Publisher: Society for Sedimentary Geology   (Total: 1 journals)   [Sort by number of followers]

Showing 1 - 1 of 1 Journals sorted alphabetically
J. of Sedimentary Research     Hybrid Journal   (Followers: 3, SJR: 1.347, CiteScore: 2)
Similar Journals
Journal Cover
Journal of Sedimentary Research
Journal Prestige (SJR): 1.347
Citation Impact (citeScore): 2
Number of Followers: 3  
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1527-1404 - ISSN (Online) 1938-3681
Published by Society for Sedimentary Geology Homepage  [1 journal]
  • Barform deposits of the Carolyn Shoemaker formation, Gale crater, Mars

    • Free pre-print version: Loading...

      Abstract: ABSTRACTThe early environmental history of Mars is encoded in the planet's record of sedimentary rocks. Since 2012, the Curiosity rover has been ascending Mount Sharp, Gale crater's central mound, making detailed observations of sedimentary strata exposed there. The primary depositional setting represented by the rocks examined thus far has been a perennial lake, represented by the mudstones and sandstone lenses of the Murray formation. Here, we report on the sedimentology of outcrops examined in the Carolyn Shoemaker formation, which sits stratigraphically above the Murray formation. We interpret strata exposed in the Glasgow and Mercou members of the Carolyn Shoemaker formation to represent river bars in ancient alluvial and shoreline settings based on sedimentary structures, stratal geometries measured from photogrammetric data, and erosional morphology. The transition from a lacustrine to a fluvial depositional setting records the aggradation and progradation of coastal rivers into what was previously the extent of the Gale lake system. This may have occurred due to the shrinking of the lake over time due to climate-driven changes in the basin water balance, or local three-dimensionality in shoreline evolution, such as the formation of a new sedimentary lobe following a channel switch.
      PubDate: Thu, 07 Dec 2023 00:00:00 GMT
  • The Sediment Budget Estimator (SBE): A process model for the stochastic
           estimation of fluxes and budgets of sediment through submarine channel

    • Free pre-print version: Loading...

      Abstract: Turbidity currents transport vast amounts of sediment through submarine channels onto deep-marine basin-floor fans. There is a lack of quantitative tools for the reconstruction of the sediment budget of these systems. The aim of this paper is to construct a simple and user-friendly model that can estimate turbidity-current structure and sediment budget based on observable submarine-channel dimensions and general characteristics of the system of interest. The requirements for the model were defined in the spirit of the source-to-sink perspective of sediment volume modeling: a simple, quantitative model that reflects natural variability and can be applied to ancient systems with sparse data availability. The model uses the input conditions to parameterize analytical formulations for the velocity and concentration profiles of turbidity currents. Channel cross section and temporal punctuation of turbidity-current activity in the channel are used to estimate sediment flux and sediment budget. The inherent uncertainties of geological sediment-budget estimates motivate a stochastic approach, which results in histograms of sediment-budget estimations, rather than discrete values. The model is validated against small-scale experimental turbidity currents and the 1929 Grand Banks turbidity current. The model performs within acceptable margins of error for sediment-flux predictions at these smallest and largest scales of turbidity currents possible on Earth. Finally, the model is applied to reconstruct the sediment budget related to Cretaceous slope-channel deposits (Tres Pasos Formation, Chile). The results give insight into the likely highly stratified concentration profile and the flow velocity of the Cretaceous turbidity currents that formed the deposits. They also yield estimates of the typical volume of sediment transported through the channels while they were active. These volumes are demonstrated to vary greatly depending on the geologic interpretation of the relation between observable deposit geometries and the dimensions of the flows that formed them. Finally, the shape of the probability density functions of predicted sediment budgets is shown to depend on the geological (un)certainty ranges. Correct geological interpretations of deep marine deposits are therefore indispensable for quantifications of sediment budgets in deep marine systems.
      PubDate: Thu, 08 Dec 2022 00:00:00 GMT
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-