 display remarkable visible light induced cytotoxicity with the ferrocenyl analogues showing more phototoxic index (PI). The Co(II) curcumin complexes localize in the nucleus and mitochondria of A549 cells. The primary cell death mechanism is believed to be apoptotic in nature induced by light assisted generation of reactive oxygen species (ROS). Graphic abstract
      PubDate: 2021-09-22
       
  • Selected polyoxopalladates as promising and selective antitumor drug
           candidates

    • Free pre-print version: Loading...

      Abstract: Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50 (24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates. Graphic abstract
      PubDate: 2021-09-21
       
  • Synthesis, characterization and antitumor mechanism investigation of
           ruthenium(II) polypyridyl complexes with artesunate moiety

    • Free pre-print version: Loading...

      Abstract: Six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) with the formula [Ru(N^N)2bpy(4-CH3-4′-CH2OART)](PF6)2 (Ru-ART-1-3) and [Ru(N^N)2bpy(4-CH2OART-4′-CH2OART)](PF6)2 (Ru-ART-4–6) (N^N = 2,2′-bipyridine (bpy, in Ru-ART-1 and Ru-ART-4), 1,10-phenanthroline (phen, in Ru-ART-2 and Ru-ART-5) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-ART-3 and Ru-ART-6)), were synthesized and characterized. Among them, Ru-ART-1-3 and Ru-ART-4-6 carry one and two ART moieties, respectively. Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity among six Ru(II)-ART conjugates. These two complexes can be effectively taken up by human cervical carcinoma (HeLa) cells. In addition, they selectively kill cancer cell lines while mildly affect normal cells. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy. As a result, Ru-ART-3 and Ru-ART-6 induce autophagy-dependent cell apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. Graphic abstract In this work, six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) have been synthesized and characterized. Among them, Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy
      PubDate: 2021-09-20
      DOI: 10.1007/s00775-021-01901-8
       
  • Synthesis, characterization, antimicrobial and cytotoxic activity and
           DNA-binding properties of d-metal complexes with hydrazones of Girard’s
           T and P reagents

    • Free pre-print version: Loading...

      Abstract: In this work synthesis, characterization and crystal structures of 1, Zn(II) complex ([ZnL1(NCS)2]), with (E)-1-(2-oxo-2-(2-(quinolin-2-ylmethylene)hydrazinyl)ethyl)pyridin-1-ium chloride (HL1Cl) and 2, Bi(III) complex ([BiHL2Cl4] × 1/2CH3OH), with (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(thiazol-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride (HL2Cl), have been reported. Zn(II) complex possesses a distorted trigonal bipyramidal geometry while surroundings around Bi(III) ion are extended pentagonal bipyramidal. Antimicrobial activity, brine shrimp assay and DPPH radical scavenging activity of both complexes, including previously synthesized complexes with HL2Cl ligand (Zn(II) and Ni(II)) and complexes with (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium chloride (HL3Cl) (Zn(II), Cu(II), Cd(II), Co(II), Fe(III), Ni(II)), were evaluated. For the most active complexes, cytotoxic activity against five malignant cancer cell lines (HeLa, A375, MCF7, PC-3 and A549) and normal cell line HaCaT, as well as generation of reactive oxygen species (ROS), was tested. Graphic abstract
      PubDate: 2021-09-06
      DOI: 10.1007/s00775-021-01893-5
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 52.23.215.230
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-