Subjects -> PALEONTOLOGY (Total: 43 journals)
Showing 1 - 21 of 21 Journals sorted alphabetically
Alcheringa: An Australasian Journal of Palaeontology     Hybrid Journal   (Followers: 6)
Ameghiniana     Open Access  
Annales de Paléontologie     Full-text available via subscription   (Followers: 4)
Annals of Carnegie Museum     Full-text available via subscription   (Followers: 1)
Boreas: An International Journal of Quaternary Research     Hybrid Journal   (Followers: 12)
Comptes Rendus Palevol     Open Access  
European Journal of Protistology     Hybrid Journal   (Followers: 5)
EvoDevo     Open Access   (Followers: 4)
Facies     Hybrid Journal   (Followers: 9)
Fossil Record     Open Access   (Followers: 5)
Geobios     Full-text available via subscription   (Followers: 4)
Historical Biology: An International Journal of Paleobiology     Hybrid Journal   (Followers: 8)
Ichnos: An International Journal for Plant and Animal Traces     Hybrid Journal  
International Journal of Speleology     Open Access   (Followers: 3)
Journal of Paleolimnology     Hybrid Journal   (Followers: 5)
Journal of Paleontology     Hybrid Journal   (Followers: 8)
Journal of Quaternary Science     Hybrid Journal   (Followers: 29)
Journal of Vertebrate Paleontology     Full-text available via subscription   (Followers: 8)
Marine Micropaleontology     Hybrid Journal   (Followers: 2)
Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen     Full-text available via subscription   (Followers: 3)
Novitates Paleoentomologicae     Open Access   (Followers: 1)
Open Quaternary     Open Access  
Palaeogeography, Palaeoclimatology, Palaeoecology     Hybrid Journal   (Followers: 11)
Palaeontographica A     Full-text available via subscription   (Followers: 7)
Palaeontology     Hybrid Journal   (Followers: 17)
Palaeoworld     Hybrid Journal   (Followers: 3)
Paläontologische Zeitschrift     Hybrid Journal   (Followers: 4)
Paleobiology     Full-text available via subscription   (Followers: 5)
PaleoBios     Open Access   (Followers: 1)
Paleoceanography and Paleoclimatology     Full-text available via subscription   (Followers: 4)
Paleontological Journal     Full-text available via subscription   (Followers: 4)
Palynology     Hybrid Journal   (Followers: 1)
Papers in Palaeontology     Hybrid Journal  
Quaternaire     Open Access   (Followers: 3)
Quaternary Research     Full-text available via subscription   (Followers: 19)
Quaternary Science Reviews     Hybrid Journal   (Followers: 24)
Review of Palaeobotany and Palynology     Hybrid Journal   (Followers: 1)
Revue de Micropaleontologie     Full-text available via subscription  
Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy)     Open Access   (Followers: 1)
Spanish Journal of Palaeontology     Open Access  
Swiss Journal of Palaeontology     Hybrid Journal   (Followers: 4)
Vertebrate Anatomy Morphology Palaeontology     Open Access   (Followers: 1)
Zitteliana     Open Access  
Similar Journals
Journal Cover
Journal Prestige (SJR): 2.062
Citation Impact (citeScore): 3
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2041-9139
Published by Springer-Verlag Homepage  [2469 journals]
  • Evolution and expression of LEAFY genes in ferns and lycophytes

    • Abstract: Background The LEAFY (LFY) transcription factors are present in algae and across land plants. The available expression and functional data of these genes in embryophytes suggest that LFY genes control a plethora of processes including the first zygotic cell division in bryophytes, shoot cell divisions of the gametophyte and sporophyte in ferns, cone differentiation in gymnosperms and floral meristem identity in flowering plants. However, their putative plesiomorphic role in plant reproductive transition in vascular plants remains untested. Results We perform Maximum Likelihood (ML) phylogenetic analyses for the LFY gene lineage in embryophytes with expanded sampling in lycophytes and ferns. We recover the previously identified seed plant duplication that results in LEAFY and NEEDLY paralogs. In addition, we recover multiple species-specific duplications in ferns and lycophytes and large-scale duplications possibly correlated with the occurrence of whole genome duplication (WGD) events in Equisetales and Salviniales. To test putative roles in diverse ferns and lycophytes we perform LFY expression analyses in Adiantum raddianum, Equisetum giganteum and Selaginella moellendorffii. Our results show that LFY genes are active in vegetative and reproductive tissues, with higher expression in early fertile developmental stages and during sporangia differentiation. Conclusions Our data point to previously unrecognized roles of LFY genes in sporangia differentiation in lycophytes and ferns and suggests that functions linked to reproductive structure development are not exclusive to seed plant LFY homologs.
      PubDate: 2022-01-08
  • Delayed differentiation of epidermal cells walls can underlie
           pedomorphosis in plants: the case of pedomorphic petals in the
           hummingbird-pollinated Caiophora hibiscifolia (Loasaceae, subfam.
           Loasoideae) species

    • Abstract: Background Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. Results By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. Conclusions Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves. Graphical
      PubDate: 2022-01-03
  • Case not closed: the mystery of the origin of the carpel

    • Abstract: The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it’s no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.
      PubDate: 2021-12-15
  • Whole body regeneration and developmental competition in two botryllid

    • Abstract: Background Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. Results While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. Conclusions We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.
      PubDate: 2021-12-15
  • Correction to: Breaking evolutionary and pleiotropic constraints in
           mammals: on sloths, manatees and homeotic mutations

    • PubDate: 2021-11-22
  • A chelicerate Wnt gene expression atlas: novel insights into the
           complexity of arthropod Wnt-patterning

    • Abstract: The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.
      PubDate: 2021-11-09
  • Duplication of spiralian-specific TALE genes and evolution of the
           blastomere specification mechanism in the bivalve lineage

    • Abstract: Background Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. Results We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. Conclusions These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves.
      PubDate: 2021-10-18
  • The Nereid on the rise: Platynereis as a model system

    • Abstract: The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195–269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
      PubDate: 2021-09-27
      DOI: 10.1186/s13227-021-00180-3
  • Cell-specific expression and individual function of prohormone convertase
           PC1/3 in Tribolium larval growth highlights major evolutionary changes
           between beetle and fly neuroendocrine systems

    • Abstract: Background The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome. Results In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles’ viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain. Conclusions The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies.
      PubDate: 2021-06-29
      DOI: 10.1186/s13227-021-00179-w
  • Variation on a theme: pigmentation variants and mutants of anemonefish

    • Abstract: Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.
      PubDate: 2021-06-19
      DOI: 10.1186/s13227-021-00178-x
  • Panarthropod tiptop/teashirt and spalt orthologs and their potential role
           as “trunk”-selector genes

    • Abstract: Background In the vinegar fly Drosophila melanogaster, the homeodomain containing transcription factor Teashirt (Tsh) appears to specify trunk identity in concert with the function of the Hox genes. While in Drosophila there is a second gene closely related to tsh, called tiptop (tio), in other arthropods species only one copy exists (called tio/tsh). The expression of tsh and tio/tsh, respectively, is surprisingly similar among arthropods suggesting that its function as trunk selector gene may be conserved. Other research, for example on the beetle Tribolium castaneum, questions even conservation of Tsh function among insects. The zinc-finger transcription factor Spalt (Sal) is involved in the regulation of Drosophila tsh, but this regulatory interaction does not appear to be conserved in Tribolium either. Whether the function and interaction of tsh and sal as potential trunk-specifiers, however, is conserved is still unclear because comparative studies on sal expression (except for Tribolium) are lacking, and functional data are (if at all existing) restricted to Insecta. Results Here, we provide additional data on arthropod tsh expression, show the first data on onychophoran tio/tsh expression, and provide a comprehensive investigation on sal expression patterns in arthropods and an onychophoran. Conclusions Our data support the idea that tio/tsh genes are involved in the development of “trunk” segments by regulating limb development. Our data suggest further that the function of Sal is indeed unlikely to be conserved in trunk vs head development like in Drosophila, but early expression of sal is in line with a potential homeotic function, at least in Arthropoda.
      PubDate: 2021-06-02
      DOI: 10.1186/s13227-021-00177-y
  • Sex-specific plasticity and the nutritional geometry of insulin-signaling
           gene expression in Drosophila melanogaster

    • Abstract: Background Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others’ research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. Results The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males. Conclusion Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.
      PubDate: 2021-05-14
      DOI: 10.1186/s13227-021-00175-0
  • Early embryogenesis and organogenesis in the annelid Owenia fusiformis

    • Abstract: Background Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored. Results Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally. Conclusions Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.
      PubDate: 2021-05-10
      DOI: 10.1186/s13227-021-00176-z
  • Distinct tooth regeneration systems deploy a conserved battery of genes

    • Abstract: Background Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a ‘lamina-less’ tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. Results In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. Conclusions We propose that the expression domains described here delineate a highly conserved “successional dental epithelium” (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
      PubDate: 2021-03-25
      DOI: 10.1186/s13227-021-00172-3
  • Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus
           and implications for body plan evolution

    • Abstract: Background Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. Results We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus. We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. Conclusions Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales.
      PubDate: 2021-03-16
      DOI: 10.1186/s13227-021-00174-1
  • Among the shapeshifters: parasite-induced morphologies in ants
           (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo

    • Abstract: As social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.
      PubDate: 2021-03-02
      DOI: 10.1186/s13227-021-00173-2
  • Insights into how development and life-history dynamics shape the
           evolution of venom

    • Abstract: Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
      PubDate: 2021-01-07
      DOI: 10.1186/s13227-020-00171-w
  • Nothobranchius annual killifishes

    • Abstract: Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.
      PubDate: 2020-12-15
      DOI: 10.1186/s13227-020-00170-x
  • The pond snail Lymnaea stagnalis

    • Abstract: The freshwater snail Lymnaea stagnalis has a long research history, but only relatively recently has it emerged as an attractive model organism to study molecular mechanisms in the areas of developmental biology and translational medicine such as learning/memory and neurodegenerative diseases. The species has the advantage of being a hermaphrodite and can both cross- and self-mate, which greatly facilitates genetic approaches. The establishment of body-handedness, or chiromorphogenesis, is a major topic of study, since chirality is evident in the shell coiling. Chirality is maternally inherited, and only recently a gene-editing approach identified the actin-related gene Lsdia1 as the key handedness determinant. This short article reviews the natural habitat, life cycle, major research questions and interests, and experimental approaches.
      PubDate: 2020-12-04
      DOI: 10.1186/s13227-020-00169-4
  • Further evidence that mechanisms of host/symbiont integration are
           dissimilar in the maternal versus embryonic Acyrthosiphon pisum bacteriome

    • Abstract: Background Host/symbiont integration is a signature of evolutionarily ancient, obligate endosymbioses. However, little is known about the cellular and developmental mechanisms of host/symbiont integration at the molecular level. Many insects possess obligate bacterial endosymbionts that provide essential nutrients. To advance understanding of the developmental and metabolic integration of hosts and endosymbionts, we track the localization of a non-essential amino acid transporter, ApNEAAT1, across asexual embryogenesis in the aphid, Acyrthosiphon pisum. Previous work in adult bacteriomes revealed that ApNEAAT1 functions to exchange non-essential amino acids at the A. pisum/Buchnera aphidicola symbiotic interface. Driven by amino acid concentration gradients, ApNEAAT1 moves proline, serine, and alanine from A. pisum to Buchnera and cysteine from Buchnera to A. pisum. Here, we test the hypothesis that ApNEAAT1 is localized to the symbiotic interface during asexual embryogenesis. Results During A. pisum asexual embryogenesis, ApNEAAT1 does not localize to the symbiotic interface. We observed ApNEAAT1 localization to the maternal follicular epithelium, the germline, and, in late-stage embryos, to anterior neural structures and insect immune cells (hemocytes). We predict that ApNEAAT1 provisions non-essential amino acids to developing oocytes and embryos, as well as to the brain and related neural structures. Additionally, ApNEAAT1 may perform roles related to host immunity. Conclusions Our work provides further evidence that the embryonic and adult bacteriomes of asexual A. pisum are not equivalent. Future research is needed to elucidate the developmental time point at which the bacteriome reaches maturity.
      PubDate: 2020-11-10
      DOI: 10.1186/s13227-020-00168-5
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-