![]() |
Journal of Structural Fire Engineering
Journal Prestige (SJR): 0.446 ![]() Citation Impact (citeScore): 1 Number of Followers: 4 ![]() ISSN (Print) 2040-2317 - ISSN (Online) 2040-2325 Published by Emerald ![]() |
- Post-fire shear strengths of drilling screws and post-fire transitions of
failure modes for screwed connections-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Ying Liu, Fuminobu Ozaki
Abstract: This study was aimed at clarifying the post-fire shear strength of self-drilling screws and the load-bearing capacity of single overlapped screwed connections using steel sheets and self-drilling screws. The self-drilling screws for shear tests were made of high-strength, martensitic-stainless and austenitic stainless-steel bars. Shear loading tests were conducted on self-drilling screws to obtain basic information on post-fire shear strength. Tensile tests were conducted on the screwed connections to examine the transition of failure modes depending on the test temperature after experiencing the heating and cooling procedures. The post-fire shear strengths and reduction factors of self-drilling screws of each steel grade were quantified. Furthermore, heated temperature-dependent sheet bearing failure, net sheet failure and screw shear failure modes were observed for the screwed connections. The transition of the failure modes of the screwed connection could be explained using the equations of the post-fire shear strength proposed in this study. The basic experimental data required to evaluate the post-fire shear strength of screws were obtained.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-07-15
DOI: 10.1108/JSFE-02-2024-0006
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Influence of section profiles on flexural behavior of unsymmetrical cold
formed steel sections – analytical and numerical investigation-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Varun Sabu Sam, N. Anand, Rakesh Kumar, Diana Andrushia
Abstract: Cold-formed steel (CFS) sections are a popular choice for constructing medium and low-rise structures that are engineered to support relatively light loads. An important characteristic of CFS sections is that they are produced without the use of heat during manufacturing. Consequently, it becomes essential to gain a comprehensive understanding in the behavior of CFS sections when exposed to fire or elevated temperatures. In this study, sections of 1.5 m length and 2 mm thickness were taken and analyzed to find its flexural behavior after heating them for 60 and 90 min. There were two modes of cooling phase which was considered to reach ambient temperature, i.e. air or water respectively. Performance of each sections (C, C with inclined flanges, sigma and Zed) were examined and evaluated at different conditions. Effects of different profiles and lips in the profiles on flexural behavior of CFS sections were investigated fully analytically. The variation in stiffness among the sections with different lipped profiles was noted between 20.36 and 33.26%, for 60 min water cooling case. For the sections with unlipped profiles, it was between 23.56 and 28.60%. Influence of lip and section profile on reduction in stiffness is marginal. The average reduction in load capacity of sections for 60 min specimens cooled by water was found to be 43.42%. An increase in deflection is observed for the sections in the range of 25–37.23% for 60 min case. This is the critical temperature responsible for reduction in yield strength of material as it substantially increases the material safety margin to be considered for the design. Sections with Zed profile have shown better performance among other types, in terms of its load carrying capacity. This paper deals with the flexural behavior of Galvanized (GI) based CFS unsymmetric sections at elevated temperature and cooled down to ambient temperature with air or water.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-07-08
DOI: 10.1108/JSFE-05-2024-0009
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Combined effects of corrosion and fire on load-carrying response of
hot-rolled steel reinforcement-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Faraz Tariq
Abstract: Although separate studies on the influence of corrosion and fire exposure on the constitutive relationship of concrete and steel have been done, there is still a gap in knowledge on the influence of corrosion-temperature superimposition as nonlinear phenomenon. The current study is focused to investigate the response of hot-rolled steel bars subjected to corrosion-temperature superimposition. Using the accelerated corrosion-impressed-current technique, hot-rolled specimens with different levels of corrosion were obtained. The hot-rolled rebars were first corroded to target levels such as (6, 12, 18, 24, 30 and 36%) and subsequently subjected to target temperatures (250 °C, 400 °C, 550 °C, 800 °C and 950 °C), before tensile tests were carried out to evaluate the residual mechanical response. The outcomes showed a significant decline in the parameters governing the mechanical properties of steel reinforcement due to the combined damage due to corrosion and fire. Corroded reinforcement still showed ductile failure after exposure to fire. Moreover, the combined loss of load-bearing characteristics due to corrosion and fire has little influence on the modulus of elasticity. The outcomes of this investigation provide a theoretical database for the assessment of aged structural elements exposed to combination after exposure to fire. The information concerning structural material's response to corrosion-temperature combined damage is still limited. The cover of the reinforcement is designed to safeguard the reinforcing bars from foreign agencies but is often damaged and spalled off due to corrosion, rendering the reinforcing bars directly exposed. The study aims at the experimental production of fire conditions in a corrosion-damaged infrastructure to cover the aforementioned research gap. The effects of corrosion being superimposed by exposure to elevated temperatures on key parameters affecting mechanical behavior were examined. Influence of corrosion-temperature superimposition on the mechanical properties of hot-rolled rebars.Influence of corrosion-temperature superimposition on the macro and microstructure properties of hot-rolled rebars.Influence of corrosion-temperature superimposition on stress-strain curves of hot-rolled rebars.Influence of corrosion-temperature superimposition on tensile strength, modulus of elasticity and elongation of hot-rolled rebars.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-07-08
DOI: 10.1108/JSFE-09-2023-0034
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Estimating the elastic modulus of concrete under moderately elevated
temperatures via impulse excitation technique-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Tulio Coelho, Sofia Maria Carrato Diniz, Francisco Rodrigues
Abstract: To evaluate the temperature-dependency of the Young’s and shear moduli of concrete after exposure to moderately elevated temperatures using the non-destructive impulse excitation technique (IET). The study involved heating the concrete up to 225 °C and measuring the dynamic Young’s and shear moduli using the non-destructive technique of impulse excitation, which measures the natural vibration frequency from a mechanical impulse received by an acoustic sensor. The effects of temperature on the dynamic Young’s and shear moduli were analysed and the importance of the spatial variability of the measured values was also verified. The study found that even moderately elevated temperatures (below 225 °C) resulted in a significant permanent reduction in the Young’s modulus of concrete (reduction in the range of 23%–36% for the maximum temperature considered in this research) as well as a modest and permanent reduction in the shear modulus of around 6%. It was also observed that spatial variability of the mechanical properties of concrete plays an important role in the measured values; higher dispersion of the results was found for the values of the Young’s and shear moduli of concrete measured along the height of the beam. The non-destructive test method used in this study was found to be extremely useful in the investigation of heat-related damage in concrete structures for its ease of use, low time consumption and accuracy. The results were consistent with the published literature. This study provides important insights into the temperature-dependent behaviour of the dynamic Young’s and shear moduli of concrete and highlights the significance of proper consideration of the spatial variability of the measured values. The use of a non-destructive test method for continuous acoustic testing during heating and cooling proved to be effective, and the findings contribute to the fields of materials science and civil engineering in understanding the effects of elevated temperatures on concrete properties. The findings confirm that IET can be easily used to gather important information in the condition assessment and rehabilitation of concrete structures after a fire event. Further studies to foster the application of this technique to real structures are suggested.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-06-11
DOI: 10.1108/JSFE-02-2024-0004
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Impact of the variability of material constitutive models on the thermal
response of reinforced concrete walls-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Ghada Karaki, Rami A. Hawileh, M.Z. Naser
Abstract: This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls. The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty. It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity. Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-04-22
DOI: 10.1108/JSFE-06-2023-0027
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Numerical analysis of fire-exposed reinforced concrete sections for
assessing post-heating axial and flexural capacity-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava, Ajay Chourasia
Abstract: This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire. The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages. The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage. The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario. The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance. The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-04-19
DOI: 10.1108/JSFE-10-2023-0039
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- The effects of pre-loading on structural behavior of reinforced concrete
beams under fire condition: a review-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Aminuddin Suhaimi, Izni Syahrizal Ibrahim, Mariyana Aida Ab Kadir
Abstract: This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design. This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards. The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams. The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-03-29
DOI: 10.1108/JSFE-11-2023-0041
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Post-earthquake fire performance of the gusset plate moment
connection-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani, Mohammad Safi
Abstract: In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated. For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions. Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values. The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-03-26
DOI: 10.1108/JSFE-08-2023-0031
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Modelling intumescent coatings for the fire protection of structural
systems: a review-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Andrea Lucherini, Donatella de Silva
Abstract: Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review. Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity. The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs. Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems. The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-02-06
DOI: 10.1108/JSFE-10-2023-0038
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Behavior of Zn5Al hot-dip galvanized steel members under fire exposure
-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Thomas Pinger, Mirabela Firan, Martin Mensinger
Abstract: Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of tests were conducted on zinc-5% aluminum galvanized test specimens under fire loads to verify the previous positive findings under largescale boundary conditions. The emissivity of zinc-5% aluminum galvanized surfaces applied to steel specimens was determined experimentally under real fire loads and laboratory thermal loads in accordance with the normative specifications of the standard fire curve. Both large and smallscale specimens were used in this study. The steel grade and surface conditions of the specimens were varied for both test scenarios. Largescale tests on specimens with typical steel construction dimensions under fire loads showed that the surface emissivity of zinc-5% aluminum galvanized steel was significantly lower than that of the conventionally galvanized steel. Only minor influences from the weathering of the specimens and steel chemistry were observed. These results agree well with those obtained from smallscale tests. The design values of zinc-5% aluminum melt (Zn5Al) required for the structural fire design were proposed based on the obtained results. The novel tests presented in this study are the first ones to study the behavior of zinc-5% aluminum galvanized largescale steel construction components under the influence of real fire exposure and their positive effect on the emissivity of steel components galvanized by this method. The results provide valuable insights and information on the behavior in the case of fire and the associated savings potential for steel construction.
Citation: Journal of Structural Fire Engineering
PubDate: 2024-01-16
DOI: 10.1108/JSFE-11-2023-0042
Issue No: Vol. ahead-of-print, No. ahead-of-print (2024)
-
- Post-fire response of S235 steel plates considering different bolt
hole-making processes-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Fadwa M. Al Chamaa, Ahmad El Ghor, Elie Hantouche
Abstract: This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates. A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading. The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting. This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-12-20
DOI: 10.1108/JSFE-04-2023-0023
Issue No: Vol. ahead-of-print, No. ahead-of-print (2023)
-
- Investigation on performance of prestressed hollow core slabs exposed to
elevated temperatures-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: T.M. Jeyashree, P.R. Kannan Rajkumar
Abstract: This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios. A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios. Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating. This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-12-12
DOI: 10.1108/JSFE-09-2023-0037
Issue No: Vol. 15, No. 3 (2023)
-
- Post-fire behavior of geopolymer concrete with sodium silicate waste as an
alternative to conventional river sand-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Balamurali Kanagaraj, N. Anand, Johnson Alengaram, Diana Andrushia
Abstract: The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC. SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD). As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures. Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-12-05
DOI: 10.1108/JSFE-09-2023-0036
Issue No: Vol. 15, No. 3 (2023)
-
- Effect of the elevated temperature on the mechanical properties of
geopolymer concrete using fly ash and ground granulated blast slag-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Bheem Pratap, Pramod Kumar
Abstract: To investigate the mechanical properties of geopolymer concrete at elevated temperatures. The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43. The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively. This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-12-05
DOI: 10.1108/JSFE-06-2023-0028
Issue No: Vol. 15, No. 3 (2023)
-
- Assessment of critical parameters affecting the behaviour of bearing
reinforced concrete walls under fire exposure-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla, M.Z. Naser
Abstract: This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance. A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire. The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios. There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-11-27
DOI: 10.1108/JSFE-07-2023-0029
Issue No: Vol. 15, No. 3 (2023)
-
- Effect of cavity radiation on aluminium hollow tubes and facade system
subjected to fire-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Dravesh Yadav, Ravi Sastri Ayyagari, Gaurav Srivastava
Abstract: This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire. Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model. The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model. The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems. Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems. This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-11-22
DOI: 10.1108/JSFE-04-2023-0025
Issue No: Vol. 15, No. 3 (2023)
-
- Influence of elevated temperature on buckling capacity of mild steel-based
cold-formed steel column sections– experimental investigation and finite
element modelling-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri, Diana Andrushia
Abstract: The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements. In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented. The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively. This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-11-10
DOI: 10.1108/JSFE-08-2023-0033
Issue No: Vol. 15, No. 3 (2023)
-
- Quantification of the reliability of concrete slabs subjected to natural
fires designed using tabulated values according to Eurocodes-
Free pre-print version: Loading...Rate this result: What is this?Please help us test our new pre-print finding feature by giving the pre-print link a rating.
A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Authors: Marcus Achenbach, Guido Morgenthal
Abstract: The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of safety, which is obtained by this approach, is not known. On the other hand, performance-based methods are more accepted, but require a target reliability as performance criterion. Hence, there is a need for calibration of the performance-based methods using the results of the “traditional” descriptive approach. The calibration is performed for a single span concrete slab, where the axis distance of the reinforcement is chosen according to Eurocode 2 for a defined fire rating. A “standard” compartment is selected to cover typical fields of application. The opening factor is considered as parameter to obtain the maximum peak temperatures in the compartment. A Monte Carlo simulation, in combination with a response surface method, is set up to calculate the probabilities of failure. The results indicate that the calculated reliability index for a standard is within the range, which has been used for the derivation of safety and combination factors in the Eurocodes. It can be observed that members designed for a fire rating R90 have a significant increase in the structural safety for natural fires compared to a design for a fire rating R30. The level of safety, which is obtained by a design based on tabulated values, is quantified for concrete slabs. The results are a necessary input for the calibration of performance-based methods and could stimulate discussions among scientists and building authorities.
Citation: Journal of Structural Fire Engineering
PubDate: 2023-11-08
DOI: 10.1108/JSFE-06-2023-0026
Issue No: Vol. 15, No. 3 (2023)
-