Subjects -> PALEONTOLOGY (Total: 43 journals)
Showing 1 - 21 of 21 Journals sorted alphabetically
Alcheringa: An Australasian Journal of Palaeontology     Hybrid Journal   (Followers: 6)
Ameghiniana     Open Access  
Annales de Paléontologie     Full-text available via subscription   (Followers: 4)
Annals of Carnegie Museum     Full-text available via subscription   (Followers: 1)
Boreas: An International Journal of Quaternary Research     Hybrid Journal   (Followers: 12)
Comptes Rendus Palevol     Open Access  
European Journal of Protistology     Hybrid Journal   (Followers: 5)
EvoDevo     Open Access   (Followers: 4)
Facies     Hybrid Journal   (Followers: 9)
Fossil Record     Open Access   (Followers: 5)
Geobios     Full-text available via subscription   (Followers: 4)
Historical Biology: An International Journal of Paleobiology     Hybrid Journal   (Followers: 8)
Ichnos: An International Journal for Plant and Animal Traces     Hybrid Journal  
International Journal of Speleology     Open Access   (Followers: 3)
Journal of Paleolimnology     Hybrid Journal   (Followers: 5)
Journal of Paleontology     Hybrid Journal   (Followers: 8)
Journal of Quaternary Science     Hybrid Journal   (Followers: 29)
Journal of Vertebrate Paleontology     Full-text available via subscription   (Followers: 8)
Marine Micropaleontology     Hybrid Journal   (Followers: 2)
Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen     Full-text available via subscription   (Followers: 3)
Novitates Paleoentomologicae     Open Access   (Followers: 1)
Open Quaternary     Open Access  
Palaeogeography, Palaeoclimatology, Palaeoecology     Hybrid Journal   (Followers: 11)
Palaeontographica A     Full-text available via subscription   (Followers: 7)
Palaeontology     Hybrid Journal   (Followers: 17)
Palaeoworld     Hybrid Journal   (Followers: 3)
Paläontologische Zeitschrift     Hybrid Journal   (Followers: 4)
Paleobiology     Full-text available via subscription   (Followers: 5)
PaleoBios     Open Access   (Followers: 1)
Paleoceanography and Paleoclimatology     Full-text available via subscription   (Followers: 4)
Paleontological Journal     Full-text available via subscription   (Followers: 4)
Palynology     Hybrid Journal   (Followers: 1)
Papers in Palaeontology     Hybrid Journal  
Quaternaire     Open Access   (Followers: 3)
Quaternary Research     Full-text available via subscription   (Followers: 19)
Quaternary Science Reviews     Hybrid Journal   (Followers: 24)
Review of Palaeobotany and Palynology     Hybrid Journal   (Followers: 1)
Revue de Micropaleontologie     Full-text available via subscription  
Rivista Italiana di Paleontologia e Stratigrafia (Research In Paleontology and Stratigraphy)     Open Access   (Followers: 1)
Spanish Journal of Palaeontology     Open Access  
Swiss Journal of Palaeontology     Hybrid Journal   (Followers: 4)
Vertebrate Anatomy Morphology Palaeontology     Open Access   (Followers: 1)
Zitteliana     Open Access  
Similar Journals
Journal Cover
Paleobiology
Journal Prestige (SJR): 1.563
Citation Impact (citeScore): 3
Number of Followers: 5  
 
  Full-text available via subscription Subscription journal
ISSN (Print) 0094-8373 - ISSN (Online) 1938-5331
Published by Cambridge University Press Homepage  [354 journals]
  • PAB volume 47 issue 4 Cover and Front matter

    • Free pre-print version: Loading...

      Pages: 1 - 4
      PubDate: 2021-11-30
      DOI: 10.1017/pab.2021.39
       
  • PAB volume 47 issue 4 Cover and Back matter

    • Free pre-print version: Loading...

      Pages: 1 - 6
      PubDate: 2021-11-30
      DOI: 10.1017/pab.2021.40
       
  • Fossil bivalves and the sclerochronological reawakening

    • Free pre-print version: Loading...

      Authors: Moss; David K., Ivany, Linda C., Jones, Douglas S.
      Pages: 551 - 573
      Abstract: The field of sclerochronology has long been known to paleobiologists. Yet, despite the central role of growth rate, age, and body size in questions related to macroevolution and evolutionary ecology, these types of studies and the data they produce have received only episodic attention from paleobiologists since the field's inception in the 1960s. It is time to reconsider their potential. Not only can sclerochronological data help to address long-standing questions in paleobiology, but they can also bring to light new questions that would otherwise have been impossible to address. For example, growth rate and life-span data, the very data afforded by chronological growth increments, are essential to answer questions related not only to heterochrony and hence evolutionary mechanisms, but also to body size and organism energetics across the Phanerozoic. While numerous fossil organisms have accretionary skeletons, bivalves offer perhaps one of the most tangible and intriguing pathways forward, because they exhibit clear, typically annual, growth increments and they include some of the longest-lived, non-colonial animals on the planet. In addition to their longevity, modern bivalves also show a latitudinal gradient of increasing life span and decreasing growth rate with latitude that might be related to the latitudinal diversity gradient. Is this a recently developed phenomenon or has it characterized much of the group's history' When and how did extreme longevity evolve in the Bivalvia' What insights can the growth increments of fossil bivalves provide about hypotheses for energetics through time' In spite of the relative ease with which the tools of sclerochronology can be applied to these questions, paleobiologists have been slow to adopt sclerochronological approaches. Here, we lay out an argument and the methods for a path forward in paleobiology that uses sclerochronology to answer some of our most pressing questions.
      PubDate: 2021-04-13
      DOI: 10.1017/pab.2021.16
       
  • Evolution, diversity, and disparity of the tiger shark lineage Galeocerdo
           in deep time

    • Free pre-print version: Loading...

      Authors: Türtscher; Julia, López-Romero, Faviel A., Jambura, Patrick L., Kindlimann, René, Ward, David J., Kriwet, Jürgen
      Pages: 574 - 590
      Abstract: Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.
      PubDate: 2021-03-24
      DOI: 10.1017/pab.2021.6
       
  • Hearing from the ocean and into the river: the evolution of the inner ear
           of Platanistoidea (Cetacea: Odontoceti)

    • Free pre-print version: Loading...

      Authors: Viglino; Mariana, Gaetán, Maximiliano, Buono, Mónica R., Fordyce, R. Ewan, Park, Travis
      Pages: 591 - 611
      Abstract: The inner ear of the two higher clades of modern cetaceans (Neoceti) is highly adapted for hearing infrasonic (mysticetes) or ultrasonic (odontocetes) frequencies. Within odontocetes, Platanistoidea comprises a single extant riverine representative, Platanista gangetica, and a diversity of mainly extinct marine species from the late Oligocene onward. Recent studies drawing on features including the disparate tympanoperiotic have not yet provided a consensus phylogenetic hypothesis for platanistoids. Further, cochlear morphology and evolutionary patterns have never been reported. Here, we describe for the first time the inner ear morphology of late Oligocene–early Miocene extinct marine platanistoids and their evolutionary patterns. We initially hypothesized that extinct marine platanistoids lacked a specialized inner ear like P. gangetica and thus, their morphology and inferred hearing abilities were more similar to those of pelagic odontocetes. Our results reveal there is no “typical” platanistoid cochlear type, as the group displays a disparate range of cochlear anatomies, but all are consistent with high-frequency hearing. Stem odontocete Prosqualodon australis and platanistoid Otekaikea huata present a tympanal recess in their cochlea, of yet uncertain function in the hearing mechanism in cetaceans. The more basal morphology of Aondelphis talen indicates it had lower high-frequency hearing than other platanistoids. Finally, Platanista has the most derived cochlear morphology, adding to evidence that it is an outlier within the group and consistent with a >9-Myr-long separation from its sister genus Zarhachis. The evolution of a singular sound production morphology within Platanistidae may have facilitated the survival of Platanista to the present day.
      PubDate: 2021-03-31
      DOI: 10.1017/pab.2021.11
       
  • Reconstructing dietary ecology of extinct strepsirrhines (Primates,
           Mammalia) with new approaches for characterizing and analyzing tooth shape
           

    • Free pre-print version: Loading...

      Authors: Fulwood; Ethan L., Shan, Shan, Winchester, Julia M., Gao, Tingran, Kirveslahti, Henry, Daubechies, Ingrid, Boyer, Doug M.
      Pages: 612 - 631
      Abstract: The morphological and ecological diversity of lemurs and lorisiformes once rivaled that of the rest of the primate order. Here, we assemble a dataset of 3D models representing the second mandibular molars of a wide range of extant and fossil strepsirrhines encompassing this diversity. We use these models to distill quantitative descriptors of tooth form and then analyze these data using new analytical methods. We employ a recently developed dental topography metric (ariaDNE), which is less sensitive to details of random error in 3D model quality than previously used metrics (e.g., DNE); Bayesian multinomial modeling with metrics designed to measure overfitting risk; and a tooth segmentation algorithm that allows the shapes of disaggregated tooth surface features to be quantified using dental topography metrics. This approach is successful at reclassifying extant strepsirrhine primates to known dietary ecology and indicates that the averaging of morphological information across the tooth surface does not interfere with the ability of dental topography metrics to predict dietary adaptation. When the most informative combination of dental topography metrics is applied to extinct species, many subfossil lemurs and the most basal fossil strepsirrhines are predicted to have been primarily frugivorous or gummivorous. This supports an ecological contraction among the extant lemurs and the importance of frugivory in the origins of crown Strepsirrhini, potentially to avoid competition with more insectivorous and folivorous members of Paleogene Afro-Arabian primate faunas.
      PubDate: 2021-03-26
      DOI: 10.1017/pab.2021.9
       
  • Photosymbiosis in planktonic foraminifera across the
           Paleocene–Eocene thermal maximum

    • Free pre-print version: Loading...

      Authors: Shaw; Jack O., D'haenens, Simon, Thomas, Ellen, Norris, Richard D., Lyman, Johnnie A., Bornemann, André, Hull, Pincelli M.
      Pages: 632 - 647
      Abstract: Under stress, corals and foraminifera may eject or consume their algal symbionts (“bleach”), which can increase mortality. How bleaching relates to species viability over warming events is of great interest given current global warming. We use size-specific isotope analyses and abundance counts to examine photosymbiosis and population dynamics of planktonic foraminifera across the Paleocene–Eocene thermal maximum (PETM, ~56 Ma), the most severe Cenozoic global warming event. We find variable responses of photosymbiotic associations across localities and species. In the NE Atlantic (DSDP Site 401) PETM, photosymbiotic clades (acarininids and morozovellids) exhibit collapsed size-δ13C gradients indicative of reduced photosymbiosis, as also observed in Central Pacific (ODP Site 1209) and Southern Ocean (ODP Site 690) acarininids. In contrast, we find no significant loss of size-δ13C gradients on the New Jersey shelf (Millville) or in Central Pacific morozovellids. Unlike modern bleaching-induced mass mortality, populations of photosymbiont-bearing planktonic foraminifera increased in relative abundance during the PETM. Multigenerational adaptive responses, including flexibility in photosymbiont associations and excursion taxon evolution, may have allowed some photosymbiotic foraminifera to thrive. We conclude that deconvolving the effects of biology on isotope composition on a site-by-site basis is vital for environmental reconstructions.
      PubDate: 2021-03-05
      DOI: 10.1017/pab.2021.7
       
  • Going round the twist—an empirical analysis of shell coiling in
           helicospiral gastropods

    • Free pre-print version: Loading...

      Authors: Collins; Katie S., Klapaukh, Roman, Crampton, James S., Gazley, Michael F., Schipper, C. Ian, Maksimenko, Anton, Hines, Benjamin R.
      Pages: 648 - 665
      Abstract: The logarithmic helicospiral has been the most widely accepted model of regularly coiled molluscan form since it was proposed by Moseley and popularized by Thompson and Raup. It is based on an explicit assumption that shells are isometric and grow exponentially, and an implicit assumption that the external form of the shell follows the internal shape, which implies that the parameters of the spiral could be reconstructed from the external whorl profile. In this contribution, we show that these assumptions fail on all 25 gastropod species we examine. Using a dataset of 176 fossil and modern gastropod shells, we construct an empirical morphospace of coiling using the parameters of whorl expansion rate, translation rate, and rate of increasing distance from coiling axis, plus rate of aperture shape change, from their best-fit models. We present a case study of change in shell form through geologic time in the austral family Struthiolariidae to demonstrate the utility of our approach for evolutionary paleobiology. We fit various functions to the shell-coiling parameters to demonstrate that the best morphological model is not the same for each parameter. We present a set of R routines that will calculate helicospiral parameters from sagittal sections through coiled shells and allow workers to compare models and choose appropriate sets of parameters for their own datasets. Shell-form parameters in the Struthiolariidae highlight a hitherto neglected hypothesis of relationship between Antarctic Perissodonta and the enigmatic Australian genus Tylospira that fits the biogeographic and stratigraphic distribution of both genera.
      PubDate: 2021-03-23
      DOI: 10.1017/pab.2021.8
       
  • Did shell-crushing predators drive the evolution of ammonoid septal
           shape'

    • Free pre-print version: Loading...

      Authors: Johnson; Erynn H., DiMarco, Briana M., Peterman, David J., Carter, Aja M., Allmon, Warren D.
      Pages: 666 - 679
      Abstract: For centuries, paleontologists have sought functional explanations for the uniquely complex internal walls (septa) of ammonoids, extinct shelled cephalopods. Ammonoid septa developed increasingly complex fractal margins, unlike any modern shell morphologies, throughout more than 300 million years of evolution. Some have suggested these morphologies provided increased resistance to shell-crushing predators. We perform the first physical compression experiments on model ammonoid septa using controlled, theoretical morphologies generated by computer-aided design and 3D printing. These biomechanical experiments reveal that increasing complexity of septal margins does not increase compression resistance. Our results raise the question of whether the evolution of septal shape may be tied closely to the placement of the siphuncle foramen (anatomic septal hole). Our tests demonstrate weakness in the centers of uniformly thick septa, supporting work suggesting reinforcement by shell thickening at the center of septa. These experiments highlight the importance of 3D reconstruction using idealized theoretical morphologies that permit the testing of long-held hypotheses of functional evolutionary drivers by recreating extinct morphologies once rendered physically untestable by the fossil record.
      PubDate: 2021-04-13
      DOI: 10.1017/pab.2021.13
       
  • Size and shape variation in the calcareous nannoplankton genus
           Braarudosphaera following the Cretaceous/Paleogene (K/Pg) mass extinction:
           clues as to its evolutionary success

    • Free pre-print version: Loading...

      Authors: Jones; Heather L., Scrobola, Zachary, Bralower, Timothy J.
      Pages: 680 - 703
      Abstract: Calcareous nannoplankton have been one of the dominant primary producers in the surface oceans since the late Triassic. The bolide impact at the Cretaceous/Paleogene (K/Pg) boundary ~66.0 Ma, led to the elimination of >90% of nannoplankton species: the largest extinction event in their evolutionary history. One of the few nannoplankton genera to survive the K/Pg mass extinction and even thrive in its aftermath was Braarudosphaera, which precipitates pentagonal calcite plates (pentaliths). The only Braarudosphaera species to span the K/Pg boundary (B. bigelowii) is extant and has formed geographically and temporally restricted “blooms” throughout geologic time. Four morphologically and genetically distinct cryptic species of B. bigelowii have been identified in the modern ocean. However, it is uncertain whether these cryptic species have disparate ecophysiological tolerances that have allowed them to adapt to varying environmental conditions. For the first time, we assess changes in the size and shape of Braarudosphaera pentaliths following the K/Pg mass extinction at three geographically and environmentally disparate sites that have early Paleocene Braarudosphaera blooms. Our results show that different Braarudosphaera morphotypes were dominant in the Gulf of Mexico compared with the Tethys Ocean, likely due to regional environmental differences. In addition, we provide evidence that the dominant Braarudosphaera morphotypes shifted in response to changes in upper water column stratification. This ability to rapidly adapt to unstable environments likely helped Braarudosphaera thrive in the aftermath of the K/Pg extinction and explains why this lineage has enjoyed such a long evolutionary history.
      PubDate: 2021-05-07
      DOI: 10.1017/pab.2021.15
       
  • Exceptional multifunctionality in the feeding apparatus of a mid-Cambrian
           radiodont

    • Free pre-print version: Loading...

      Authors: Moysiuk; Joseph, Caron, Jean-Bernard
      Pages: 704 - 724
      Abstract: Radiodonts (stem Euarthropoda) were ecologically diverse, but species generally displayed limited functional specialization of appendages along the body axis compared with crown group euarthropods. This is puzzling, because such functional specialization is considered to have been an important driver of euarthropod ecological diversification. One way to circumvent this constraint could have been the functional specialization of different parts of the frontal appendages, known to have been ecologically important in radiodonts. This hypothesis has yet to be tested explicitly. Here we redescribe the poorly known mid-Cambrian hurdiid radiodont Stanleycaris hirpex from the Burgess Shale (Stephen Formation) and quantitatively assess functional specialization of the frontal appendages of stem euarthropods. The appendages of Stanleycaris are composed of 14 podomeres, variously differentiated by their possession of pectinate endites, mono- to trifurcate medial gnathites, and outer spines. The oral cone is tetraradially organized and can be uniquely distinguished from those of other hurdiids by the presence of 28 rather than 32 smooth tridentate plates. Our phylogenetic analysis finds Stanleycaris in a grade of hurdiids retaining plesiomorphic raptorial appendicular functionality alongside derived adaptations for sweep feeding and large, bilaterally opposed gnathites. We conclude that the latter performed a masticatory function, convergent with gnathal structures like mandibles in various panarthropods. Taken together, Stanleycaris and similar hurdiids provide an extreme example of the evolution of division of labor within the appendage of a stem euarthropod and suggest that this innovation may have facilitated the functional transition, from raptorial to sweep feeding, at the origin of the hurdiid clade.
      PubDate: 2021-05-17
      DOI: 10.1017/pab.2021.19
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 54.224.117.125
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-