Subjects -> MANUFACTURING AND TECHNOLOGY (Total: 363 journals)
    - CERAMICS, GLASS AND POTTERY (31 journals)
    - MACHINERY (34 journals)
    - MANUFACTURING AND TECHNOLOGY (223 journals)
    - METROLOGY AND STANDARDIZATION (6 journals)
    - PACKAGING (19 journals)
    - PAINTS AND PROTECTIVE COATINGS (4 journals)
    - PLASTICS (42 journals)
    - RUBBER (4 journals)

PLASTICS (42 journals)

Showing 1 - 39 of 39 Journals sorted by number of followers
Journal of Applied Polymer Science     Hybrid Journal   (Followers: 134)
Polymer     Hybrid Journal   (Followers: 88)
European Polymer Journal     Hybrid Journal   (Followers: 42)
Plastic and Polymer Technology     Open Access   (Followers: 40)
Plastic and Reconstructive Surgery     Hybrid Journal   (Followers: 31)
Additives for Polymers     Full-text available via subscription   (Followers: 20)
Reinforced Plastics     Full-text available via subscription   (Followers: 17)
Polymer Engineering & Science     Hybrid Journal   (Followers: 14)
Advances in Polymer Technology     Open Access   (Followers: 13)
ACS Applied Polymer Materials     Hybrid Journal   (Followers: 11)
Chinese Journal of Polymer Science     Hybrid Journal   (Followers: 9)
Acta Polymerica     Hybrid Journal   (Followers: 9)
Journal of Inorganic and Organometallic Polymers and Materials     Hybrid Journal   (Followers: 8)
Polymer Bulletin     Hybrid Journal   (Followers: 6)
Journal of Polymer Research     Hybrid Journal   (Followers: 6)
International Journal of Polymeric Materials     Hybrid Journal   (Followers: 6)
Journal of Polymer Science Part C : Polymer Letters     Hybrid Journal   (Followers: 5)
Polymer-Plastics Technology and Materials     Hybrid Journal   (Followers: 5)
Advanced Industrial and Engineering Polymer Research     Open Access   (Followers: 5)
Polymer Science Series B     Hybrid Journal   (Followers: 4)
Polymer Science, Series A     Hybrid Journal   (Followers: 3)
Polymer Science Series C     Hybrid Journal   (Followers: 3)
Polymer Science Series D     Hybrid Journal   (Followers: 3)
Iranian Journal of Polymer Science and Technology     Open Access   (Followers: 1)
Progress in Rubber, Plastics and Recycling Technology     Hybrid Journal   (Followers: 1)
Microplastics and Nanoplastics     Open Access   (Followers: 1)
High Performance Polymers     Hybrid Journal   (Followers: 1)
Journal of Polymers and the Environment     Hybrid Journal   (Followers: 1)
International Polymer Processing     Full-text available via subscription   (Followers: 1)
Journal of Plastic Film and Sheeting     Hybrid Journal   (Followers: 1)
Plastics Engineering     Partially Free   (Followers: 1)
Polymers from Renewable Resources     Hybrid Journal  
International Journal of Biobased Plastics     Open Access  
Polymers and Polymer Composites     Hybrid Journal  
SPE Polymers     Open Access  
Majalah Kulit, Karet, dan Plastik     Open Access  
Cirugia Plastica Ibero-Latinoamericana     Open Access  
Journal of Elastomers and Plastics     Hybrid Journal  
Journal of Cellular Plastics     Hybrid Journal  
Similar Journals
Journal Cover
Journal of Cellular Plastics
Journal Prestige (SJR): 0.565
Citation Impact (citeScore): 2
Number of Followers: 0  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0021-955X - ISSN (Online) 1530-7999
Published by Sage Publications Homepage  [1174 journals]
  • Physical and mechanical properties of hybridized elastomeric foam based on
           ethylene-propylene-diene-monomer, multiwall carbon nanotube, and barium
           titanate

    • Free pre-print version: Loading...

      Authors: Hasti Bizhani, Ali Asghar Katbab, Mahshid Maroufkhani, Raquel Verdejo
      First page: 585
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      The use of hybrid fillers in rubbers can provide additional benefits to rubber foams compared to individual micro- or nano-scale particles due to an optimum packaging and synergic effects. The present work reports the development of vulcanized ethylene-propylene-diene-monomer nanocomposite hybrid foams filled with barium titanate and multiwall carbon nanotube (BT/MWCNT), prepared via a scalable protocol. The developed foams presented a high shear-thinning behavior, suggesting the formation of a 3D interconnected physical network of MWCNT within the polymer matrix. This network resulted in a notable improvement of the mechanical properties under tension and compression with increasing of MWCNT content. Also, the incorporation of MWCNT and BT enhanced thermal stability and thermal conductivity. Meanwhile, BT did not show any influence on the measured physical properties, due to the lack of interaction between BT and the EPDM matrix.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-04-23T07:16:41Z
      DOI: 10.1177/0021955X221085194
       
  • Calculating diffusion coefficients from molecular dynamics simulations for
           foam extrusion modelling of polypropylene with CO2, N2 and ethanol

    • Free pre-print version: Loading...

      Authors: Felix Melzer, Robert Breuer, Rainer Dahlmann, Christian Hopmann
      First page: 603
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      In foaming processes, the blowing agent has a significant influence on the material behaviour and the necessary processing parameters. Low-density polypropylene foam sheets are usually produced with aliphatic hydrocarbons or alkanes as physical blowing agent. Due to the necessary safety precautions and the environmental impact, there is great interest in using alternative blowing agents such as CO2. The sole use of CO2 often leads to corrugation, open cells or surface defects on the foam sheet and therefore requires modifications to the process technology. For this reason, blowing agent mixtures based on CO2 and organic solvents are used for the production of foam sheets. For developing a process model describing the melt flow in the extrusion die and the formation of cells, specific material data like diffusion coefficients are necessary. For CO2 and N2 as sole blowing agent, experimental data exist in the literature. Since no experimental data are available for co-blowing agents such as ethanol at elevated temperatures as they occur in the foam process, these data were calculated using molecular dynamics (MD) simulations. The benefit of MD simulations lies in their ability to reduce the experimental effort and, in particular, to provide data in cases where this data is not available through experimental measurements. The calculated diffusion coefficient values are compared to experimental data from the literature and presented for CO2, N2 and ethanol in polypropylene. The calculated diffusion coefficients of CO2 and N2 are compared with literature results and agree well with them. For the ethanol molecules, the diffusion coefficient is compared relative to the both aforementioned ones considered the larger size of the ethanol molecule compared to N2 and CO2. The results of the diffusion coefficients for ethanol are reasonable compared to the values found for the other two molecules.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-04-14T03:59:51Z
      DOI: 10.1177/0021955X221087598
       
  • Microcellular foams production from nanocomposites based on PS using MOF
           nanoparticles with enhanced CO2 properties as nucleating agent

    • Free pre-print version: Loading...

      Authors: Daniel Cuadra-Rodríguez, Xiao-Lin Qi, Suset Barroso-Solares, Miguel Ángel Rodríguez Pérez, Javier Pinto
      First page: 623
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      The use of metal-organic frameworks (MOF) nanoparticles as nucleating agents in gas dissolution foaming processes is presented. In this work, MOF nanoparticles with three different particle sizes were synthetized and introduced in film composites based on polystyrene at 1 wt.%. The addition of nanoparticles with high affinity to CO2, which is the gas used as a physical blowing agent, can contribute to increase the nucleation efficiency in comparison with the classical heterogeneous route using non CO2-philic particles. Nanoparticles dispersion in solids and cellular structure in foams were studied as a function of the particle size and foaming parameters, studying for first time the impact of MOF nanoparticles on the nucleation by gas dissolution foaming. Nucleation efficiencies in the order of 10−2 were achieved for PS/MOF composites. In addition, the thermal stability of the cellular structure in the composites was enhanced regarding to PS matrix, preserving the cellular structure regardless the foaming temperature. Therefore, MOF nanoparticles have emerged as promising nucleating agents in foaming procedures.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-04-21T06:43:08Z
      DOI: 10.1177/0021955X221087599
       
  • Enhancement of the mechanical and acoustical properties of flexible
           polyurethane foam/waste seashell composites for industrial applications

    • Free pre-print version: Loading...

      Authors: AA Maamoun, AA El-Wakil, Tarek M El-Basheer
      First page: 645
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      The importance of this work is the use of waste seashells WSS (5, 10, 15, 20, 25, and 30 wt.%) as a bio-filler to enhance the mechanical and acoustical characteristics of flexible polyurethane foam (FPU). Petroleum-based polyol was partially replaced by 25% castor oil resulting in high renewable content. The WSS was characterized by X-ray photoelectron spectroscopy (XPS). The chemical structure and morphological features for castor oil-based flexible polyurethane waste seashells (CO-FPU-WSS) composites were detected using Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) techniques, respectively. Besides, the mechanical, non-acoustical and acoustical properties were investigated. The results indicated that bio-based FPU composites possessed better compressive strength than neat FPU foam. In addition, FPU composites enhance the sound absorption below 500 Hz. A 6 cm air gap behind the sample shifted the absorption toward 400 Hz (0.85) for CO-FPU-WSS 25% composite with a broader band. Thus, the FPU foam composite is considered a promising candidate for sound absorption applications such as for the automotive and building industries.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-05-16T08:27:20Z
      DOI: 10.1177/0021955X221088392
       
  • A simple preparation of low water-soluble crosslinking starch-based foam
           containing palm oil: Thermo-physicochemical properties

    • Free pre-print version: Loading...

      Authors: Thapanee Wongpreedee, Thidatip Panrot, Porntip Rojruthai, Chana Prapruddivongs
      First page: 673
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      A simple preparation method was established for a low water-soluble citric acid crosslinking starch-based foam containing palm oil. The method was performed by pouring the boiling citric acid solution into the starch compound unlike the citric acid starch crosslinking by conventional solution casting. Thermo-physicochemical properties of the starch-based foams were examined. The I3300/I1149 intensity ratio of non-citric acid-containing foam was higher, suggesting greater amounts of the available -OH groups. The addition of citric acid into the starch matrix exhibited weaker thermal stability that was attributed to the lower thermal stability of the substituted ester bonds. The increment of citric acid concentration increased thermoplastic starch foams densities as well as their cell wall thickness. No differences in moisture absorption behavior were observed after soaking in water, the non-citric acid-filled foam exhibited dissolution and changed from its original shape upon drying. Experimental results showed a promising alternative methodology to prepare low water-soluble citric acid crosslinked starch-based foam to replace conventional solution casting.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-04-27T04:38:15Z
      DOI: 10.1177/0021955X221092874
       
  • Application of computed tomography data–based modelling technique for
           polymeric low density foams, Part B: Characterization of the mechanical
           behaviour

    • Free pre-print version: Loading...

      Authors: Anna Hössinger-Kalteis, Martin Reiter, Michael Jerabek, Zoltán Major
      First page: 689
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      The non-linear material behaviour of low density polypropylene foams is investigated under several quasi-static loading conditions with a combined modelling technique based on computed tomography data and Voronoi diagrams. A simulation methodology for determining the linear elastic properties is introduced in Hössinger-Kalteis et al. (2021). In this paper, the methodology is extended regarding the material model, where additionally the non-linear region is considered. The model takes into account property determining microstructural features like orientation-dependent cell wall thicknesses and anisotropic cell shapes. Thus, the anisotropic material behaviour under tension and compression load is estimated for extrusion foams with different densities utilizing the microstructural simulation model. Based on the characterized behaviour under tension and compression, constitutive models are generated. These are implemented in bending test simulations due to lower computational effort. The simulation results are validated with experimental results, which shows that the model gives satisfactory results.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-06-13T08:52:21Z
      DOI: 10.1177/0021955X221096073
       
  • Progress in the development of bead foams – A review

    • Free pre-print version: Loading...

      Authors: Justus Kuhnigk, Tobias Standau, Dominik Dörr, Christian Brütting, Volker Altstädt, Holger Ruckdäschel
      First page: 707
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      For a long time, the number of available bead foam variants limited to standard polymers which restricted their functionality mainly to packaging, thermal insulation (e.g. in construction) and shock absorption (e.g. in transportation). In particular, standard polymers such as expanded polystyrene, expanded polyethylene and expanded polypropylene were used for components requiring good insulating properties and high energy absorption at low cost. Mainly since the last two decades, new polymer variants have found their way into the world of bead foams and are currently adding further functionalities, such as sustainability, flame retardancy, increased thermal stability and enhanced mechanical performance (e.g. improvements in energy absorption and impact resistance). Versatile fields of application open up, revolutionizing both industry and design sectors. This review article emphasizes the special development progress of new bead foam variants and their processing technologies. Upcoming opportunities of digital methods for modelling and simulation are highlighted.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-04-25T07:24:04Z
      DOI: 10.1177/0021955X221087603
       
  • Effect of microcrystalline cellulose on the preparation and performance of
           rigid polyurethane foam

    • Free pre-print version: Loading...

      Authors: Ye Liu, Xujian Chen, Jin Pan, Yong Guan, Zheng Anna, Dafu Wei, Xiang Xu
      First page: 739
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      In order to study the effect of microcrystalline cellulose on the reaction kinetics of polyurethane, in this work, the multi-scale microcrystalline cellulose was added to the foaming system of multifunctional polyether and multifunctional MDI polyurethane. While the chemical reaction was carried out, it was found through in situ FTIR combined with in situ rheological analysis that what was different from the usual inorganic fillers, the hydroxyl on the surface of the microcrystalline cellulose could preferentially react with MDI to generate urethane under the action of the catalyst. In the initial 5–6 min of the reaction, the reaction of soft segment chain growth was the main reaction. Then the main reaction quickly converted to the cross-linking reaction, which greatly increased the viscosity of the system. The addition of microcrystalline celluloses accelerated the improvement of the cross-linking degree and viscosity of the system. The higher the surface hydroxyl content of microcrystalline cellulose, the more significant this trend become. In addition, although the amount of microcrystalline cellulose added was different, the ratio of the reaction rate of the isocyanate group with the hydroxyl group and the amine group eventually tended to be constant, which indicated that there was a stable reactivity rate in the gradual addition reaction during the cross-linking reaction. Combined with SEM analysis, it was found that 25–60 μm microcrystalline cellulose with large hydroxyl content could act as a nucleating agent when the addition amount was less than 0.1%, which was beneficial to increase the cell density and reduce the pore size and improved the impact performance of the foam. The microcrystalline cellulose with a length of more than 90 μm continuously penetrated through several cell walls and destroyed integrity of the cell structure, which would consequently reduce the impact strength of the foam. This paper provided theoretical guidance for polyurethane modified by microcrystalline cellulose.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-08-22T01:12:40Z
      DOI: 10.1177/0021955X221089434
       
  • ɛ-caprolactone and pentaerythritol derived oligomer for rigid
           polyurethane foams preparation

    • Free pre-print version: Loading...

      Authors: Małgorzata Walczak, Jacek Lubczak
      First page: 757
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      Copolymerization of pentaerythritol with five equivalents of ɛ-caprolactone leads to tetra-functional branched oligomer terminated with hydroxyl groups. The product was characterized by elemental analysis, IR and NMR spectroscopy, gel permeation chromatography and physical methods to determine viscosity, density and surface tension. The oligomer was then used to obtain rigid polyurethane foam. The foam was characterized by physicochemical methods to determine: apparent density, water uptake, polymerization shrinkage, heat conductance coefficient, thermal stability, compression strength and biodegradation. The foam obtained from this oligomer have the properties similar to classic rigid polyurethane foams but enhanced thermal resistance. It can stand long time heating at 175°C, while its compression strength increases upon thermal exposure. The foam and oligomer are biodegradable; the oligomer is fully decomposed within 28 days in soil, while the foam obtained from it is in the same conditions degradable up to 28% of initial mass.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-07-12T03:38:47Z
      DOI: 10.1177/0021955X221092878
       
  • Effect of reduction time of functionalized graphene oxide on the
           morphology and properties of epoxy composite foams

    • Free pre-print version: Loading...

      Authors: Bangli Yang, Lilu zhou, Qiaohui Liu, Lijun Wang
      First page: 777
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      In this study, N-aminoethylpiperazine (AEP)-functionalized and reduced graphene oxide (RGO) with different structures and properties was prepared by simply tuning the reduction time and then its effect on the rheological, curing and foaming behavior of epoxy resin was carefully investigated using the environment-friendly carbamate as a chemical foaming agent. As the reduction time of RGO increased, the reduction degree of RGO first increased and then levelled off but the grafted AEP was little affected by the reduction time. The addition of RGO undergoing long reduction time improved the viscoelasticity of epoxy/reduced graphene oxide (EP/RGO) composites but weakened the interfacial compatibility of RGO and EP. With increasing the reduction time of RGO, the cell size of EP/RGO composite foams decreased and the cell density increased. However, as compared with pure EP foam, the composite foams containing RGO with lower reduction degree had a larger cell size and a lower density. These results were attributed to the complicated effect of RGO, which not only acted as the heterogeneous nucleating and foaming agent but also affected the viscoelasticity of composites. In addition, as the reduction time of RGO increased, the initial thermal decomposition temperature, storage modulus at room temperature, electrical conductivity, thermal conductivity, and compressive properties of EP/RGO composite foams increased while the glass transition temperature remained unchanged. These results were related not only to the intrinsic properties and dispersion of RGO, but also to the density and cell morphology of the composite foams.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-07-14T02:34:16Z
      DOI: 10.1177/0021955X221095466
       
  • Gelatin-based cellular solids: Fabrication, structure and properties

    • Free pre-print version: Loading...

      Authors: Virginia Martin Torrejon, Jim Song, Zhang Yu, Song Hang
      First page: 797
      Abstract: Journal of Cellular Plastics, Ahead of Print.
      Although most cellular polymers are made from thermoplastics using different foaming technologies, gelatin and many other natural polymers can form hydrogels and convert them to cellular solids using various techniques, many of which differ from traditional plastic foaming, and so does their resulting structures. Cellular solids from natural hydrogels are porous materials that often exhibit a combination of desirable properties, including high specific surface area, biochemical activity, as well as thermal and acoustic insulation properties. Among natural hydrogels, gelatin-based porous materials are widely explored due to their availability, biocompatibility, biodegradability and relatively low cost. In addition, gelatin-based cellular solids have outstanding properties and are currently subject to increasing scientific research due to their potential in many applications, such as biocompatible cellular materials or biofoams to facilitate waste treatment. This article aims at providing a comprehensive review of gelatin cellular solids processing and their processing-properties-structure relationship. The fabrication techniques covered include aerogels production, mechanical foaming, blowing agents use, 3D printing, electrospinning and particle leaching methods. It is hoped that the assessment of their characteristics provides compiled information and guidance for selecting techniques and optimization of processing conditions to control material structure and properties to meet the needs of the finished products.
      Citation: Journal of Cellular Plastics
      PubDate: 2022-07-04T05:51:43Z
      DOI: 10.1177/0021955X221087602
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.210.237.158
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-