Subjects -> SCIENCES: COMPREHENSIVE WORKS (Total: 374 journals)
| A B C D E F G H I J K L M N O P Q R S T U V W X Y Z | The end of the list has been reached or no journals were found for your choice. |
|
|
- Deep Learning for Forecast Scales to Prescribe Patients at Risk of
Gastrointestinal Bleeding Authors: Carlos Calderón-Vargas, José Muñoz Castaño, María Vargas Rincón, Víctor Manuel Rincón Acosta, Miguel Mendieta Hernández Pages: 7 - 22 Abstract: The evolution of medicine in current times has gone hand in hand with technology where more and more solutions are implemented; those supporting certain medical procedures to serve as base in the field of medical professionals. The process of analyzing data has become an essential resource in the practice of any profession; currently, in hospitals, more specifically in the university hospital La Samaritana. No tool allows the supporting of diagnosis to determine the supply or no, proton pump inhibitors, therefore we have developed an app using a machine learning model, based on decision trees through the weka application, which, after analyzing the data collected, allows the doctor to count with a tool to support this procedure. We hope that with this, doctors can perform an effective analysis before prescribing or not prescribing PPIs. PubDate: 2021-12-01 DOI: 10.17230/ingciencia.17.34.1 Issue No: Vol. 17, No. 34 (2021)
- Determinants of New Housing Prices in Bogotá for 2019: an Approach
Through a Semiparametric Spatial Regression Model Authors: Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero Pages: 23 - 52 Abstract: This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology is applied in a hedonic model for the price of new housing in Bogotá where a remarkable fit is obtained, in terms of the mean square error and the R2. The empirical result shows that the housing delivery condition, stratum, and construction state affect the price in a linear way, while the area, and the distances to parks, roads and Transmilenio stations present non-linear results, additionaly, it was possible to model the spatial trend that represents the location on the value of the house where an increase is appreciated towards the northeast of the city. Thus, it is concluded that the estimated model allows the relationship between the explanatory variables and the dependent variable to be measured flexibly, establishing itself as a good alternative to understand the formation of prices in the real estate market. PubDate: 2021-12-01 DOI: 10.17230/ingciencia.17.34.2 Issue No: Vol. 17, No. 34 (2021)
- A Generalized of Sλ-I-Convergence of Complex Uncertain Double
Sequences Authors: Carlos Granados Pages: 53 - 75 Abstract: In this paper, we introduce the λI2 -statistically convergence sequence concepts which are namely λI2 -statistically convergence almost surely (Sλ(I2) a.s.), λI2 -statistically convergence in measure, λI2 -statistically convergence in mean, λI2 -statistically convergence in distribution and λI2 -statistically convergence uniformly almost surely (Sλ(I2) u.a.s.). Additionally, decomposition theorems and relationships among them are presented, further, when reciprocal of one theorem is not satisfied, an counterexample is shown to support the result. PubDate: 2021-12-01 DOI: 10.17230/ingciencia.17.34.3 Issue No: Vol. 17, No. 34 (2021)
- A Low-Cost Raspberry Pi-based System for Facial Recognition
Authors: Cristian Miranda Orostegui, Alejandro Navarro Luna, Andrés Manjarrés García, Carlos Augusto Fajardo Ariza Pages: 77 - 95 Abstract: Deep learning has become increasingly popular and widely applied to computer vision systems. Over the years, researchers have developed various deep learning architectures to solve different kinds of problems. However, these networks are power-hungry and require high-performance computing (i.e., GPU, TPU, etc.) to run appropriately. Moving computation to the cloud may result in traffic, latency, and privacy issues. Edge computing can solve these challenges by moving the computing closer to the edge where the data is generated. One major challenge is to fit the high resource demands of deep learning in less powerful edge computing devices. In this research, we present an implementation of an embedded facial recognition system on a low cost Raspberry Pi, which is based on the FaceNet architecture. For this implementation it was required the development of a library in C++, which allows the deployment of the inference of the Neural Network Architecture. The system had an accuracy and precision of 77.38% and 81.25%, respectively. The time of execution of the program is 11 seconds and it consumes 46 [kB] of RAM. The resulting system could be utilized as a stand-alone access control system. The implemented model and library are released at https://github.com/cristianMiranda-Oro/FaceNet_EmbeddedSystem PubDate: 2021-12-01 DOI: 10.17230/ingciencia.17.34.4 Issue No: Vol. 17, No. 34 (2021)
- Lie Algebra Representation, Conservation Laws and Some Invariant Solutions
for a Generalized Emden-Fowler Equation Authors: Gabriel Ignacio Loaiza Ossa, Yeisson Acevedo-Agudelo, Oscar Londoño-Duque, Danilo A. García Hernández Pages: 97 - 113 Abstract: All generators of the optimal algebra associated with a generalization of the Endem-Fowler equation are showed; some of them allow to give invariant solutions. Variational symmetries and the respective conservation laws are also showed. Finally, a representation of Lie symmetry algebra is showed by groups of matrices. PubDate: 2021-12-01 DOI: 10.17230/ingciencia.17.34.5 Issue No: Vol. 17, No. 34 (2021)
|