Hybrid journal (It can contain Open Access articles) ISSN (Print) 2095-5138 - ISSN (Online) 2053-714X Published by Oxford University Press[424 journals]
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: AbstractPairing Li-free transition-metal-based cathodes (MX) with Li-metal anodes is an emerging trend to overcome the energy-density limitation of current rechargeable Li-ion technology. However, the development of practical Li-free MX cathodes is plagued by the existing notion of low voltage due to the long-term overlooked voltage-tuning/phase-stability competition. Here, we propose a p-type alloying strategy involving three voltage/phase-evolution stages, of which each of the varying trends are quantitated by two improved ligand-field descriptors to balance the above contradiction. Following this, an intercalation-type 2H-V1.75Cr0.25S4 cathode tuned from layered MX2 family is successfully designed, which possesses an energy density of 554.3 Wh kg−1 at the electrode level accompanied by interfacial compatibility with sulfide solid-state electrolyte. The proposal of this class of materials is expected to break free from scarce or high-cost transition-metal (e.g. Co and Ni) reliance in current commercial cathodes. Our experiments further confirm the voltage and energy-density gains of 2H-V1.75Cr0.25S4. This strategy is not limited to specific Li-free cathodes and offers a solution to achieve high voltage and phase stability simultaneously. PubDate: Tue, 10 Jan 2023 00:00:00 GMT DOI: 10.1093/nsr/nwad010 Issue No:Vol. 10, No. 3 (2023)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTAqueous zinc batteries (ZBs) attract increasing attention for potential applications in modern wearable and implantable devices due to their safety and stability. However, challenges associated with biosafety designs and the intrinsic electrochemistry of ZBs emerge when moving to practice, especially for biomedical devices. Here, we propose a green and programmable electro-cross-linking strategy to in situ prepare a multi-layer hierarchical Zn–alginate polymer electrolyte (Zn–Alg) via the superionic binds between the carboxylate groups and Zn2+. Consequently, the Zn–Alg electrolyte provides high reversibility of 99.65% Coulombic efficiency (CE), >500 h of long-time stability and high biocompatibility (no damage to gastric and duodenal mucosa) in the body. A wire-shaped Zn/Zn–Alg/α-MnO2 full battery affords 95% capacity retention after 100 cycles at 1 A g−1 and good flexibility. The new strategy has three prominent advantages over the conventional methods: (i) the cross-linking process for the synthesis of electrolytes avoids the introduction of any chemical reagents or initiators; (ii) a highly reversible Zn battery is easily provided from a micrometer to large scales through automatic programmable functions; and (iii) high biocompatibility is capable of implanted and bio-integrated devices to ensure body safety. PubDate: Wed, 14 Dec 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac281 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTStrict carbon emission regulations are set with respect to countries’ territorial seas or shipping activities in exclusive economic zones to meet their climate change commitment under the Paris Agreement. However, no shipping policies on carbon mitigation are proposed for the world’s high seas regions, which results in carbon intensive shipping activities. In this paper, we propose a Geographic-based Emission Estimation Model (GEEM) to estimate shipping GHG emission patterns on high seas regions. The results indicate that annual emissions of carbon dioxide equivalent (CO2-e) in shipping on the high seas reached 211.60 million metric tonnes in 2019, accounting for about one-third of all shipping emissions globally and exceeding annual GHG emissions of countries such as Spain. The average emission from shipping activities on the high seas is growing at approximately 7.26% per year, which far surpasses the growth rate of global shipping emission at 2.23%. We propose implementation of policies on each high seas region with respect to the main emission driver identified from our results. Our policy evaluation results show that carbon mitigation policies could reduce emissons by 25.46 and 54.36 million tonnes CO2-e in the primary intervention stage and overall intervention stage, respectively, with 12.09% and 25.81% reduction rates in comparison to the 2019 annual GHG emissions in high seas shipping. PubDate: Thu, 08 Dec 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac279 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTWe used compiled geochemical data to investigate the mechanisms that control Mg# (molar ratio of Mg/(Mg + FeT)) in andesitic arc lavas. We find that andesites from mature continental arcs with crustal thickness of >45 km have systematically higher Mg# than those from oceanic arcs with crustal thickness of <30 km. The elevated Mg# in continental arc lavas results from strong Fe depletion during high-pressure differentiation favored in thick crusts. This proposal is reinforced by our compiled melting/crystallization experiment data. We show that the Mg# characteristics of continental arc lavas match that of the continental crust. These findings suggest that the formation of many high-Mg# andesites and the continental crust may not require slab-melt/peridotite interactions. Instead, the high Mg# of the continental crust can be explained by intracrustal calc-alkaline differentiation processes in magmatic orogens. PubDate: Wed, 07 Dec 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac258 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTSimultaneously achieving high electrochemical activity and high loading for solid-state batteries has been hindered by slow ion transport within solid electrodes, in particular with an increase in electrode thickness. Ion transport governed by ‘point-to-point’ diffusion inside a solid-state electrode is challenging, but still remains elusive. Herein, synchronized electrochemical analysis using X-ray tomography and ptychography reveals new insights into the nature of slow ion transport in solid-state electrodes. Thickness-dependent delithiation kinetics are spatially probed to identify that low-delithiation kinetics originate from the high tortuous and slow longitudinal transport pathways. By fabricating a tortuosity-gradient electrode to create an effective ion-percolation network, the tortuosity-gradient electrode architecture promotes fast charge transport, migrates the heterogeneous solid-state reaction, enhances electrochemical activity and extends cycle life in thick solid-state electrodes. These findings establish effective transport pathways as key design principles for realizing the promise of solid-state high-loading cathodes. PubDate: Mon, 28 Nov 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac272 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTMonolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key factors such as materials selection, electrolyte confinement, microfabrication and device-performance uniformity. Here, we develop a universal and large-throughput microfabrication strategy to address all these issues by combining multistep lithographic patterning, spray printing of MXene microelectrodes and controllable 3D printing of gel electrolytes. We achieve the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition. Notably, the MIMSCs obtained demonstrate a high areal-number density of 28 cells cm−2 (340 cells on 3.5 × 3.5 cm2), a record areal output voltage of 75.6 V cm−2, an acceptable systemic volumetric energy density of 9.8 mWh cm−3 and an unprecedentedly high capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V. This work paves the way for monolithic integrated and microscopic energy-storage assemblies for powering future microelectronics. PubDate: Sat, 26 Nov 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac271 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTTopological order is a new quantum phase that is beyond Landau’s symmetry-breaking paradigm. Its defining features include robust degenerate ground states, long-range entanglement and anyons. It was known that R and F matrices, which characterize the fusion-braiding properties of anyons, can be used to uniquely identify topological order. In this article, we explore an essential question: how can the R and F matrices be experimentally measured' We show that the braidings, i.e. the R matrices, can be completely determined by the half braidings of boundary excitations due to the boundary-bulk duality and the anyon condensation. The F matrices can also be measured by comparing the quantum states involving the fusion of three anyons in two different orders. Thus we provide a model-independent experimental protocol to uniquely identify topological order. By using quantum simulations based on a toric code model with boundaries encoded in three- and four-qubit systems and state-of-the-art technology, we obtain the first experimental measurement of R and F matrices by means of an NMR quantum computer at room temperature. PubDate: Thu, 24 Nov 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac264 Issue No:Vol. 10, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: ABSTRACTThis study, via combined analysis of geophysical and geochemical data, reveals a lithospheric architecture characterized by crust–mantle decoupling and vertical heat-flow conduits that control orogenic gold mineralization in the Ailaoshan gold belt on the southeastern margin of Tibet. The mantle seismic tomography indicates that the crust–mantle decoupled deformation, defined from previous seismic anisotropy analysis, was formed by upwelling and lateral flow of the asthenosphere, driven by deep subduction of the Indian continent. Our magnetotelluric and seismic images show both a vertical conductor across the Moho and high Vp/Vs anomalies both in the uppermost mantle and lowest crust, suggesting that crust–mantle decoupling promotes ponding of mantle-derived basic melts at the base of the crust via a heat-flow conduit. Noble gas isotope and halogen ratios of gold-related ore minerals indicate a mantle source of ore fluid. A rapid decrease in Cl/F ratios of lamprophyres under conditions of 1.2 GPa and 1050°C suggests that the ore fluid was derived from degassing of the basic melts. Similar lithospheric architecture is recognized in other orogenic gold provinces, implying analogous formational controls. PubDate: Wed, 16 Nov 2022 00:00:00 GMT DOI: 10.1093/nsr/nwac257 Issue No:Vol. 10, No. 3 (2022)