Subjects -> CHEMISTRY (Total: 928 journals)
    - ANALYTICAL CHEMISTRY (59 journals)
    - CHEMISTRY (661 journals)
    - CRYSTALLOGRAPHY (23 journals)
    - ELECTROCHEMISTRY (28 journals)
    - INORGANIC CHEMISTRY (45 journals)
    - ORGANIC CHEMISTRY (47 journals)
    - PHYSICAL CHEMISTRY (65 journals)

ORGANIC CHEMISTRY (47 journals)

Showing 1 - 42 of 42 Journals sorted alphabetically
ACS Omega     Open Access   (Followers: 4)
Advances in Image and Video Processing     Open Access   (Followers: 24)
Advances in Physical Organic Chemistry     Full-text available via subscription   (Followers: 4)
Advances in Redox Research     Open Access   (Followers: 9)
American Journal of Organic Chemistry     Open Access   (Followers: 15)
Asian Journal of Organic Chemistry     Hybrid Journal   (Followers: 6)
Beilstein Journal of Organic Chemistry     Open Access   (Followers: 15)
Biochemia Medica     Open Access  
Current Organic Chemistry     Hybrid Journal   (Followers: 13)
Current Organic Synthesis     Hybrid Journal   (Followers: 12)
European Journal of Organic Chemistry     Hybrid Journal   (Followers: 61)
International Journal of Organic Chemistry     Open Access   (Followers: 10)
International Journal of Polymeric Materials     Hybrid Journal   (Followers: 7)
Journal of Bioactive and Compatible Polymers     Hybrid Journal   (Followers: 3)
Journal of Biomaterials Science, Polymer Edition     Hybrid Journal   (Followers: 9)
Journal of Natural Pesticide Research     Open Access   (Followers: 8)
Journal of Organic Semiconductors     Open Access   (Followers: 6)
Journal of Peptide Science     Hybrid Journal   (Followers: 6)
Journal of Physical Organic Chemistry     Hybrid Journal   (Followers: 8)
Journal of Physiology and Biochemistry     Hybrid Journal   (Followers: 3)
Journal of Progressive Research in Chemistry     Open Access   (Followers: 2)
Journal of Proteins and Proteomics     Open Access   (Followers: 2)
Mini-Reviews in Organic Chemistry     Hybrid Journal   (Followers: 10)
Nigerian Journal of Chemical Research     Full-text available via subscription   (Followers: 1)
Open Journal of Organic Polymer Materials     Open Access   (Followers: 1)
Organic & Biomolecular Chemistry     Hybrid Journal   (Followers: 53)
Organic and Medicinal Chemistry Letters     Open Access   (Followers: 6)
Organic Chemistry : Current Research     Open Access   (Followers: 11)
Organic Chemistry Frontiers     Hybrid Journal   (Followers: 15)
Organic Chemistry International     Open Access   (Followers: 8)
Organic Geochemistry     Hybrid Journal   (Followers: 4)
Organic Letters     Hybrid Journal   (Followers: 98)
Organic Preparations and Procedures International: The New Journal for Organic Synthesis     Hybrid Journal   (Followers: 3)
Organic Process Research & Development     Hybrid Journal   (Followers: 26)
Progress in Organic Coatings     Hybrid Journal   (Followers: 7)
Reports in Organic Chemistry     Open Access   (Followers: 7)
Russian Journal of Organic Chemistry     Hybrid Journal   (Followers: 3)
Soils     Open Access  
Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry     Hybrid Journal   (Followers: 33)
The Journal of Organic Chemistry     Hybrid Journal   (Followers: 171)
Vibrational Spectroscopy     Hybrid Journal   (Followers: 6)
World Journal of Organic Chemistry     Open Access   (Followers: 5)
Similar Journals
Journal Cover
Soils
Number of Followers: 0  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2411-5126
Published by MDPI Homepage  [258 journals]
  • Soils, Vol. 1, Pages 1: Relevance of Reactive Fe:S Ratios for Sulfur
           Impacts on Arsenic Uptake by Rice

    • Authors: Kristin Boye, Juan Lezama-Pacheco, Scott Fendorf
      First page: 1
      Abstract: Human arsenic exposure from rice consumption is a global concern. Due to the vast areas of naturally contaminated soils in rice-producing regions, the only possibility for reducing hazardous exposure is to prevent As uptake and translocation to rice grain. Sulfur inhibits As mobility both in soil and plant, indicating that soil S content may be a primary factor controlling As uptake; indeed, gypsum (CaSO4·H2O) has been proposed as a potential amendment. Here, we investigated S controls on rice As uptake within two naturally contaminated soils (15.4 and 11.0 mg As per kg soil, respectively) from Cambodia, by adding gypsum at two levels (20 and 60 mg per kg soil). We found that although gypsum initially decreased As release to soil solution, the concentrations then increased compared to the control treatment. Further, As concentrations in rice biomass were generally insignificantly affected by the gypsum treatments and trended in opposite directions between the two soils. Single and multivariate statistical tests indicated that Fe exerted stronger control on As uptake in rice than S and that the initial ratio of reactive Fe to sulfate-S had an overriding impact on As uptake in rice. However, in the soil with higher inherent sulfate content (91 mg SO42−-S per kg soil) the additional S provided by gypsum appeared to increase the ability of the rice plant to prevent As translocation to grain. We conclude that S may contribute to regulating grain As concentrations, but that the effect is highly dependent on S:Fe(As) ratios. Thus, at modest amendment rates, gypsum has limited potential for minimizing As concentration in rice when applied to naturally contaminated soil, particularly if the reactive Fe(III) content is high.
      Citation: Soils
      PubDate: 2017-08-09
      DOI: 10.3390/soils1010001
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 2: Legacy of Rice Roots as Encoded in Distinctive
           Microsites of Oxides, Silicates, and Organic Matter

    • Authors: Angelika Kölbl, Steffen Schweizer, Carsten Mueller, Carmen Höschen, Daniel Said-Pullicino, Marco Romani, Johann Lugmeier, Steffen Schlüter, Ingrid Kögel-Knabner
      First page: 2
      Abstract: Rice (Oryza sativa) is usually grown under flooded conditions, leading to anoxic periods in the soil. Rice plants transport oxygen via aerenchyma from the atmosphere to the roots. Driven by O2 release into the rhizosphere, radial gradients of ferric Fe and co-precipitated organic substances are formed. Our study aimed at elucidating the composition and spatial extension of those gradients. Air-dried soil aggregates from a paddy field were embedded in epoxy resin, cut, and polished to produce cross sections. Reflected-light microscopy was used to identify root channels. With nano-scale secondary ion mass spectrometry (NanoSIMS), we investigated transects from root channels into the soil matrix and detected 12C−, 16O−, 12C14N−, 28Si−, 27Al16O−, and 56Fe16O− to distinguish between embedding resin, organic matter, oxides, and silicates. Image analyses reveal high occurrences of 56Fe16O− within and in close proximity of oxide-encrusted root cells, followed by a thin layer with high occurrences of 27Al16O− and 12C14N−. In two of the three transects, 28Si− only occurs at distances larger than approximately 10 µm from the root surface. Thus, we can distinguish distinct zones: the inner zone is composed of oxide encrusted root cells and their fragments. A thin intermediate zone may occur around some roots and comprises (hydr)oxides and organic matter. This can be distinguished from a silicate-dominated outer zone, which reflects the transition from the rhizosphere to the bulk soil.
      Citation: Soils
      PubDate: 2017-08-09
      DOI: 10.3390/soils1010002
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 3: Evidence for the Root-Uptake of Arsenite at
           Lateral Root Junctions and Root Apices in Rice (Oryza sativa L.)

    • Authors: Angelia Seyfferth, Jean Ross, Samuel Webb
      First page: 3
      Abstract: The uptake of arsenite (As(III)i) at the Casparian band via Lsi1 and Lsi2 Si transporters is responsible for ~75% of shoot As(III)i uptake in rice and, therefore, ~25% of shoot As(III)i is taken up by other transport pathways. We hypothesized that areas devoid of Casparian bands—lateral root junctions and root apices—can transport As(III)i into roots. We analyzed the elemental distribution and As concentration, speciation, and localization in rice roots from soil-grown and solution-grown plants. With solution-grown plants dosed with As(III)i, we sectioned roots as a function of distance from the root apex and analyzed the cross-sections using confocal microscopy coupled to synchrotron X-ray fluorescence imaging and spectroscopy. We observed elevated As(III)i associated with lateral root junctions and root apices in rice. As(III)i entered the stele at lateral root junctions and radially permeated the root interior in cross-sections 130–140 µm from the root apex that are devoid of Casparian bands. Our findings suggest that lateral root junctions and rice root apices are hot-spots for As(III)i transport into rice roots, but the contribution to shoot As requires further research.
      Citation: Soils
      PubDate: 2017-08-14
      DOI: 10.3390/soils1010003
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 4: Molecular and Microscopic Insights into the
           Formation of Soil Organic Matter in a Red Pine Rhizosphere

    • Authors: Alice Dohnalkova, Malak Tfaily, A. Smith, Rosalie Chu, Alex Crump, Colin Brislawn, Tamas Varga, Zhenqing Shi, Linda Thomashow, James Harsh, C. Keller
      First page: 4
      Abstract: Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limited system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. These findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.
      Citation: Soils
      PubDate: 2017-08-26
      DOI: 10.3390/soils1010004
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 5: Ectomycorrhizal Fungi and Mineral Interactions in
           the Rhizosphere of Scots and Red Pine Seedlings

    • Authors: Zsuzsanna Balogh-Brunstad, C. Keller, Zhenqing Shi, Håkan Wallander, Susan Stipp
      First page: 5
      Abstract: Ectomycorrhizal fungi and associated bacteria play a key role in plant-driven mineral weathering and uptake of mineral-derived nutrients in the rhizosphere. The goal of this study was to investigate the physical and chemical characteristics of bacteria-fungi-mineral interactions in biofilms of Scots and red pine rhizospheres. In three experiments, seedlings were grown in columns containing silica sand amended with biotite and calcium-feldspar, and inoculated with pure cultures of ectomycorrhizal fungi or a soil slurry. Uninoculated seedlings and unplanted abiotic columns served as controls. After nine months, the columns were destructively sampled and the minerals were analyzed using scanning electron and atomic force microscopy. Element release rates were determined from cation concentrations of input and output waters, soil exchange sites, and plant biomass, then normalized to geometric surface area of minerals in each column. The results revealed that various ectomycorrhizal fungal species stimulate silicate dissolution, and biofilm formation occurred at low levels, but direct surface attachment and etching by fungal hyphae was a minor contributor to the overall cation release from the minerals in comparison to other environmental conditions such as water applications (rain events), which varied among the experiments. This research highlights the importance of experimental design details for future exploration of these relationships.
      Citation: Soils
      PubDate: 2017-09-19
      DOI: 10.3390/soils1010005
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 6: Effects of Iron Amendments on the Speciation of
           Arsenic in the Rice Rhizosphere after Drainage

    • Authors: Noriko Yamaguchi, Toshiaki Ohkura, Atsuko Hikono, Hiroshi Yamaguchi, Yohey Hashimoto, Tomoyuki Makino
      First page: 6
      Abstract: Applications of iron- (Fe-) bearing materials represent an effective countermeasure for decreasing the dissolution of arsenic (As) in soil under anaerobic conditions. In this study, we investigated the effects of Fe amendments (ferrihydrite-based and zero-valent iron- (ZVI-) based materials) on the speciation of As in rice cultivated soils and root-attached materials including Fe plaque when the soil shifts from anaerobic to aerobic conditions. Rice (Oryza sativa L.) was cultivated in pots filled with soil under continuous flooding conditions, and root distribution in the soil was restricted inside a cylinder made by nylon mesh. Soil and root samples were collected after drainage at different growth stages of the rice plants, which are represented by intermittent drainage and drainage at harvest. The speciation of As was determined by As K-edge X-ray absorption near edge structure (XANES) spectroscopy. The proportion of arsenite did not differ between the bulk soil and root-attached materials including Fe plaque, whereas a larger proportion of dimethylarsinic acid was found in the root-attached materials regardless of the application of Fe amendments. Observation of soil thin-sections showed that the application of Fe amendments caused an increase in Fe (hydr)oxide deposition around the roots as well as on the soil particles. In addition to Fe (hydr)oxide, sulfide was found to be associated with As under anaerobic conditions, notably for the ZVI-amended soil at the time of intermittent drainage. The concentration of As in the soil solution and As uptake by rice grains decreased, while As speciation near the roots was not influenced by the application of Fe amendments. In conclusion, Fe amendments mitigated As dissolution in the soil solution by providing a sorption site for As in bulk soil without altering As speciation near the roots.
      Citation: Soils
      PubDate: 2017-12-01
      DOI: 10.3390/soils1010006
      Issue No: Vol. 1, No. 1 (2017)
       
  • Soils, Vol. 1, Pages 7: Soils—An Open Access Journal

    • Authors: Scott Fendorf
      First page: 7
      Abstract: Soils are crucial for life.[...]
      Citation: Soils
      PubDate: 2017-12-20
      DOI: 10.3390/soils1010007
      Issue No: Vol. 1, No. 1 (2017)
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 18.206.13.203
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-