Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Resistive switching random access memory (RRAM) is one of the most promising candidates with high-density three-dimensional integration characteristics for next-generation nonvolatile memory technology. However, the poor uniformity issue caused by the stochastic property of the conductive filament (CF) impedes the large-scale manufacture of RRAM chips. Subulate array has been introduced into the RRAM to minimize the CF randomness, but the methods are cumbersome, expensive, or resolution-limited for large-scale preparation. In this work, Si subulate array (SSA) substrates with different curvature radii prepared by a wafer-scale and nanoscale-controllable method are introduced for RRAM fabrication. The SSA structure, which induces a quasi-single CF or a few CFs formed in the tip region (TR) of the device as evidenced by the high-resolution transmission electron microscopy and energy dispersive spectroscopy characterization, dramatically improves the cycle-to-cycle and device-to-device uniformity. Decreasing the curvature radius of the TR significantly improves the device performance, including switching voltages, high/low resistance states, and retention characteristics. The improved uniformity can be attributed to the enhanced local electric field in the TR. The proposed SSA provides a low-cost, uniform, CMOS-compatible, and nanoscale-controllable optimization strategy for the large-scale integration of highly uniform RRAM devices. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Zinc-ion hybrid supercapacitors (ZHSs) are highly desirable for large-scale energy storage applications owing to the merits of high safety, low cost and ultra-long cycle life. The poor rate performance of cathodes, however, severely hinders their application. Herein, aqueous ZHSs with superior performance were fabricated by employing a series of ultrathin carbon nanobelts modified with B, N, O (CPTHB-Bx). The heteroatom doping can significantly modify the chemical behaviors of carbon frameworks, which could generate numerous active sites and accelerate the charge transport. The systematic investigation reveals that the B–N groups are active species for fast Zn-ion adsorption and desorption. As a result, the best-performed CPTHB-B2 exhibits an excellent electrochemical performance as cathodes in ZHSs, delivering a high specific capacitance of 415.3 F g−1 at 0.5 A g−1, a record high capacitance retention of 81% when increasing the current densities from 0.5 to 100 A g−1, an outstanding energy density of 131.9 W h kg−1 and an exceptionally high power density of 42.1 kW kg−1. Our work provides a new cathode design for ultrafast charging Zn-ion storage devices. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract When compared with pure water, hydrogen produced by seawater electrolysis has a better practical application potential. By replacing the oxygen evolution reaction (OER) and competitive chlorine evolution reaction (ClER) with the thermodynamically favorable anodic hydrazine oxidation reaction (HzOR) in alkaline seawater, energy-saving hydrogen production can be achieved. In this study, Fe/Co dual-doped Ni2P and MIL-FeCoNi heterostructures (FeCo-Ni2P@MIL-FeCoNi) arrays with simultaneous cation doping and hetero-engineering provide excellent bifunctional electrocatalytic performance for HzOR and hydrogen evolution reaction (HER) in alkaline seawater electrolyte. Overall hydrazine splitting (OHzS) in seawater is impressive, with a low cell voltage of only 400 mV required to reach 1000 mA cm−2 and stable operation for 1000 h to maintain above 500 mA cm−2. As a proof-of-concept, the OHzS system can save 3.03 kW h when producing 1.0 L of H2 when compared with the N2H4-free seawater system, resulting in energy-saving H2 production. Density functional theory calculations show that the combination of Co-doping and the fabrication of FeCo-Ni2P and MIL-FeCoNi heterointerfaces can result in a low water dissociation barrier, optimized hydrogen adsorption free energy toward HER, and favorable adsorbed dehydrogenation kinetics for HzOR. This processing route paves the way for a practical approach to the efficient utilization of hydrogen, which is abundant in the ocean energy field, to achieve a carbon-neutral hydrogen economy. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Rationally designed oxygen evolution reaction (OER) catalysts with structural and compositional superiorities are essential for energy-related electrocatalytic techniques. Transition-metal phosphides have been used as promising electrocatalysts for OER. Incorporating heteroatoms into the lattice can induce lattice distortion and redistribution of electron density, consequently modifying the electronic structure and improving catalytic performance. Herein, Fe- and S-substituted Ni2P uniformly dispersed throughout porous carbon substrate (Ni—Fe—P—S@C) was rationally designed through transformation from the pre-synthesized NiFe-metal organic frameworks (NiFe-MOFs) by partial sulfurization and subsequent phosphorization process. Experimental results and density functional theory calculations showed that Fe and S incorporation could modulate the electronic structure of Ni2P and alter the adsorption free energies of reaction intermediates, contributing to admirable electrocatalytic activity and stability toward OER. Notably, the in-situ formed partially oxidized surface was vital to further improve the local environment. This proposed cation- and anion-substitution strategy will bring new inspiration to boost the electrocatalytic performance of transition-metal-based electrocatalysts for energy conversion applications. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Although traditional ferroelectric materials are usually dielectric and nonconductive, GeTe is a typical ferroelectric semiconductor, possessing both ferroelectric and semiconducting properties. GeTe is also a widely studied thermoelectric material, whose performance has been optimized by doping with various elements. However, the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents. Herein, based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals, we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls, exposed to an electric field and temperature. Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb3+ dopant and the Ge-vacancies, leading to the increased number of charged domain walls and a much improved thermoelectric performance. This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The design and preparation of non-noble metal catalysts with high catalytic activity and robust stability are important in the research of metal-air batteries and fuel cells. Here, a three-dimensional (3D) hierarchically ordered porous carbon nanomaterial was conveniently synthesized with zeolite-imidazole framework (ZIF-8) carbonization using the silica-template method and carbon nanotube (CNT) growth. The addition of an iron source endows the porous mFeNC-CNT with Fe-based nanoparticles and abundant atomically dispersive Fe-Nx sites from its nitrogen-incorporated graphitic carbon matrix. As a result, the 3D porous structure reduces the charge transport resistance, and the iron and nitrogen codoped carbon exhibits excellent catalytic activity for oxygen reduction reaction (ORR) similar to that of commercial Pt/C. Meanwhile, the interwoven CNTs obtained under urea catalysis further shorten the ion and electron diffusion pathway. Experimental and theoretical analyses revealed that the optimized mFeNC-CNT has a high ORR activity with a half-wave potential of 0.908 V and a large open-circuit voltage (1.556 V) when applied on zinc-air batteries. This work provides a promising strategy for the rational design and facile synthesis of high-performing non-noble metal-based electrocatalysts for energy storage, conversion, and transport applications. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Surface enhanced Raman scattering (SERS) is a rapid and nondestructive technique that is capable of detecting and identifying chemical or biological compounds. Sensitive SERS quantification is vital for practical applications, particularly for portable detection of biomolecules such as amino acids and nucleotides. However, few approaches can achieve sensitive and quantitative Raman detection of these most fundamental components in biology. Herein, a noble-metal-free single-atom site on a chip strategy was applied to modify single tungsten atom oxide on a lead halide perovskite, which provides sensitive SERS quantification for various analytes, including rhodamine, tyrosine and cytosine. The single-atom site on a chip can enable quantitative linear SERS responses of rhodamine (10−6−1 mmol L−1), tyrosine (0.06–1 mmol L−1) and cytosine (0.2–45 mmol L−1), respectively, which all achieve record-high enhancement factors among plasmonic-free semiconductors. The experimental test and theoretical simulation both reveal that the enhanced mechanism can be ascribed to the controllable single-atom site, which can not only trap photoinduced electrons from the perovskite substrate but also enhance the highly efficient and quantitative charge transfer to analytes. Furthermore, the label-free strategy of single-atom sites on a chip can be applied in a portable Raman platform to obtain a sensitivity similar to that on a benchtop instrument, which can be readily extended to various biomolecules for low-cost, widely demanded and more precise point-of-care testing or in-vitro detection. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Nowadays, memristors are extremely similar to biological synapses and can achieve many basic functions of biological synapses, making them become a new generation of research hotspots for brain-like neurocomputing. In this work, we prepare a memristor based on two-dimensional α-In2Se3 nanosheets, which exhibits excellent electrical properties, faster switching speeds, and continuous tunability of device conduction. Meanwhile, most basic bio-synapse functions can be implemented faithfully, such as short-term memory (STM), long-term memory (LTM), four different types of spike-timing-dependent plasticity (STDP), and paired-pulse facilitation (PPF). More importantly, we systematically study three effective methods to achieve LTM, in which the reinforcement learning can be faithfully simulated according to the Ebbinghaus forgetting curve. Therefore, we believe this work will promote the development of learning functions for brain-like computing and artificial intelligence. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Extremely small-sized iron oxide nanoparticles (ESIONPs) with sizes less than 5 nm have shown great promise as T1 contrast agents for magnetic resonance imaging (MRI). However, their facile and scalable production with simultaneously endowed biocompatible surface chemistry remains difficult to be realized. In this study, by using the coprecipitation method implemented in a specially designed gas/liquid mixed phase fluidic reactor, polyglucose sorbitol carboxymethyether (PSC) coated ESIONPs were continuously synthesized with controllable particle sizes ranging from 1.8 to 4 nm. Among the differently sized ESIONPs, the 3.7-nm ESIONPs exhibit the best performance as T1 MRI contrast agent, featuring a high r1 value of 4.11 (mmol L−1)−1 s−1 and low r2/r1 ratio of 7.90 under a clinical 3 T MR scanning, as well as the excellent T1 MRI contrast effect in not only water but also the cellular environment and blood vessel. Furthermore, the ESIONPs possess long-term stability and good dispersity in aqueous dispersions, making them ideal candidates as safe and effective T1-weighted MRI contrast agent for real clinical use. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Metal sulfides are promising anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacities. However, they are usually limited by their poor cycling performance and rate properties due to their large volume expansion and sluggish reaction kinetics. Herein, Sb2S3/SnS2/C heterostructures were fabricated by directly growing SnS2 nanoplates on Sb2S3 nanorods and then coating their surface with a carbon layer. Sodium-ion diffusion in several electrodes and different electrolytes was further evaluated to investigate the electrochemical performance of the heterostructures. Results revealed that the heterostructures greatly enhanced material stability and promoted ion and electron transport. Consequently, the Sb2S3/SnS2/C composites displayed a high reversible capacity of 642 mA h g−1 at a current density of 1 A g−1 after 600 cycles and a good rate performance of 367.3 mA h g−1 at 4 A g−1 in a NaPF6-diglyme electrolyte. Therefore, Sb2S3/SnS2/C heterostructures are promising anode materials for SIBs. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Fast response, high luminescence contrast, three-dimensional (3D) storage, and nondestructive reading are key factors for the optical storage application of photochromic materials. Femtosecond (fs) laser direct writing technology with multiphoton nonlinear absorption is becoming a useful tool for microprocessing functional units in the 3D space of glass owing to its remarkable advantages, such as a fast processing speed and high processing accuracy. Herein, the photochromism of transparent glass codoped with rare-earth ions was investigated under 800-nm fs laser irradiation, affording a fast response. The photochromic glass achieves an upconversion luminescence (UCL) modification of 92%. The photochromic glass can be bleached back to its original color using heat treatment. The transmittance and UCL modification show excellent reproducibility under alternating stimulations between 800-nm fs laser irradiation and heat treatment. The data can be written in the interior of the transparent photochromic glass using 800-nm fs laser irradiation, facilitating 3D information storage. These results suggest that the 800-nm fs laser irradiation-subjected photochromic glass is an ideal optical data storage medium. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Rapid capacity decay and inferior kinetics are the vital issues of anodes in the conversion reaction for lithium-ion batteries. Vacancy engineering can efficiently modulate the intrinsic properties of transition-metal oxide (TMO)-based electrode materials, but the effect of oxygen vacancies on electrode performance remains unclear. Herein, abundant oxygen vacancies are in situ introduced into the lattice of different TMOs (e.g., Co3O4, Fe2O3, and NiO) via a facile hydrothermal treatment combined with calcination. Taking Co3O4 as a typical example, results prove that the oxygen vacancies in Co3O4−x effectively accelerate charge transfer at the interface and significantly increase electrical conductivity and pseudocapacitance contribution. The Li-ion diffusion coefficient of Co3O4−x is remarkably improved by two orders of magnitude compared with that of Co3O4. Theoretical calculations reveal that Co3O4−x has a lower Li-insertion energy barrier and more density of states around the Fermi level than Co3O4, which is favorable for ion and electron transport. Therefore, TMOs with rich vacancies exhibit superior cycling performance and enhanced rate capability over their counterparts. This strategy regulating the reaction kinetics would provide inspiration for designing other TMO-based electrodes for energy applications. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Cell spheroids are markedly more representative of the native tissue and the in vivo environment than traditional two-dimensional (2D) cultured cells, thus offering tremendous potential in cell biology research, tissue engineering, and drug screening. Therefore, it is crucial to develop materials and methods for efficient production of cell spheroids. However, currently developed materials, including natural and synthetic hydrogels, present drawbacks, such as undefined ingredients and imperfect biocompatibility, which hinder their widespread application. In this study, we have rationally designed biotinylated peptides that can self-assemble into supramolecular hydrogels (termed SupraGel) for 3D cell culture. The introduction of one D-amino acid in the peptide may decrease cell-matrix interactions, thus facilitating spontaneous cell spheroid formation. Two cancer cell lines, MCF-7 and 4T1, and intestinal stem cells (ISCs) can efficiently divide into cell spheroids when cultured in SupraGel. The reversible shear-thinning and recovery behavior of SupraGel is highly suitable for live-cell embedding and cell spheroid harvesting. The mechanical properties of SupraGel can be easily tuned by adjusting the peptide concentration, thus enabling its suitability for the 3D culture of diverse cell spheroids. We envision the significant potential of our SupraGel for applications in cell therapy, regenerative medicine, and drug screening. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Sc-doped Sr2Fe1.5Mo0.5O6−δ (SFMSc) was successfully synthesized by partially substituting Mo in Sr2Fe1.5Mo0.5O6−δ* (SFM) with Sc, resulting in a higher proton diffusion rate in the resultant SFMSc sample. Theoretical calculations showed that doping Sc into SFM lowered the oxygen vacancy formation energy, reduced the energy barrier for proton migration in the oxide, and increased the catalytic activity for oxygen reduction reaction. Next, a proton-conducting solid oxide fuel cell (H-SOFC) with a single-phase SFMSc cathode demonstrated significantly higher cell performance than that of cell based on an Sc-free SFM cathode, achieving 1258 mW cm−2 at 700°C. The performance also outperformed that of many other H-SOFCs based on single-phase cobalt-free cathodes. Furthermore, no trade-off between fuel cell performance and material stability was observed. The SFMSc material demonstrated good stability in both the CO2-containing atmosphere and the fuel cell application. The combination of high performance and outstanding stability suggests that SFMSc is an excellent cathode material for H-SOFCs. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Histidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the Hismediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Surface ligands play critical roles in nano-synthesis and thus it is of great importance in expanding the scope of suitable ligands. In this work, we explore phenynyl ligands in modulating the Au-Au interface when growing Au domains on Au seeds. A patchy growth mode is observed where the emerging islands are flat-laying with holes and branches. This growth mode is distinctively different from the conventional facet-controlled growth using weak ligands, and the non-wetting island growth using strong ligands. Through manipulating the molecular structure and the packing of the phenynyl ligands on the Au seeds, the overgrown Au domains are continuously tuned, from patches to islands, extending the plasmon absorption peak into the near-infrared spectral range. We believe that the new ligand with intermediate affinity and the unusual growth mode would expand the control in both synthesis and application. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The design of metallic materials with high strength, high ductility, and high thermal stability has always been a long-sought goal for the materials science community. However, the trade-off between strength and ductility remains a challenge. Here, we proposed a new strategy to design and fabricate bulk amorphous—crystalline dual-phase superior alloys out of the Al80Li5Mg5Zn5Cu5 multicomponent alloy. The nano-amorphous phase revealed unexpected thermal stability during fabrication and mechanical testing above the crystallization temperature. The true fracture strength of the Al80Li5Mg5Zn5Cu5 nano-amorphous-crystal dual-phase multicomponent alloy was increased from 528 to 657 MPa, and the true strain was increased from 18% to 48%. In addition, the alloy yielded a strength 1.5 times higher than that of the commonly used high-strength aluminum alloys at 250°C. This strategy provided a new approach and concept for the design of high-performance alloys to ensure strength—plasticity balance. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Helical metal-organic frameworks (MOFs) were used as templates or precursors to fabricate helical carbon nanorods (HCNRs) for the first time. Helical carbon contains many topological defects such as pentagonal or heptagonal carbons, which have the potential to facilitate oxygen reduction reactions (ORR). HCNRs show more positive onset/half-wave reduction potentials and higher limited current density than straight carbon nanorods (SCNRs). They also exhibit four-electron oxygen reduction in tests of ORR, while the alternative SCNRs prefer a two-electron reduction mechanism. Experimental and theoretical studies reveal that these enhanced ORR activities can be attributed to pentagon/heptagon defects in HCNRs. This work provides an effective strategy to synthesize helical, defect-rich carbon materials and opens up a new perspective for utilization of a spiral effect for the development of more effective electrocatalysts. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Using halide perovskite nanomaterials for solar-to-fuel conversion has recently attracted a lot of attention due to their excellent photoelectric properties. However, severe photogenerated charge carrier recombinations and poor reaction kinetics greatly restrict their photocatalytic performance. In this study, a ternary WO3/CsPbBr3/ZIF-67 heterostructure was designed for efficient CO2 photoreduction. The results indicate that the Z-scheme charge transfer pathway constructed between WO3 and CsPbBr3 ensures the effective transfer and separation of photogenerated charge carriers. Meanwhile, the subsequent surface modification of zeolitic imidazolate frameworks (ZIF-67) with active Co centers further benefits CO2 adsorption and activation. Accordingly, the synergistic effects of charge separation and CO2 uptake greatly promote the photocatalytic activity. The optimal WO3/CsPbBr3/ZIF-67 heterostructure yields a CO production of 99.38 μmol g−1 in 3 h, which is 6.8 times of that produced by CsPbBr3. This work will inspire new insights in developing efficient photocatalysts for CO2 reduction and even more challenging photocatalytic reactions by elaborately regulating the functional ingredient. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The low crosslink density characteristic of liquid crystal elastomer (LCE) materials causes poor fatigue resistance performance, which has seriously plagued their prospects in industrial applications. Here we report that the introduction of 5 wt% liquid metal nanodroplets (average diameter: ca. 195 nm) into the LCE network can dramatically reinforce the corresponding composite’s mechanical properties, in particular ultrahigh fatigue resistance, capable of bearing unprecedented 10,000 tensile cycles within a large range of strain amplitude up to 70% and 2000 times of continuous actuating deformations. Furthermore, this liquid metal-incorporated LCE composite material exhibits large actuation stroke (maximum actuation strain: 55%), high actuation stress (blocking stress: 1.13 MPa), fully reversible thermal/photo-actuation functions, and self-healing ability at moderate temperatures, which qualifies the composite material for high-load actuators. PubDate: 2022-06-01