Subjects -> PALEONTOLOGY (Total: 46 journals)
Showing 1 - 21 of 21 Journals sorted alphabetically
Acta Palaeontologica Polonica     Open Access   (Followers: 6)
Alcheringa: An Australasian Journal of Palaeontology     Hybrid Journal   (Followers: 7)
Ameghiniana     Open Access   (Followers: 1)
Annales de Paléontologie     Full-text available via subscription   (Followers: 7)
Annals of Carnegie Museum     Full-text available via subscription   (Followers: 1)
Boreas: An International Journal of Quaternary Research     Hybrid Journal   (Followers: 12)
Comptes Rendus Palevol     Full-text available via subscription  
European Journal of Protistology     Hybrid Journal   (Followers: 6)
EvoDevo     Open Access   (Followers: 4)
Facies     Hybrid Journal   (Followers: 10)
Fossil Record     Open Access   (Followers: 5)
Geobios     Full-text available via subscription   (Followers: 6)
Historical Biology: An International Journal of Paleobiology     Hybrid Journal   (Followers: 9)
Ichnos: An International Journal for Plant and Animal Traces     Hybrid Journal  
International Journal of Speleology     Open Access   (Followers: 3)
Journal of Paleolimnology     Hybrid Journal   (Followers: 6)
Journal of Paleontology     Hybrid Journal   (Followers: 11)
Journal of Quaternary Science     Hybrid Journal   (Followers: 32)
Journal of Vertebrate Paleontology     Full-text available via subscription   (Followers: 12)
Marine Micropaleontology     Hybrid Journal   (Followers: 2)
Micropaleontology     Full-text available via subscription  
Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen     Full-text available via subscription   (Followers: 4)
Novitates Paleoentomologicae     Open Access   (Followers: 1)
Open Quaternary     Open Access   (Followers: 1)
Palaeogeography, Palaeoclimatology, Palaeoecology     Hybrid Journal   (Followers: 13)
Palaeontology     Hybrid Journal   (Followers: 18)
Palaeoworld     Hybrid Journal   (Followers: 3)
PALAIOS     Hybrid Journal   (Followers: 7)
Paläontologische Zeitschrift     Hybrid Journal   (Followers: 4)
Paleobiology     Full-text available via subscription   (Followers: 6)
PaleoBios     Open Access   (Followers: 1)
Paleoceanography and Paleoclimatology     Full-text available via subscription   (Followers: 4)
Paleontological Journal     Full-text available via subscription   (Followers: 5)
Paleontological Research     Full-text available via subscription   (Followers: 3)
Palynology     Hybrid Journal   (Followers: 2)
Papers in Palaeontology     Hybrid Journal   (Followers: 1)
Quaternaire     Open Access   (Followers: 3)
Quaternary Research     Full-text available via subscription   (Followers: 20)
Quaternary Science Reviews     Hybrid Journal   (Followers: 25)
Review of Palaeobotany and Palynology     Hybrid Journal   (Followers: 2)
Revue de Micropaleontologie     Full-text available via subscription  
Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy)     Open Access   (Followers: 2)
Spanish Journal of Palaeontology     Open Access  
Swiss Journal of Palaeontology     Hybrid Journal   (Followers: 4)
Vertebrate Anatomy Morphology Palaeontology     Open Access   (Followers: 2)
Zitteliana     Open Access   (Followers: 4)
Similar Journals
Journal Cover
EvoDevo
Journal Prestige (SJR): 2.062
Citation Impact (citeScore): 3
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2041-9139
Published by Springer-Verlag Homepage  [2653 journals]
  • Convergent evolution of saccate body shapes in nematodes through distinct
           developmental mechanisms

    • Abstract: Background The vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the establishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. Body size in Caenorhabditis elegans was previously shown to correlate with post-embryonic divisions of laterally positioned stem cell-like ‘seam’ cells and endoreduplication of seam cell epidermal daughters. To test if a similar mechanism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. To study the evolution of body shape development, we examined seam cell development of four additional Tylenchomorpha species with vermiform or saccate body shapes. Results We confirmed the presence of seam cell homologs and their proliferation in H. glycines. This results in the adult female epidermis having approximately 1800 nuclei compared with the 139 nuclei in the primary epidermal syncytium of C. elegans. Similar to C. elegans, we found a significant correlation between H. glycines body volume and the number and ploidy level of epidermal nuclei. While we found that the seam cells also proliferate in the independently evolved saccate nematode Meloidogyne incognita following infection, the division pattern differed substantially from that seen in H. glycines. Interestingly, the close relative of H. glycines, Rotylenchulus reniformis does not undergo extensive seam cell proliferation during its development into a saccate form. Conclusions Our data reveal that seam cell proliferation and epidermal nuclear ploidy correlate with growth in H. glycines. Our finding of distinct seam cell division patterns in the independently evolved saccate species M. incognita and H. glycines is suggestive of parallel evolution of saccate forms. The lack of seam cell proliferation in R. reniformis demonstrates that seam cell proliferation and endoreduplication are not strictly required for increased body volume and atypical body shape. We speculate that R. reniformis may serve as an extant transitional model for the evolution of saccate body shape.
      PubDate: 2019-03-14
      DOI: 10.1186/s13227-019-0118-5
       
  • Modular co-option of cardiopharyngeal genes during non-embryonic
           myogenesis

    • Abstract: Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways.
      PubDate: 2019-03-05
      DOI: 10.1186/s13227-019-0116-7
       
  • Glass confers rhabdomeric photoreceptor identity in Drosophila , but not
           across all metazoans

    • Abstract: Across metazoans, visual systems employ different types of photoreceptor neurons (PRs) to detect light. These include rhabdomeric PRs, which exist in distantly related phyla and possess an evolutionarily conserved phototransduction cascade. While the development of rhabdomeric PRs has been thoroughly studied in the fruit fly Drosophila melanogaster, we still know very little about how they form in other species. To investigate this question, we tested whether the transcription factor Glass, which is crucial for instructing rhabdomeric PR formation in Drosophila, may play a similar role in other metazoans. Glass homologues exist throughout the animal kingdom, indicating that this protein evolved prior to the metazoan radiation. Interestingly, our work indicates that glass is not expressed in rhabdomeric photoreceptors in the planarian Schmidtea mediterranea nor in the annelid Platynereis dumerilii. Combined with a comparative analysis of the Glass DNA-binding domain, our data suggest that the fate of rhabdomeric PRs is controlled by Glass-dependent and Glass-independent mechanisms in different animal clades.
      PubDate: 2019-03-05
      DOI: 10.1186/s13227-019-0117-6
       
  • Spatial and temporal patterns of gene expression during neurogenesis in
           the sea urchin Lytechinus variegatus

    • Abstract: Background The sea urchin is a basal deuterostome that is more closely related to vertebrates than many organisms traditionally used to study neurogenesis. This phylogenetic position means that the sea urchin can provide insights into the evolution of the nervous system by helping resolve which developmental processes are deuterostome innovations, which are innovations in other clades, and which are ancestral. However, the nervous system of echinoderms is one of the least understood of all major metazoan phyla. To gain insights into echinoderm neurogenesis, spatial and temporal gene expression data are essential. Then, functional data will enable the building of a detailed gene regulatory network for neurogenesis in the sea urchin that can be compared across metazoans to resolve questions about how nervous systems evolved. Results Here, we analyze spatiotemporal gene expression during sea urchin neurogenesis for genes that have been shown to be neurogenic in one or more species. We report the expression of 21 genes expressed in areas of neurogenesis in the sea urchin embryo from blastula stage (just before neural progenitors begin their specification sequence) through pluteus larval stage (when much of the nervous system has been patterned). Among those 21 gene expression patterns, we report expression of 11 transcription factors and 2 axon guidance genes, each expressed in discrete domains in the neuroectoderm or in the endoderm. Most of these genes are expressed in and around the ciliary band. Some including the transcription factors Lv-mbx, Lv-dmrt, Lv-islet, and Lv-atbf1, the nuclear protein Lv-prohibitin, and the guidance molecule Lv-semaa are expressed in the endoderm where they are presumably involved in neurogenesis in the gut. Conclusions This study builds a foundation to study how neurons are specified and evolved by analyzing spatial and temporal gene expression during neurogenesis in a basal deuterostome. With these expression patterns, we will be able to understand what genes are required for neural development in the sea urchin. These data can be used as a starting point to (1) build a spatial gene regulatory network for sea urchin neurogenesis, (2) identify how subtypes of neurons are specified, (3) perform comparative studies with the sea urchin, protostome, and vertebrate organisms.
      PubDate: 2019-02-12
      DOI: 10.1186/s13227-019-0115-8
       
  • Hox gene expression in postmetamorphic juveniles of the brachiopod
           Terebratalia transversa

    • Abstract: Background Hox genes encode a family of homeodomain containing transcription factors that are clustered together on chromosomes of many Bilateria. Some bilaterian lineages express these genes during embryogenesis in spatial and/or temporal order according to their arrangement in the cluster, a phenomenon referred to as collinearity. Expression of Hox genes is well studied during embryonic and larval development of numerous species; however, relatively few studies focus on the comparison of pre- and postmetamorphic expression of Hox genes in animals with biphasic life cycle. Recently, the expression of Hox genes was described for embryos and larvae of Terebratalia transversa, a rhynchonelliformean brachiopod, which possesses distinct metamorphosis from planktonic larvae to sessile juveniles. During premetamorphic development, T. transversa does not exhibit spatial collinearity and several of its Hox genes are recruited for the morphogenesis of novel structures. In our study, we determined the expression of Hox genes in postmetamorphic juveniles of T. transversa in order to examine metamorphosis-related changes of expression patterns and to test whether Hox genes are expressed in the spatially collinear way in the postmetamorphic juveniles. Results Hox genes are expressed in a spatially non-collinear manner in juveniles, generally showing similar patterns as ones observed in competent larvae: genes labial and post1 are expressed in chaetae-related structures, sex combs reduced in the shell-forming epithelium, whereas lox5 and lox4 in dorso-posterior epidermis. After metamorphosis, expression of genes proboscipedia, hox3, deformed and antennapedia becomes restricted to, respectively, shell musculature, prospective hinge rudiments and pedicle musculature and epidermis. Conclusions All developmental stages of T. transversa, including postmetamorphic juveniles, exhibit a spatial non-collinear Hox genes expression with only minor changes observed between pre- and postmetamorphic stages. Our results are concordant with morphological observation that metamorphosis in rhynchonelliformean brachiopods, despite being rapid, is rather gradual. The most drastic changes in Hox gene expression patterns observed during metamorphosis could be explained by the inversion of the mantle lobe, which relocates some of the more posterior larval structures into the anterior edge of the juveniles. Co-option of Hox genes for the morphogenesis of novel structures is even more pronounced in postmetamorphic brachiopods when compared to larvae.
      PubDate: 2019-01-08
      DOI: 10.1186/s13227-018-0114-1
       
  • Expression of meis and hoxa11 in dipnoan and teleost fins provides new
           insights into the evolution of vertebrate appendages

    • Authors: Fernanda Langellotto; Maria Fiorentino; Elena De Felice; Luigi Caputi; Valeria Nittoli; Jean M. P. Joss; Paolo Sordino
      Abstract: Background The concerted activity of Meis and Hoxa11 transcription factors is essential for the subdivision of tetrapod limbs into proximo-distal (PD) domains; however, little is know about the evolution of this patterning mechanism. Here, we aim to study the expression of meis and hoxa11 orthologues in the median and paired rayed fins of zebrafish and in the lobed fins of the Australian lungfish. Results First, a late phase of expression of meis1.1 and hoxa11b in zebrafish dorsal and anal fins relates with segmentation of endochondral elements in proximal and distal radials. Second, our zebrafish in situ hybridization results reveal spatial and temporal changes between pectoral and pelvic fins. Third, in situ analysis of meis1, meis3 and hoxa11 genes in Neoceratodus pectoral fins identifies decoupled domains of expression along the PD axis. Conclusions Our data raise the possibility that the origin of stylopod and zeugopod lies much deeper in gnathostome evolution and that variation in meis and hoxa11 expression has played a substantial role in the transformation of appendage anatomy. Moreover, these observations provide evidence that the Meis/Hoxa11 profile considered a hallmark of stylopod/zeugopod patterning is present in Neoceratodus.
      PubDate: 2018-04-27
      DOI: 10.1186/s13227-018-0099-9
      Issue No: Vol. 9, No. 1 (2018)
       
  • The role of retinoic acid signaling in starfish metamorphosis

    • Authors: Shumpei Yamakawa; Yoshiaki Morino; Masanao Honda; Hiroshi Wada
      Abstract: Background Although retinoic acid (RA) signaling plays a crucial role in the body patterning of chordates, its function in non-chordate invertebrates, other than its mediation of environmental cues triggering metamorphosis in cnidarians, is largely unknown. We investigated the role of RA signaling in the metamorphosis of starfish (Echinodermata). Results We found that exogenous RA treatment induced metamorphosis in starfish larvae. In contrast, inhibitors of RA synthesis and RA receptors suppressed metamorphosis triggered by attachment to a substrate. Gene expressions of the RA signaling component were detected in competent larvae. Conclusions This study provides insight into the ancestral function of RA signaling, which is conserved in the metamorphosis of cnidarians and starfish.
      PubDate: 2018-04-21
      DOI: 10.1186/s13227-018-0098-x
      Issue No: Vol. 9, No. 1 (2018)
       
  • Around the clock: gradient shape and noise impact the evolution of
           oscillatory segmentation dynamics

    • Abstract: Background Segmentation, the subdivision of the major body axis into repeated elements, is considered one of the major evolutionary innovations in bilaterian animals. In all three segmented animal clades, the predominant segmentation mechanism is sequential segmentation, where segments are generated one by one in anterior–posterior order from a posterior undifferentiated zone. In vertebrates and arthropods, sequential segmentation is thought to arise from a clock-and-wavefront-type mechanism, where oscillations in the posterior growth zone are transformed into a segmental prepattern in the anterior by a receding wavefront. Previous evo-devo simulation studies have demonstrated that this segmentation type repeatedly arises, supporting the idea of parallel evolutionary origins in these animal clades. Sequential segmentation has been studied most extensively in vertebrates, where travelling waves have been observed that reflect the slowing down of oscillations prior to their cessation and where these oscillations involve a highly complex regulatory network. It is currently unclear under which conditions this oscillator complexity and slowing should be expected to evolve, how they are related and to what extent similar properties should be expected for sequential segmentation in other animal species. Results To investigate these questions, we extend a previously developed computational model for the evolution of segmentation. We vary the slope of the posterior morphogen gradient and the strength of gene expression noise. We find that compared to a shallow gradient, a steep morphogen gradient allows for faster evolution and evolved oscillator networks are simpler. Furthermore, under steep gradients, damped oscillators often evolve, whereas shallow gradients appear to require persistent oscillators which are regularly accompanied by travelling waves, indicative of a frequency gradient. We show that gene expression noise increases the likelihood of evolving persistent oscillators under steep gradients and of evolving frequency gradients under shallow gradients. Surprisingly, we find that the evolutions of oscillator complexity and travelling waves are not correlated, suggesting that these properties may have evolved separately. Conclusions Based on our findings, we suggest that travelling waves may have evolved in response to shallow morphogen gradients and gene expression noise. These two factors may thus also be responsible for the observed differences between different species within both the arthropod and chordate phyla.
      PubDate: 2018-12-10
      DOI: 10.1186/s13227-018-0113-2
       
  • Maternal mRNA input of growth and stress-response-related genes in
           cichlids in relation to egg size and trophic specialization

    • Abstract: Background Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. Results We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). Conclusions These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
      PubDate: 2018-12-01
      DOI: 10.1186/s13227-018-0112-3
       
  • A two-level model for the role of complex and young genes in the formation
           of organism complexity and new insights into the relationship between
           evolution and development

    • Abstract: Background How genome complexity affects organismal phenotypic complexity is a fundamental question in evolutionary developmental biology. Previous studies proposed various contributing factors of genome complexity and tried to find the connection between genomic complexity and organism complexity. However, a general model to answer this question is lacking. Here, we introduce a ‘two-level’ model for the realization of genome complexity at phenotypic level. Results Five representative species across Protostomia and Deuterostomia were involved in this study. The intrinsic gene properties contributing to genome complexity were classified into two generalized groups: the complexity and age degree of both protein-coding and noncoding genes. We found that young genes tend to be simpler; however, the mid-age genes, rather than the oldest genes, show the highest proportion of high complexity. Complex genes tend to be utilized preferentially in each stage of embryonic development, with maximum representation during the late stage of organogenesis. This trend is mainly attributed to mid-age complex genes. In contrast, young genes tend to be expressed in specific spatiotemporal states. An obvious correlation between the time point of the change in over- and under-representation and the order of gene age was observed, which supports the funnel-like model of the conservation pattern of development. In addition, we found some probable causes for the seemingly contradictory ‘funnel-like’ or ‘hourglass’ model. Conclusions These results indicate that complex and young genes contribute to organismal complexity at two different levels: Complex genes contribute to the complexity of individual proteomes in certain states, whereas young genes contribute to the diversity of proteomes in different spatiotemporal states. This conclusion is valid across the five species investigated, indicating it is a conserved model across Protostomia and Deuterostomia. The results in this study also support ‘funnel-like model’ from a new viewpoint and explain why there are different evo–devo relation models.
      PubDate: 2018-11-12
      DOI: 10.1186/s13227-018-0111-4
       
  • Genome-wide transcriptome profiling and spatial expression analyses
           identify signals and switches of development in tapeworms

    • Abstract: Background Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. Results RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5–30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing ‘signals’ and ‘switches’ showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. Conclusions Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.
      PubDate: 2018-11-09
      DOI: 10.1186/s13227-018-0110-5
       
  • Gene expression analysis of potential morphogen signalling modifying
           factors in Panarthropoda

    • Abstract: Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research.
      PubDate: 2018-09-29
      DOI: 10.1186/s13227-018-0109-y
       
  • Analyses of nervous system patterning genes in the tardigrade Hypsibius
           exemplaris illuminate the evolution of panarthropod brains

    • Abstract: Background Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether they have a tripartite brain or unipartite brain has recently been a focus of debate. Results We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris—formerly misidentified as Hypsibius dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk. Conclusion Our results buttress the conclusion of our previous study of Hox genes—that the brain of tardigrades is only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.
      PubDate: 2018-07-30
      DOI: 10.1186/s13227-018-0106-1
       
  • Developmental system drift in motor ganglion patterning between distantly
           related tunicates

    • Abstract: Background The larval nervous system of the solitary tunicate Ciona is a simple model for the study of chordate neurodevelopment. The development and connectivity of the Ciona motor ganglion have been studied in fine detail, but how this important structure develops in other tunicates is not well known. Methods and Results By comparing gene expression patterns in the developing MG of the distantly related tunicate Molgula occidentalis, we found that its patterning is highly conserved compared to the Ciona MG. MG neuronal subtypes in Molgula were specified in the exact same positions as in Ciona, though the timing of subtype-specific gene expression onset was slightly shifted to begin earlier, relative to mitotic exit and differentiation. In transgenic Molgula embryos electroporated with Dmbx reporter plasmids, we were also able to characterize the morphology of the lone pair of descending decussating neurons (ddNs) in Molgula, revealing the same unique contralateral projection seen in Ciona ddNs and their putative vertebrate homologs the Mauthner cells. Although Dmbx expression labels the ddNs in both species, cross-species transgenic assays revealed significant changes to the regulatory logic underlying Dmbx transcription. We found that Dmbx cis-regulatory DNAs from Ciona can drive highly specific reporter gene expression in Molgula ddNs, but Molgula sequences are not active in Ciona ddNs. Conclusions This acute divergence in the molecular mechanisms that underlie otherwise functionally conserved cis-regulatory DNAs supports the recently proposed idea that the extreme genetic plasticity observed in tunicates may be attributed to the extreme rigidity of the spatial organization of their embryonic cell lineages.
      PubDate: 2018-07-23
      DOI: 10.1186/s13227-018-0107-0
       
  • Expression of NK cluster genes in the onychophoran Euperipatoides rowelli
           : implications for the evolution of NK family genes in nephrozoans

    • Abstract: Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this “urbilaterian” is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development—a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex “urbilaterian” with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
      PubDate: 2018-07-18
      DOI: 10.1186/s13227-018-0105-2
       
  • Formation of the initial kidney and mouth opening in larval amphioxus
           studied with serial blockface scanning electron microscopy (SBSEM)

    • Abstract: Background For early larvae of amphioxus, Kaji et al. (Zool Lett 2:2, 2016) proposed that mesoderm cells are added to the rim of the forming mouth, giving it the quality of a coelomoduct without homology to the oral openings of other animals. They depended in part on non-serial transmission electron microscopic (TEM) sections and could not readily put fine structural details into a broader context. The present study of amphioxus larvae is based largely on serial blockface scanning electron microscopy (SBSEM), a technique revealing TEM-level details within an extensive anatomical volume that can be reconstructed in three dimensions. Results In amphioxus larvae shortly before mouth formation, a population of compact mesoderm cells is present at the posterior extremity of the first left somite. As development continues, the more dorsal of these cells give rise to the initial kidney (Hatschek’s nephridium), while the more ventral cells become interposed between the ectoderm and endoderm in a localized region where the mouth will soon penetrate. SBSEM reveals that, after the mouth has opened, a majority of these mesoderm cells can still be detected, sandwiched between the ectoderm and endoderm; they are probably myoblasts destined to develop into the perioral muscles. Conclusions SBSEM has provided the most accurate and detailed description to date of the tissues at the anterior end of amphioxus larvae. The present study supports the finding of Kaji et al. (2016) that the more dorsal of the cells in the posterior region of the first left somite give rise to the initial kidney. In contrast, the fate of the more ventral cells (called here the oral mesoderm) is less well understood. Although Kaji et al. (2016) implied that all of the oral mesoderm cells joined the rim of the forming mouth, SBSEM reveals that many of them are still present after mouth penetration. Even so, some of those cells go missing during mouth penetration and their fate is unknown. It cannot be ruled out that they were incorporated into the rim of the nascent mouth as proposed by Kaji et al. (2016). On the other hand, they might have degenerated or been shed from the larva during the morphogenetic interaction between the ectoderm and endoderm to form the mouth. The present SBSEM study, like Kaji et al. (2016), is based on static morphological data, and dynamic cell tracer experiments would be needed to decide among these possibilities.
      PubDate: 2018-06-21
      DOI: 10.1186/s13227-018-0104-3
       
  • Creating diversity in mammalian facial morphology: a review of potential
           developmental mechanisms

    • Abstract: Mammals (class Mammalia) have evolved diverse craniofacial morphology to adapt to a wide range of ecological niches. However, the genetic and developmental mechanisms underlying the diversification of mammalian craniofacial morphology remain largely unknown. In this paper, we focus on the facial length and orofacial clefts of mammals and deduce potential mechanisms that produced diversity in mammalian facial morphology. Small-scale changes in facial morphology from the common ancestor, such as slight changes in facial length and the evolution of the midline cleft in some lineages of bats, could be attributed to heterochrony in facial bone ossification. In contrast, large-scale changes of facial morphology from the common ancestor, such as a truncated, widened face as well as the evolution of the bilateral cleft possessed by some bat species, could be brought about by changes in growth and patterning of the facial primordium (the facial processes) at the early stages of embryogenesis.
      PubDate: 2018-06-14
      DOI: 10.1186/s13227-018-0103-4
       
  • Wnt/β-catenin signalling is necessary for gut differentiation in a marine
           annelid, Platynereis dumerilii

    • Abstract: Background Wnt/β-catenin (or canonical) signalling pathway activity is necessary and used independently several times for specification of vegetal fate and endoderm, gut differentiation, maintenance of epithelium in adult intestine and the development of gut-derived organs in various vertebrate and non-vertebrate organisms. However, its conservation in later stages of digestive tract development still remains questionable due to the lack of detailed data, mainly from Spiralia. Results Here we characterize the Pdu-Tcf gene, a Tcf/LEF orthologue and a component of Wnt/β-catenin pathway from Platynereis dumerilii, a spiralian, marine annelid worm. Pdu-Tcf undergoes extensive alternative splicing in the C-terminal region of the gene generating as many as eight mRNA isoforms some of which differ in the presence or absence of a C-clamp domain which suggests a distinct DNA binding activity of individual protein variants. Pdu-Tcf is broadly expressed throughout development which is indicative of many functions. One of the most prominent domains that exhibits rather strong Pdu-Tcf expression is in the putative precursors of endodermal gut cells which are detected after 72 h post-fertilization (hpf). At day 5 post-fertilization (dpf), Pdu-Tcf is expressed in the hindgut and pharynx (foregut), whereas at 7 dpf stage, it is strongly transcribed in the now-cellularized midgut for the first time. In order to gain insight into the role of Wnt/β-catenin signalling, we disrupted its activity using pharmacological inhibitors between day 5 and 7 of development. The inhibition of Wnt/β-catenin signalling led to the loss of midgut marker genes Subtilisin-1, Subtilisin-2, α-Amylase and Otx along with a drop in β-catenin protein levels, Axin expression in the gut and nearly the complete loss of proliferative activity throughout the body of larva. At the same time, a hindgut marker gene Legumain was expanded to the midgut compartment under the same conditions. Conclusions Our findings suggest that high Wnt/β-catenin signalling in the midgut might be necessary for proper differentiation of the endoderm to an epithelium capable of secreting digestive enzymes. Together, our data provide evidence for the role of Wnt/β-catenin signalling in gut differentiation in Platynereis.
      PubDate: 2018-06-11
      DOI: 10.1186/s13227-018-0100-7
       
  • The dorsoventral patterning of Musca domestica embryos: insights into
           BMP/Dpp evolution from the base of the lower cyclorraphan flies

    • Abstract: Background In the last few years, accumulated information has indicated that the evolution of an extra-embryonic membrane in dipterans was accompanied by changes in the gene regulatory network controlled by the BMP/Dpp pathway, which is responsible for dorsal patterning in these insects. However, only comparative analysis of gene expression levels between distant species with two extra-embryonic membranes, like A. gambiae or C. albipunctata, and D. melanogaster, has been conducted. Analysis of gene expression in ancestral species, which evolved closer to the amnioserosa origin, could provide new insights into the evolution of dorsoventral patterning in dipterans. Results Here we describe the spatial expression of several key and downstream elements of the Dpp pathway and show the compared patterns of expression between Musca and Drosophila embryos, both dipterans with amnioserosa. Most of the analyzed gene showed a high degree of expression conservation, however, we found several differences in the gene expression pattern of M. domestica orthologs for sog and tolloid. Bioinformatics analysis of the promoter of both genes indicated that the variations could be related to the gain of several binding sites for the transcriptional factor Dorsal in the Md.tld promoter and Snail in the Md.sog enhancer. These altered expressions could explain the unclear formation of the pMad gradient in the M. domestica embryo, compared to the formation of the gradient in D. melanogaster. Conclusion Gene expression changes during the dorsal–ventral patterning in insects contribute to the differentiation of extra-embryonic tissues as a consequence of changes in the gene regulatory network controlled by BMP/Dpp. In this work, in early M. domestica embryos, we identified the expression pattern of several genes members involved in the dorsoventral specification of the embryo. We believe that these data can contribute to understanding the evolution of the BMP/Dpp pathway, the regulation of BMP ligands, and the formation of a Dpp gradient in higher cyclorraphan flies.
      PubDate: 2018-05-16
      DOI: 10.1186/s13227-018-0102-5
       
  • Glycogen synthase kinase 3 promotes multicellular development over
           unicellular encystation in encysting Dictyostelia

    • Abstract: Background Glycogen synthase kinase 3 (GSK3) regulates many cell fate decisions in animal development. In multicellular structures of the group 4 dictyostelid Dictyostelium discoideum, GSK3 promotes spore over stalk-like differentiation. We investigated whether, similar to other sporulation-inducing genes such as cAMP-dependent protein kinase (PKA), this role of GSK3 is derived from an ancestral role in encystation of unicellular amoebas. Results We deleted GSK3 in Polysphondylium pallidum, a group 2 dictyostelid which has retained encystation as an alternative survival strategy. Loss of GSK3 inhibited cytokinesis of cells in suspension, as also occurs in D. discoideum, but did not affect spore or stalk differentiation in P. pallidum. However, gsk3− amoebas entered into encystation under conditions that in wild type favour aggregation and fruiting body formation. The gsk3− cells were hypersensitive to osmolytes, which are known to promote encystation, and to cyst-inducing factors that are secreted during starvation. GSK3 was not itself regulated by these factors, but inhibited their effects. Conclusions Our data show that GSK3 has a deeply conserved role in controlling cytokinesis, but not spore differentiation in Dictyostelia. Instead, in P. pallidum, one of many Dictyostelia that like their solitary ancestors can still encyst to survive starvation, GSK3 promotes multicellular development into fruiting bodies over unicellular encystment.
      PubDate: 2018-05-09
      DOI: 10.1186/s13227-018-0101-6
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.230.173.249
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-