Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Boldi; Paolo, Furia, Flavio, Vigna, Sebastiano Pages: 351 - 373 Abstract: Is it always beneficial to create a new relationship (have a new follower/friend) in a social network' This question can be formally stated as a property of the centrality measure that defines the importance of the actors of the network. Score monotonicity means that adding an arc increases the centrality score of the target of the arc; rank monotonicity means that adding an arc improves the importance of the target of the arc relatively to the remaining nodes. It is known that most centralities are both score and rank monotone on directed, strongly connected graphs. In this paper, we study the problem of score and rank monotonicity for classical centrality measures in the case of undirected networks: in this case, we require that score, or relative importance, improves at both endpoints of the new edge. We show that, surprisingly, the situation in the undirected case is very different, and in particular that closeness, harmonic centrality, betweenness, eigenvector centrality, Seeley’s index, Katz’s index, and PageRank are not rank monotone; betweenness and PageRank are not even score monotone. In other words, while it is always a good thing to get a new follower, it is not always beneficial to get a new friend. PubDate: 2023-02-02 DOI: 10.1017/nws.2022.42
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Reittu; Hannu, Leskelä, Lasse, Räty, Tomi Pages: 374 - 396 Abstract: Multilayer networks are in the focus of the current complex network study. In such networks, multiple types of links may exist as well as many attributes for nodes. To fully use multilayer—and other types of complex networks in applications, the merging of various data with topological information renders a powerful analysis. First, we suggest a simple way of representing network data in a data matrix where rows correspond to the nodes and columns correspond to the data items. The number of columns is allowed to be arbitrary, so that the data matrix can be easily expanded by adding columns. The data matrix can be chosen according to targets of the analysis and may vary a lot from case to case. Next, we partition the rows of the data matrix into communities using a method which allows maximal compression of the data matrix. For compressing a data matrix, we suggest to extend so-called regular decomposition method for non-square matrices. We illustrate our method for several types of data matrices, in particular, distance matrices, and matrices obtained by augmenting a distance matrix by a column of node degrees, or by concatenating several distance matrices corresponding to layers of a multilayer network. We illustrate our method with synthetic power-law graphs and two real networks: an Internet autonomous systems graph and a world airline graph. We compare the outputs of different community recovery methods on these graphs and discuss how incorporating node degrees as a separate column to the data matrix leads our method to identify community structures well-aligned with tiered hierarchical structures commonly encountered in complex scale-free networks. PubDate: 2023-03-07 DOI: 10.1017/nws.2023.2
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Neal; Zachary P. Pages: 397 - 410 Abstract: Shared memberships, social statuses, beliefs, and places can facilitate the formation of social ties. Two-mode projections provide a method for transforming two-mode data on individuals’ memberships in such groups into a one-mode network of their possible social ties. In this paper, I explore the opposite process: how social ties can facilitate the formation of groups, and how a two-mode network can be generated from a one-mode network. Drawing on theories of team formation, club joining, and organization recruitment, I propose three models that describe how such groups might emerge from the relationships in a social network. I show that these models can be used to generate two-mode networks that have characteristics commonly observed in empirical two-mode social networks and that they encode features of the one-mode networks from which they were generated. I conclude by discussing these models’ limitations and future directions for theory and methods concerning group formation. PubDate: 2023-03-20 DOI: 10.1017/nws.2023.3
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Gyorgy; Andras, Marlow, Thomas, Abrahao, Bruno, Makovi, Kinga Pages: 411 - 430 Abstract: The global and uneven spread of COVID-19, mirrored at the local scale, reveals stark differences along racial and ethnic lines. We respond to the pressing need to understand these divergent outcomes via neighborhood level analysis of mobility and case count information. Using data from Chicago over 2020, we leverage a metapopulation Susceptible-Exposed-Infectious-Removed model to reconstruct and simulate the spread of SARS-CoV-2 at the ZIP Code level. We demonstrate that exposures are mostly contained within one’s own ZIP Code and demographic group. Building on this observation, we illustrate that we can understand epidemic progression using a composite metric combining the volume of mobility and the risk that each trip represents, while separately these factors fail to explain the observed heterogeneity in neighborhood level outcomes. Having established this result, we next uncover how group level differences in these factors give rise to disparities in case rates along racial and ethnic lines. Following this, we ask what-if questions to quantify how segregation impacts COVID-19 case rates via altering mobility patterns. We find that segregation in the mobility network has contributed to inequality in case rates across demographic groups. PubDate: 2023-04-17 DOI: 10.1017/nws.2023.6
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Kinnear; R. J., Mazumdar, R. R. Pages: 431 - 457 Abstract: We study Granger Causality in the context of wide-sense stationary time series. The focus of the analysis is to understand how the underlying topological structure of the causality graph affects graph recovery by means of the pairwise testing heuristic. Our main theoretical result establishes a sufficient condition (in particular, the graph must satisfy a polytree assumption we refer to as strong causality) under which the graph can be recovered by means of unconditional and binary pairwise causality testing. Examples from the gene regulatory network literature are provided which establish that graphs which are strongly causal, or very nearly so, can be expected to arise in practice. We implement finite sample heuristics derived from our theory, and use simulation to compare our pairwise testing heuristic against LASSO-based methods. These simulations show that, for graphs which are strongly causal (or small perturbations thereof) the pairwise testing heuristic is able to more accurately recover the underlying graph. We show that the algorithm is scalable to graphs with thousands of nodes, and that, as long as structural assumptions are met, exhibits similar high-dimensional scaling properties as the LASSO. That is, performance degrades slowly while the system size increases and the number of available samples is held fixed. Finally, a proof-of-concept application example shows, by attempting to classify alcoholic individuals using only Granger causality graphs inferred from EEG measurements, that the inferred Granger causality graph topology carries identifiable features. PubDate: 2023-06-06 DOI: 10.1017/nws.2023.11
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Morrison; Megan, Kutz, J. Nathan, Gabbay, Michael Pages: 458 - 501 Abstract: We investigate structural features and processes associated with the onset of systemic conflict using an approach which integrates complex systems theory with network modeling and analysis. We present a signed network model of cooperation and conflict dynamics in the context of international relations between states. The model evolves ties between nodes under the influence of a structural balance force and a dyad-specific force. Model simulations exhibit a sharp bifurcation from peace to systemic war as structural balance pressures increase, a bistable regime in which both peace and war stable equilibria exist, and a hysteretic reverse bifurcation from war to peace. We show how the analytical expression we derive for the peace-to-war bifurcation condition implies that polarized network structure increases susceptibility to systemic war. We develop a framework for identifying patterns of relationship perturbations that are most destabilizing and apply it to the network of European great powers before World War I. We also show that the model exhibits critical slowing down, in which perturbations to the peace equilibrium take longer to decay as the system draws closer to the bifurcation. We discuss how our results relate to international relations theories on the causes and catalysts of systemic war. PubDate: 2023-06-21 DOI: 10.1017/nws.2023.10
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Marrs; Frank W., Fosdick, Bailey K. Pages: 502 - 535 Abstract: Undirected, binary network data consist of indicators of symmetric relations between pairs of actors. Regression models of such data allow for the estimation of effects of exogenous covariates on the network and for prediction of unobserved data. Ideally, estimators of the regression parameters should account for the inherent dependencies among relations in the network that involve the same actor. To account for such dependencies, researchers have developed a host of latent variable network models; however, estimation of many latent variable network models is computationally onerous and which model is best to base inference upon may not be clear. We propose the probit exchangeable (PX) model for undirected binary network data that is based on an assumption of exchangeability, which is common to many of the latent variable network models in the literature. The PX model can represent the first two moments of any exchangeable network model. We leverage the EM algorithm to obtain an approximate maximum likelihood estimator of the PX model that is extremely computationally efficient. Using simulation studies, we demonstrate the improvement in estimation of regression coefficients of the proposed model over existing latent variable network models. In an analysis of purchases of politically aligned books, we demonstrate political polarization in purchase behavior and show that the proposed estimator significantly reduces runtime relative to estimators of latent variable network models, while maintaining predictive performance. PubDate: 2023-07-03 DOI: 10.1017/nws.2023.12