Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Salomon C; Das S, Erdbrügger U, et al. Pages: 441 - 468 Abstract: AbstractDuring the last decade, there has been great interest in elucidating the biological role of extracellular vesicles (EVs), particularly, their hormone-like role in cell-to-cell communication. The field of endocrinology is uniquely placed to provide insight into the functions of EVs, which are secreted from all cells into biological fluids and carry endocrine signals to engage in paracellular and distal interactions. EVs are a heterogeneous population of membrane-bound vesicles of varying size, content, and bioactivity. EVs are specifically packaged with signaling molecules, including lipids, proteins, and nucleic acids, and are released via exocytosis into biofluid compartments. EVs regulate the activity of both proximal and distal target cells, including translational activity, metabolism, growth, and development. As such, EVs signaling represents an integral pathway mediating intercellular communication. Moreover, as the content of EVs is cell-type specific, it is a “fingerprint” of the releasing cell and its metabolic status. Recently, changes in the profile of EV and bioactivity have been described in several endocrine-related conditions including diabetes, obesity, cardiovascular diseases, and cancer. The goal of this statement is to highlight relevant aspects of EV research and their potential role in the field of endocrinology. PubDate: Thu, 21 Apr 2022 00:00:00 GMT DOI: 10.1210/endrev/bnac009 Issue No:Vol. 43, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Pages: 610 - 610 Abstract: In the above-named article by Andersson M and Braegger CP (Endocrine Reviews, doi: 10.1210/endrev/bnab029), an error appeared in the Conclusions section: PubDate: Wed, 02 Feb 2022 00:00:00 GMT DOI: 10.1210/endrev/bnab029) an error appeared in the conclusions section: Issue No:Vol. 43, No. 3 (2022)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Andersson M; Braegger C. Pages: 469 - 506 Abstract: AbstractIodine is a micronutrient needed for the production of thyroid hormones, which regulate metabolism, growth, and development. Iodine deficiency or excess may alter the thyroid hormone synthesis. The potential effects on infant development depend on the degree, timing, and duration of exposure. The iodine requirement is particularly high during infancy because of elevated thyroid hormone turnover. Breastfed infants rely on iodine provided by human milk, but the iodine concentration in breast milk is determined by the maternal iodine intake. Diets in many countries cannot provide sufficient iodine, and deficiency is prevented by iodine fortification of salt. However, the coverage of iodized salt varies between countries. Epidemiological data suggest large differences in the iodine intake in lactating women, infants, and toddlers worldwide, ranging from deficient to excessive intake. In this review, we provide an overview of the current knowledge and recent advances in the understanding of iodine nutrition and its association with thyroid function in lactating women, infants, and toddlers. We discuss risk factors for iodine malnutrition and the impact of targeted intervention strategies on these vulnerable population groups. We highlight the importance of appropriate definitions of optimal iodine nutrition and the need for more data assessing the risk of mild iodine deficiency for thyroid disorders during the first 2 years in life. PubDate: Wed, 17 Nov 2021 00:00:00 GMT DOI: 10.1210/endrev/bnab029 Issue No:Vol. 43, No. 3 (2021)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Angelidi A; Belanger M, Kokkinos A, et al. Pages: 507 - 557 Abstract: AbstractRecent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed. PubDate: Thu, 21 Oct 2021 00:00:00 GMT DOI: 10.1210/endrev/bnab034 Issue No:Vol. 43, No. 3 (2021)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Seidah N; Prat A. Pages: 558 - 582 Abstract: AbstractThis article reviews the discovery of PCSK9, its structure–function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound “protein X”. Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis. PubDate: Sat, 09 Oct 2021 00:00:00 GMT DOI: 10.1210/endrev/bnab035 Issue No:Vol. 43, No. 3 (2021)
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors:Ng Y; Lim A, Panagiotou G, et al. Pages: 583 - 609 Abstract: AbstractMitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation. PubDate: Wed, 13 Oct 2021 00:00:00 GMT DOI: 10.1210/endrev/bnab036 Issue No:Vol. 43, No. 3 (2021)